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Abstract

Cutting planes are crucial in solving mixed integer linear programs (MILP) as they
facilitate bound improvements on the optimal solution. Modern MILP solvers rely
on a variety of separators to generate a diverse set of cutting planes by invoking
the separators frequently during the solving process. This work identifies that
MILP solvers can be drastically accelerated by appropriately selecting separators
to activate. As the combinatorial separator selection space imposes challenges for
machine learning, we learn to separate by proposing a novel data-driven strategy
to restrict the selection space and a learning-guided algorithm on the restricted
space. Our method predicts instance-aware separator configurations which can
dynamically adapt during the solve, effectively accelerating the open source MILP
solver SCIP by improving the relative solve time up to 72% and 37% on synthetic
and real-world MILP benchmarks. Our work complements recent work on learning
to select cutting planes and highlights the importance of separator management.

1 Introduction

Mixed Integer Linear Programs (MILP) have been widely used in logistics [15], management [12],
and production planning [17]. Modern MILP solvers typically employ a Branch-and-Cut (B&C)
framework that utilizes a Branch-and-Bound (B&B) tree search procedure to partition the search
space. As illustrated in Fig. 1, cutting plane algorithms are applied within each node of the B&B tree,
tightening the Linear Programming (LP) relaxation of the node and improving the lower bound.

This paper presents a machine learning approach to accelerate MILP solvers. Modern MILP solvers
implement various cutting plane algorithms, also referred to as separators, to generate cutting planes
that tighten the LP solutions. Different separators have varying performance and execution times
depending on the specific MILP instance. Typical solvers use simple heuristics to select separators,
which can limit the ability to exploit commonalities across problem instances. While there is a
growing body of work considering the ‘branch’ and ‘cut’ aspects of B&C [18, 35, 51, 42], profiling
the open-source academic MILP solver SCIP [8], we find generating cutting planes through separators
is a major contributor to the total solve time, and deactivating unused separators leads to faster solves
and fewer B&B tree nodes. That is, a well-configured separator setup allows the selected cutting
planes to more effectively tighten the LP solution, leading to fewer nodes in the B&B tree.

To our knowledge, the problem of how to leverage machine learning for this critical task of separator
configuration, namely the selection of separators to activate and deactivate during the MILP solving
process has not been considered. Therefore, the goal of this paper is to explore the extent to which
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Figure 1: Separator Configuration in Branch-and-Cut (B&C). Modern MILP solvers perform
Branch-and-Bound (B&B) tree search to solve MILPs. At each node of the B&B tree, cuts are added
to tighten the Linear Programming (LP) relaxation of the MILP. To generate these cuts, a set of
separators (e.g. Gomory) are invoked to first generate cuts into the cutpool Ck. A subset of these cuts
Pk ✓ Ck are then selected and added to the LP. The process is repeated for several separation rounds
at each node. While previous works study cut selection from a pre-determined cutpool, this work
focuses on the upstream task of separator configuration to generate a high quality cutpool efficiently.

tailoring the separator configuration to the MILP instance in a data-driven manner can accelerate MILP
solvers. The central challenge comes from the high dimensionality of the configuration search space
(induced by the large number of separators and configuration steps), which we address by introducing
a data-driven search space restriction strategy that balances model fitting and generalization. We
further propose a learning-guided algorithm, which is cast into the framework of neural contextual
bandit, as an effective means of optimizing configurations within the reduced search space.

Our contributions can be summarized as

• We identify separator management as a crucial component in B&C, and introduce the
Separator Configuration task for selecting separators to accelerate solving MILPs.

• To overcome the high dimensionality of the configuration task, we propose a data-driven
strategy, directly informed by theoretical analysis, to restrict the search space. We further
design a learning method to tailor instance-aware configurations within the restricted space.

• Extensive computational experiments demonstrate that our method achieves significant
speedup over the competitive MILP solver SCIP on a variety of benchmark MILP datasets
and objectives. Our method further accelerates the state-of-the-art MILP solver Gurobi and
uncovers known facts from literature regarding separator efficacy for different MILP classes.

2 Related Work

The utilization of machine learning in MILP solvers has recently gained considerable attention.
Various components in the B&B algorithm have been explored, including node selection [25, 49, 35],
variable selection [18, 23, 58], branching rule [30, 23, 58, 46], scheduling primal heuristics [31, 26,
13], and deciding whether to apply Dantzig-Wolfe decomposition [34].

Our work is closely related to cutting plane selection, which can be achieved through heuristics [55, 2]
or machine learning [51, 42]. The key difference, as shown in Figure 1 in Sec. 4, is that these works
focus on selecting cutting planes from a pre-given cutpool generated by the available separators.
That is, they consider the ‘how to cut’ question, whereas we focus on the equally crucial, but much
less explored ‘when (and what separators should we use) to cut’ question [14, 16, 7]. For example,
Wesselmann and Stuhl [55] state that they do not use any additional scheme to deactivate specific
separators. In contrast, our work configures separators to generate a high-quality cutpool.

Another closely related line of work is on algorithm selection and parameter configurations [56, 57,
4, 5, 27, 28]. The most relevant works [57, 5] consider portfolio-based algorithm selection by first
choosing a subset of algorithm parameter settings, and then selecting a parameter setting for each
problem instance from the portfolio. We specialize and extend the general framework to separator
configuration, by proposing a novel data-driven subspace restriction strategy, followed by a learning
method, to configure separators for multiple separation rounds. We further present a theoretical
analysis that directly informs our subspace restriction strategy, whereas the generalization guarantees
from the prior work [5] is not informative for designing the portfolio-construction procedure.
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It is common to restrict combinatorial space to improve the quality of solutions in discrete optimization.
Previous research focuses primarily on decomposing large-scale problems, including heuristic works
on Bender decomposition [44] and column generation [6], and recent learning-based works [50, 36]
that train networks to select among a set of random or heuristic decomposition strategies. Our
data-driven action space restriction strategy is general and could be of interest for a broader set of
combinatorial optimization tasks, as well as other applications such as recommendation systems.

3 MILP Background

Mixed Integer Linear Programming (MILP). A MILP can be written as x
⇤ = argmin{c|x :

Ax  b, xj 2 Z 8j 2 I}, where x 2 Rn is the set of n decision variables, A 2 Rm⇥n and
b 2 Rm formulate the set of m constraints, and c 2 Rn formulates the linear objective function.
I ✓ {1, ..., n} defines the integer variables. x⇤ 2 Rn denotes the optimal solution to the MILP with
an optimal objective value z

⇤.

Branch-and-Cut. State-of-the-art MILP solvers perform branch-and-cut (B&C) to solve MILPs,
where a branch-and-bound (B&B) procedure is used to recursively partition the search space into a
tree. Within each node of the B&B tree, linear programming (LP) relaxations of the MILP are solved
to obtain lower bounds. B&C further invoke Cutting plane algorithms to tighten the LP relaxation.

Cutting Plane Separation. When the optimal solution x
⇤
LP to the LP relaxation is not a feasible

solution to the original MILP, the cutting plane methods aim to find valid linear inequalities ⌫|x  !

(cuts) that separate x
⇤
LP from the convex hull of all feasible solutions of the MILP. Cutting plane

separation happens in rounds, where each round k consists of the following steps (1) solving the
current LP relaxation, (2) calling different separators to generate a set of cuts and add them to the
cutpool Ck, (3) select a subset of cuts Pk ✓ Ck and update the LP with the selected cuts. Detailed
background information on separators in the B&C framework can be found in Appendix A.1.

4 Problem Formulation

Different separators are designed to exploit different structures of the solution polytope defined by
the MILP instance. The solution polytope also varies at different separation rounds, as changes to
the constraints (e.g. after a branch) lead to different structures and thus different effective separators.
Moreover, multiple separators can combine to exploit more sophisticated structures. The inherently
combinatorial nature of the problem hence presents a challenge in assigning the appropriate separators
to each MILP instances. This work aims to enhance the MILP solving process via intelligent separator
configuration. We formally introduce the separator configuration task as follows.

Definition 1 (Separator Configuration). Suppose the MILP solver implements M different separator
algorithms. Given a set X of N MILP instances (where |X | = N ), and a maximum number of
separation rounds R in a MILP solving process, we want to select a configuration sx,n 2 {0, 1}M for
each instance x 2 X and separation round 1  n  R, where the w

th entry of sx,n equaling one
means we activate the w

th separator in separation round n, and equaling zero means we deactivate
the w

th separator in the corresponding round.

Figure 1 illustrates the separator configuration task and highlights the difference between our task
and the downstream cutting plane selection task in previous works [51, 42].

We measure the success of an algorithm for the separator configuration task by the relative time
improvement from SCIP’s default configuration. Denote a proposed configuration policy as ⇡ :
X !

QR
n=1{0, 1}M , where for each MILP instance x 2 X , we have ⇡(x) = {sx,1, ..., sx,R} as the

proposed configurations. Let t⇡(x) be the solve time of instance x using the configuration sequence
⇡(x) and t0(x) be the solve time using the default SCIP configuration (both to optimality or a fixed
gap). We evaluate the effectiveness of ⇡ by the relative time improvement

�(⇡) := Ex2X [�(⇡(x), x)] where �(⇡(x), x) := (t0(x)� t⇡(x)) /t0(x) (1)

The search space for the separator configuration task is enormous, with a size of N⇥2M⇥R. SCIP con-
tains M = 17 separators, and a typical solve run yields R � 30, making the task highly challenging.
In the next section, we discuss our data-driven approach to finding high quality configurations.
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5 Learning to Separate

Two sources of high dimensionality in the search space come from (1) combinatorial number
|O| = 2M of configurations, where each element of O := {0, 1}M is a combination of separators
(e.g., Gomory, Clique) to activate, and (2) a large number of configuration updates that results in the
|O|R factor. We address the first challenge in Sec. 5.1 by restricting the number of configuration
options, and the second challenge in Sec. 5.2 by reducing the frequency of configuration updates. The
resulting restricted search space allows efficient learning in Sec. 5.3 to find high quality customized
configurations for each MILP instance, which we term as instance-aware configurations.

5.1 Configuration space restriction

For simplicity, we first consider a single configuration update such that we apply the same configu-
ration for all separation rounds, and our goal is to learn an instance-aware configuration predictor
f̃ : X ! O. That is, we set sx,1 = ... = sx,R = f̃(x) for each x 2 X ; Sec. 5.2 discusses extensions
to multiple configuration updates. To address the challenge of learning the predictor in the high
dimensional space O, we constrain the predictor f̃A to select from a subset A ✓ O of configurations
with |A| reasonably small, i.e. f̃A(x) 2 A 8x 2 X . We design a data-driven strategy, supported by
theoretical rationale, to identify a subspace A for f̃A to achieve high performance.

Preliminary definitions. Let X be a class of MILP instances, and K = {x1, ..., xK} ✓ X be
a given training set where we can acquire the time improvement {�(s, xi)}i=1..K;s2O. The true
performance of f̃A on X is �(f̃A) = Ex2X [�(f̃A(x), x)], and the empirical counterpart on K is
�̂(f̃A) = 1

K

PK
i=1 �(f̃A(xi), xi). We further denote the true instance-agnostic performance of

applying a single configuration s 2 {0, 1}M to all MILP instances as �̄(s) = Ex2X [�(s, x)], and the
empirical counterpart as ˆ̄�(s) = 1

K

PK
i=1 �(s, xi). Appendix A.2.1 details all relevant definitions.

Restriction algorithm. To find a subspace A that optimizes the true performance �(f̃A) for the
predictor f̃A, we employ the following training performance v.s. generalization decomposition:

�(f̃A) = �̂(f̃A)| {z }
training perf.

� (�̂(f̃A)��(f̃A))| {z }
generalization

(2)

The first term measures how well f̃A performs on the training set K, while the second term reflects the
generalization gap of f̃A to the entire distribution X . Notably, a similar trade-off exists in standard
supervised learning [47], where regularizations are used to balance fitting and generalization by
implicitly restricting the hypothesis class. Relatedly, in this problem, we can balance the two terms
by explicitly restricting the output space of the predictor. Intuitively, a larger subspace A can improve
training performance (more configuration options to leverage), but hurt generalization (more options
that could perform poorly on unseen instances). This intuition is formalized next.

First, since the second term in Eq. (2) is unobserved, the following proposition imposes assumptions
that allow us to restrict the configuration space. A detailed proof can be found in Appendix A.2.2.

Proposition 1. Assume the predictor f̃A, when evaluated on the entire distribution X , achieves perfect
generalization (i.e., zero generalization gap) with probability 1� ↵; with probability ↵, the predictor
makes mistake and outputs a configuration s 2 A uniformly at random. Then, the trainset performance
v.s. generalization decomposition can be written as �(f̃A) = (1� ↵)�̂(f̃A) + ↵

1
|A|

P
s2A �̄(s).

As �̄(s) is also unobservable, we further rely on its empirical counterpart ˆ̄�t(s) (see Appendix A.2.2
for a discussion of the reduction) and select the subspace A based on the following objective:

(1� ↵)�̂(f̃A) + ↵
1

|A|
X

s2A

ˆ̄
�(s) (3)

The impact of the subspace A on these two terms further depends on the nature of f̃A; we assume
that the predictor f̃A uses empirical risk minimization (ERM) and performs optimally on the training
set K, i.e. f̃ERM

A (x) = argmaxs2A �(s, x) 8x 2 K, hence bypassing the need to train any predictor
for constructing A. The discussion of the ERM assumption’s validity and the extension to predictors
with training error are provided in Appendix A.2.4 (See Lemma 3 for the extension).
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Eq. (3) then sheds light on how to construct a good A under the ERM assumption: an ideal subset A
allows f̃ERM

A to have (1) high training performance �̂(f̃ERM
A ), obtained when some configuration

in A achieves good performance for any MILP instance in a training set, and (2) low generalization
gap, achieved when each configuration in A has good performance across MILP instances in a
test set, which we approximate with the average instance-agnostic performance on the training set
1
|A|

P
s2A

ˆ̄
�(s). In fact, a larger or more diverse subspace A results in better �̂(f̃ERM

A ), as the
ERM predictor can leverage more configuration options to improve the training set performance.
Meanwhile, it may also lower 1

|A|
P

s2A
ˆ̄
�(s) which harms generalization, as we may include some

configurations that perform poorly on most MILP instances but well on a small subset. The following
proposition (proven in Appendix A.2.3) formalizes the diminishing marginal returns of f̃ERM

A ’s
training performance with respect to A, which enables an efficient algorithm to construct A:

Proposition 2. The empirical performance of the ERM predictor �̂(f̃ERM
A ) is monotone submodular,

and a greedy strategy where we include the configuration that achieves the greatest marginal improve-
ment argmaxs2{0,1}M\A �̂(f̃ERM

A[{s}) � �̂(f̃ERM
A ) at each iteration is a (1 � 1/e)-approximation

algorithm for constructing the subspace A that optimizes �̂(f̃ERM
A ).

To balance the two terms in Eq. (3), we couple the greedy selection strategy with a filtering criterion
that eliminates configurations with poor instance-agnostic performance to construct the subspace A.
Due to the high computational cost of calculating the marginal improvement for all 2M configurations,
we first sample a large set S of configurations, which we use to construct the subspace A. Then, at
each iteration, we expand the current set A with the configuration that produces the best marginal
improvement in training performance, but only considering configurations s 2 S whose empirical
instance-agnostic performance is greater than a threshold, i.e. ˆ̄�(s) > b. The extra filtering procedure
enables us to improve the second term with small concessions in the first term. We continue the
process while monitoring the two opposing terms, and terminate with a reasonably small A that
balances the trade-off. The detailed algorithm and discussions of the filtering and termination
procedure are provided in Appendix A.3.

5.2 Configuration update restriction

Learning to update configurations at each separation round is challenging due to cascading errors from
a large number of updates. Instead, we periodically update the configuration at a few intermediate
rounds and hold it fixed between updates: we perform k ⌧ R updates at rounds {nj}kj=1 with
1  nj  R, and set sx,nj = ... = sx,nj+1�1 for each 1  j  k and x 2 X . Fig. 7 (Left) in
Appendix A.4 shows an example of the configuration update restriction with k = 2 and R = 6,
where we also discuss the trade-off of k in approximation v.s. estimation. We empirically find a small
number of updates can already yield a decent time improvement (we set k = 2 in Experiment Sec. 6).

We use a forward training algorithm [45] to learn the configuration policy ⇡̃
(k) : X !

Qk
i=1{0, 1}M .

The algorithm decomposes the sequential task into k single configuration update tasks ⇡̃
(k) =

{f̃m
✓T }km=1, where each f̃

j
✓T : X ! {0, 1}M is a separate network for the j-th configuration update.

As illustrated in Fig.7 (Right) of Appendix A.4, at each iteration, we fix the weights of the trained
networks for earlier updates {f̃m

✓T }j�1
m=1, and train the network f̃

j
✓ for the j

th update. The detailed
algorithm is provided in Alg. 2 of Appendix A.4. We incorporate the configuration space restriction
in Sec. 5.1 by constraining each network f̃

j
✓ to select configurations from a subset A ✓ O, such

that f̃ j
✓ (x) 2 A for all x 2 X . This reduces the search space from N ⇥ 2M⇥R to N ⇥ |A| ⇥ k,

significantly easing the learning process. Notably, we construct the subspace A once at the initial
update for computational efficiency benefits, as it yields comparable performances to constructing a
new subspace for each update. Further details and discussions can be found in Appendix A.7.2.

5.3 Neural UCB algorithm

Given the restricted configuration space A, we frame each configuration update as a contextual bandit
problem with A arms (configurations). Conditional on the context (a MILP instance x 2 X ), each
arm s 2 A has a reward (time improvement �(s, x)). We employ the neural UCB algorithm [59]
to efficiently train a network f̃

j
✓0(x, s) : X ⇥A ! R to estimate the reward, where the confidence
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(a) (b)

Figure 2: (a) Our triplet graph encoding of the MILP instance (the context) and the separator
configuration (the arm / action). (b) Our neural architecture f̃✓. It involves three graph convolutions,
an attention block for the separator nodes, and global poolings to extract the final score for reward
prediction. We show the dimensionality of a tensor in gray if it is different from the previous size.

bound estimation is enabled by the small size of A. We provide the complete training procedure in
Alg. 3 of Appendix A.5. At each training epoch t, we randomly sample P instances from X . For
each instance, we sample D configurations based on the upper confidence bound ucb(x, s), which
combines a reward point estimate f̃

j
✓t�1(x, s) and a confidence bound estimate. The confidence

bound estimate incorporates the gradient r✓f̃
j
✓t�1(x, s) and a normalizing matrix Zt�1 only feasible

to obtain when the number of arms is small. We run the MILP solver on each of the P ⇥D pairs
of instance-configuration and observe the reward labels. Lastly, we add all instance-configuration-
reward tuples {x, s, r}P⇥D to the data buffer and retrain the network f̃

j
✓ . At test time, we select the

configuration with the highest predicted reward s
⇤
x,j = argmaxs2A f̃

j
✓T (x, s) or the highest UCB

score s
⇤
x,j = argmaxs2A ucb(x, s), based on validation performance, at each update step nj . We

provide further details on the inference strategy in Appendix A.6.1.

Context encoding. We encode the context for each MILP instance x and separator configuration s

as a triplet graph with three types of nodes in the graph: variable nodes V, constraint nodes C, and
separator nodes S. The variable and constraint nodes (V, C) appear in the previous works [18, 42].
We follow Paulus et al. [42] to use the same input features for V and C, and construct edges between
them such that a variable node Vi is connected to a constraint node Cj if the variable appears in the
constraint with the weight corresponds to the coefficient Aij 6= 0. The separator nodes S are unique
to our problem. We represent each configuration s by M separator nodes; each node Sk has M + 1
dimensional input features, representing whether the separator is activated (the first dimension), and
which separator it is (one-hot M -dimensional vector). We connect each separator node with all
variable and constraint nodes, all with a weight of 1 for complete pairwise message passing. We
provide detailed descriptions of the input features in Appendix A.5.

Neural architecture f̃✓. We extend the architecture in Paulus et al. [42] for our network f̃✓(x, s) :
X ⇥ S ! R. The architecture, as illustrated in Fig. 2, involves a Graph Convolutional Network
(GCN) [33], an attention block on the hidden embeddings of the separator nodes [48], and a global
pooling to output a single score for reward prediction. It first embeds C, V, and S input features
into hidden representations, and performs message passing following the directions of V!C!V,
S!V!S, and S!C!S. Then, the S nodes pass through an attention module to emphasize the task
of the separator configuration. Lastly, since we require the model to output a single score (in contrary
to Paulus et al. [42] which outputs a score for each cut node), we perform a global mean pooling on
each of the C, V, and S hidden embeddings to obtain three embedding vectors, concatenate them into
a single vector, and finally use a multilayer perceptron (MLP) to map the vector into a scalar.

Clipped Reward Label. To account for variations in MILP solve time, we perform l MILP solver runs
for each configuration-instance pair (s, x) and take the average time improvement as the unclipped
reward label. Additionally, if a certain configuration s takes significantly longer solve time than SCIP
default on a MILP instance x, we terminate the MILP solver run when the relative time improvement
is less than a predefined threshold rmin ⌧ 0 to expedite data collection, and assign a clipped reward
label of rclip(s, x) = (

P
i=1..l max{�(i)(s, x), rmin})/l. Reward clipping also simplifies learning by

obviating the need to accurately fit the exact value of extreme negative improvements, which may
skew the network’s prediction. As long as the prediction’s sign is right, we will not select such a
configuration with a negative predicted value during testing.
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Table 1: Tang et al. and Ecole. Absolute solve time of SCIP default, and the median (higher the
better) and standard deviation (in parentheses) of relative time improvement of different methods.

Tang Ecole

Method Bin. Pack. Max. Cut Pack. Comb. Auc. Indep. Set Fac. Loc.

Default Time (s) 0.076s
(0.131s)

1.77s
(0.56s)

8.82s
(25.46s)

2.73s
(4.43s)

8.21s
(114.15s)

61.1s
(55.37s)

Heuristic
Baselines

Default 0% 0% 0% 0% 0% 0%

Random -23.4%
(153.8%)

-108.4%
(168.2%)

-91%
(127.8%)

-48.6%
(159.0%)

-5%
(161.4%)

-33.3%
(157.2%)

Prune 13.9%
(27.0%)

2.7%
(26.2%)

6.6%
(45.0%)

12.3%
(24.2%)

18.0%
(24.2%)

24.7%
(47.9%)

Ours
Heuristic
Variants

Inst. Agnostic
Configuration

33.7%
(36.6%)

69.8%
(10.5%)

20.1%
(38.0%)

60.1%
(27.6%)

57.8%
(29.5%)

11.5%
(21.8%)

Random within
Restr. Subspace

26.9%
(33.6%)

68.0%
(11.0%)

18.8%
(38.7%)

58.1%
(28.7%)

57.4%
(75.8%)

17.7%
(33.0%)

Ours
Learned L2Sep 42.3%

(34.2%)

71.9%

(11.3%)

28.5%

(39.3%)

66.2%

(26.2%)

72.4%

(27.8%)

29.4%

(39.6%)

Loss function L. We use a L2 loss between the prediction f̃✓(x, s) and the clipped reward label rclip:

L(f̃✓(x, s), r) = (f̃✓(x, s)� r
clip)2 (4)

6 Experiments and Analysis

We divide the experiment section into two main parts. First, we evaluate our method on standard MILP
benchmarks from Tang et al. [51] and Ecole [43], where the number of variables and constraints
range from 60 to 10, 000. We conduct detailed ablation studies to validate the design choices made for
our method. Second, we examine the efficacy of our method by applying it to large-scale real-world
MILP benchmarks, including the MIPLIB [20], NN Verification [40], and Load Balancing in the
ML4CO challenges [19], where the number of variables and constraints reaches up to 65, 000. We
omit certain MILP classes from the benchmarks with excessively short solve times, few generated
cutting planes, or small dataset sizes. Appendix A.6.5 provides a detailed description of the datasets.

6.1 Setup

Evaluation Metric. As we aim to accelerate SCIP solving through separator configuration, we
evaluate our learned configuration by the relative time improvement from SCIP default, defined in
Eq. (1), when both are solved to optimality (for standard instances) or a fixed gap (for large-scale
instances) as described in Appendix A.6.4. We report the median and standard deviation across all
test instances, and defer mean and interquartile mean to Appendix A.8 as they yield similar results.

ML Setup. We train the networks with ADAM [32] under a learning rate of 10�3. The reward label
collection is performed via multi-processing with 48 CPU processes. As in previous works [51, 42,
54], we train separate models for each MILP class. By default, we generate a training set Ksmall

of 100 instances for configuration space restriction, another training set Klarge of 800 for predictor
network training, a validation set of 100 instances, and a test set of 100 instances for each class
Appendix A.6 provides full details of the setup.

Baselines. To our knowledge, our separator configuration task has not been explored in previous
research. We design the following baselines to assess the effectiveness of our proposed methods:
(1) Default, where we run SCIP with the default parameters; (2) Random, where for each MILP
instance x, we randomly sample a configuration s 2 {0, 1}M ; (3) Prune, where we first run SCIP
default on the Ksmall, and then at test time, we deactivate separators whose generated cutting planes
are never applied to any instances in Ksmall.

Proposed Methods. We evaluate the performances of our complete method and its sub-components:
(1) Ours (L2Sep), where we perform k = 2 instance-aware configuration updates per MILP instance
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Table 2: Detailed ablations of different components in our L2Sep algorithm. Learning with neural
UCB in the restricted config. space and performing k = 2 config. updates achieves the best result.

Config. Space

Restriction

Config. Update

Restriction

Neural

Contextual Bandit

Ours:

L2Sep

Ablation

Method

No
Restr.

Greedy
Restr. k = 1 k = 3

Supervise
(⇥4) ✏-greedy w/ Restr. +

k = 2 + UCB

Bin. Pack.
18.6%

(125.3%)
35.8%

(35.6%)
40.4%

(42.3%)
44.2%

(32.4%)
40.2%

(19.7%)
36.3%

(32.3%)
42.3%

(34.2%)

Pack.
19.6%

(61.1%)
18.4%

(49.8%)
23.8%

(38.1%)
27.8%

(38.1%)
24.0%

(44.1%)
25.1%

(44.3%)
28.5%

(39.3%)

Indep. Set
38.6%

(23.5%)
68.5%

(28.1%)
70.2%

(38.6%)
69.7%

(29.1%)
68.7%

(33.9%)
64.1%

(48.7%)
72.4%

(27.8%)

Fac. Loc.
15.5%

(121.2%)
27.1%

(38.7%)
20.1%

(37.8%)
29.7%

(29.8%)
31.0%

(41.5%)
28.1%

(23.6%)
29.4%

(39.6%)

(Sec. 5.2). We use forward training to learn predictors via the neural UCB algorithm (Sec. 5.3) within
the restricted configuration subspace A (Sec. 5.1). (2) Instance Agnostic Configuration, where we
select a single configuration s̃ with the best instance-agnostic performance ˆ̄

�(s̃) on Ksmall from the
initial large subset S for our space restriction algorithm (|S| ⇡ 2000); s̃ is included in A. (3) Random

within Restricted Subspace, where for each MILP instance, we select a random configuration within
A. The latter two sub-components assess the quality of the restricted subspace and the benefit of
learning instance-aware configurations. Further details can be found in Appendix A.6.1.

6.2 Standard MILP Benchmarks with Detailed Ablations

Performance. Table 1 presents the relative time improvement of different methods over SCIP default,
on the datasets of Tang et al. and Ecole. Our method demonstrates a substantial speed up from
SCIP default across all MILP classes, with a relative time improvement ranging from 25% to 70%.
In contrast, the random baseline performs poorly, demonstrating that separator configuration is a
nontrivial task. Meanwhile, although the pruning baseline generally outperforms SCIP default, its
time improvement is significantly less than ours, confirming the efficacy of our proposed algorithm.
Notably, both of our two heuristic sub-components achieve impressive speed-up from SCIP default,
indicating the high quality of our restricted subspace (and a configuration within) to accelerate SCIP;
additionally, our complete learning method outperforms the sub-components on all MILP classes,
further underscoring the advantages of learning for instance-aware configurations.

We note that the high standard deviation, exhibited in all methods including SCIP default and also
observed in the recent studies [54], is reasonable due to instance heterogeneity, as the standard
deviation is calculated based on the time improvements across instances within each MILP dataset.

Ablations. In Table 2, we further conduct comprehensive ablation studies to assess the effectiveness
of our learning method. The ablations are performed on four representative MILP classes in Ecole
and Tang, covering a wide range of problem sizes and solve times. Appendix A.7 provides detailed
descriptions as well as additional ablation results. We aim to answer the following questions: (i)
Does the restricted config. space improve learning performance? (ii) How does the performance vary
with fewer or more updates? (iii) Does the use of neural UCB lead to efficient predictor learning?

(i) Configuration space restriction (Sec. 5.1). We train our configuration predictors to select within
a restricted subspace A constructed by a greedy strategy coupled with a filtering criterion. To evaluate
the importance of the space restriction in learning high quality predictors, we perform an ablation study
where we train the predictors to select within (1) the unrestricted space O = {0, 1}M (No Restr.),
and (2) a same-sized subspace A0 constructed solely by the greedy strategy without filtering (Greedy

Restr.). The restricted search space substantially enhances the learned predictors when compared to
No Restr., improving the median performance and lowering the standard deviation. We also observe
the benefit of the filtering criterion when compared to Greedy Restr.. The filtering criterion excludes
configurations with subpar instance-agnostic performance from entering the restricted configuration
space, improving model generalization as demonstrated in our theoretical analysis.
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Table 3: Real-world MILPs. Absolute solve time of SCIP default, and the median (higher the better)
and standard deviation (in parentheses) of relative time improvement of different methods.

Heuristic Baselinses Ours Heuristic Variants Ours Learned

Methods
Default

Times (s) Default Random Prune Inst. Agnostic
Configuration

Random within
Restr. Subspace L2Sep

MIPLIB
25.08s

(57.05s) 0% -149.1%
(149.7%)

4.8%
(107.6%)

5.5%
(71.5%)

1.9%
(74.9%)

12.9%

(73.1%)

NN Verification
31.42s

(22.44s) 0% -300.0%
(152.3%)

31.5%
(36.3%)

31.4%
(38.3%)

30.7%
(34.1%)

37.5%

(33.9%)

Load Balancing
31.86s
(7.07s) 0% -300.1%

(129.5%)
21.1%

(150.8%)
10.4%
(8.5%)

10.0%
(31.5%)

21.2%

(20.3%)

(ii) Configuration update restriction (Sec. 5.2). We apply the forward training algorithm (Sec. 5.2)
to perform two configuration updates (k = 2) for each MILP instance. To examine the impact of
fewer or more updates, we conduct an ablation study where we (1) performed a single update at round
n1 = 0 (k = 1), and (2) added an additional third update at a later round n3 (k = 3). The results
show that while a single update yields decent time improvement, adding the second update leads to
further time savings. Meanwhile, we observe little improvement from the third update (k = 3). We
speculate that this is because the performance improvement primarily occurs during the early stages
of a solve, and holding a fixed configuration for longer may be advantageous by making the solve
process more stable. We leave further investigation of more configuration updates as a future work.

(iii) Neural UCB algorithm (Sec. 5.3). Our method employs the online neural UCB algorithm
to improve training efficiency for configuration predictors. We present the ablation (1) where we
train the predictor using an offline regression dataset whose size is four times as ours while training
the model until convergence (Supervise (⇥4)); we conduct an additional ablation (2) where we
train the predictor using neural contextual bandit with ✏-greedy exploration strategy (✏-greedy). Our
model performs comparably to Supervise (⇥4) while using significantly fewer data, highlighting
the importance of the contextual bandit for improving training efficiency by collecting increasingly
higher quality datasets online. The ablation results with ✏-greedy further confirm the benefit of the
confidence bound estimation in neural UCB for more efficient contextual bandit exploration.

6.3 Large-scale Real-world MILP Benchmarks

The real-world datasets of MIPLIB, NN Verification, and Load Balancing present significant chal-
lenges due to the vast number of variables and constraints (on the order of 104), including nonstandard
constraint types that MILP separators are not designed to handle. MIPLIB imposes a further challenge
of dataset heterogeneity, as it contains a diverse set of instances from various application domains.
Prior research [52] struggles to learn effectively on MIPLIB due to this heterogeneity, and a recent
study [54] attempts to learn cutting plane selection over two homogeneous subsets (with 20 and 40
instances each). In contrast, we attempt to learn separator configuration across a larger MIPLIB
subset that includes 443 of the 1065 instances in the original set, while carefully preserving the
heterogeneity of the dataset. We provide our subset curation procedure in Appendix A.6.5.

Main Results. Table 3 presents the relative time improvement of various methods over SCIP default,
on the large-scale real-world datasets. Again, our complete method displays a substantial speed
up from SCIP default with a relative time improvement ranging from 12% to 37%. Our method
also improves from our heuristic sub-components, further indicating the efficacy of our learning
component on the challenging datasets. In contrast, the random baseline fails to improve from SCIP
default, while the pruning baseline, despite having a reasonable median performance, suffers from
a high standard deviation due to poor performance on many instances (See Appendix A.8.1 for
IQM and mean results). Our results show the effectiveness of our learning method in improving the
efficiency of practical applications that involve large-scale MILP optimization.

Although not a perfect comparison, for reference, we attempt to contextualize our result by examining
the time improvement in the most comparable setting we found, which we provide comparison details
in Appendix A.8.2: the learning method for cutting plane selection in Paulus et al. [42] achieves
a median relative time improvement of 11.67% on the NN Verification dataset, and that in Wang
et al. [54] obtains a 3% and 1% improvement in the solve time on two small homogeneous MIPLIB
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Table 4: Gurobi as the MILP Solver. Absolute solve time of Gurobi default, and the median (higher
the better) and standard deviation (in parentheses) of relative time improvement of different methods.

Heuristic Baselinses Ours Heuristic Variants Ours Learned

Methods
Default

Times (s) Default Random Inst. Agnostic
Configuration

Random within
Restr. Subspace L2Sep

Max. Cut
0.087s

(0.051s) 0% 18.6%
(49.0%)

35.1%
(35.8%)

37.3%
(48.0%)

45.4%

(38.4%)

Pack.
4.048s

(3.216s) 0% 15.5%
(28.2%)

22.9%
(39.4%)

24.3%
(32.2%)

30.6%

(29.6%)

Comb. Auc.
1.687s

(3.596s) 0% -10.7%
(69.1%)

3.1%
(65.3%)

5.1%
(84.2%)

12.6%

(63.5%)

Fac. Loc.
27.872s

(14.733s) 0% 13.4%
(46.0%)

40.6%
(48.1%)

40.2%
(46.8%)

56.7%

(35.7%)

subsets. While the comparison is far from perfect, our learning method for separator configuration
achieves much higher time improvements of 37.5% on NN Verification and 12.9% on MIPLIB.

6.4 Interpretation Analysis: L2Sep Recovers Effective Separators from Literature

Bin Packing: It is known that instances with few bins approximate the Knapsack problem (Clique
cuts are known to be effective [9]), and that instances with many bins approximate Bipartite Matching
(Flowcover cuts can be useful [53]). We analyze the separators activated by L2Sep when we gradually
decrease the number of bins, and observe that the prevalence of selected Clique and Flowcover cuts
increased and decreased, respectively. This is illustrated in Fig 8 in Appendix A.8.3.

Other MILP Classes: We provide visualizations and interpretations for other MILP classes in
Appendix A.8.3. Notably, Clique is known to be effective for Indep. Set [16]; L2Sep recovers this fact
by frequently selecting configurations that activate Clique. Meanwhile, L2Sep discovers the instance
heterogeneity of MIPLIB, resulting in a more dispersed distribution of selected configurations.

6.5 State-of-the-art MILP Solver Gurobi

We apply our method L2Sep with Gurobi, which contains a larger set of 21 separators. As Gurobi is
closed-source, we cannot change configurations after the solving process starts, so we only consider
one stage of separator configuration (k = 1). As seen from Table 4, L2Sep achieves significant
relative time improvements over the Gurobi default, with gains ranging from 12% to 56%. This result
confirms the efficacy of L2Sep as an automatic instance-aware separator configuration method.

6.6 Additional Results

In Appendix A.8.5 and A.8.4, we further demonstrate (1) Separator Configuration has immediate and
multi-step effects in the B&C Process. For instance, even though L2Sep does not modify branching,
the branching solve time is reduced. (2) L2Sep is effective under an alternative objective, achieving
15%-68% relative gap improvements under fixed time limits.

7 Conclusion

This work identifies the opportunity of managing separators to improve MILP solvers, and further for-
mulates and designs a learning-based method for doing so. We design a data-driven strategy, supported
by theoretical analysis, to restrict the combinatorial space of separator configurations, and overall find
that our learning method is able to improve the relative solve time (over the default solver) from 12%
to 72% across a range of MILP benchmarks. In future work, we plan to apply our algorithm to more
challenging MILP problems, particularly those that cannot be solved to optimality. We also aim to
learn more fine-grained controls by increasing the frequency of separation configuration updates. Our
algorithm is highly versatile, and we plan to investigate its potential to manage aspects of the MILP
solvers, and further integrate with previous works on cutting plane selection. Our code is publicly
available at https://github.com/mit-wu-lab/learning-to-configure-separators. We
believe that our learning framework can be a powerful technique to enhance MILP solvers.
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