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Abstract

In some applications of reinforcement learning, a dataset of pre-collected experi-1

ence is already available but it is also possible to acquire some additional online2

data to help improve the quality of the policy. However, it may be preferable to3

gather additional data with a single, non-reactive exploration policy and avoid the4

engineering costs associated with switching policies.5

In this paper we propose an algorithm with provable guarantees that can leverage6

an offline dataset to design a single non-reactive policy for exploration. We the-7

oretically analyze the algorithm and measure the quality of the final policy as a8

function of the local coverage of the original dataset and the amount of additional9

data collected.10

1 Introduction11

Reinforcement learning (RL) is a general framework for data-driven, sequential decision making12

[Puterman, 1994, Sutton and Barto, 2018]. In RL, a common goal is to identify a near-optimal policy,13

and there exist two main paradigms: online and offline RL.14

Online RL is effective when the practical cost of a bad decision is low, such as in simulated environ-15

ments (e.g., [Mnih et al., 2015, Silver et al., 2016]). In online RL, a well designed learning algorithm16

starts from tabula rasa and implements a sequence of policies with a value that should approach that17

of an optimal policy. When the cost of making a mistake is high, such as in healthcare [Gottesman18

et al., 2018] and in self-driving [Kiran et al., 2021], an offline approach is preferred. In offline RL,19

the agent uses a dataset of pre-collected experience to extract a policy that is as good as possible. In20

this latter case, the quality of the policy that can be extracted from the dataset is limited by the quality21

of the dataset.22

Many applications, however, fall between these two opposite settings: for example, a company that23

sells products online has most likely recorded the feedback that it has received from its customers, but24

can also collect a small amount of additional strategic data in order to improve its recommendation25

engine. While in principle an online exploration algorithm can be used to collect fresh data, in26

practice there are a number of practical engineering considerations that require the policy to be27

deployed to be non-reactive. We say that a policy is non-reactive, (or passive, memoryless) if it28

chooses actions only according to the current state of the system. Most online algorithms are, by29

design, reactive to the data being acquired.30

An example of a situation where non-reactive policies may be preferred are those where a human31

in the loop is required to validate each exploratory policy before they are deployed, to ensure they32

are of high quality [Dann et al., 2019] and safe [Yang et al., 2021], as well as free of discriminatory33

content [Koenecke et al., 2020]. Other situations that may warrant non-reactive exploration are those34

where the interaction with the user occurs through a distributed system with delayed feedback. In35
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recommendation systems, data collection may only take minutes, but policy deployment and updates36

can span weeks [Afsar et al., 2022]. Similar considerations apply across various RL application37

domains, including healthcare [Yu et al., 2021], computer networks [Xu et al., 2018], and new material38

design [Raccuglia et al., 2016]. In all such cases, the engineering effort required to implement a39

system that handles real-time policy switches may be prohibitive: deploying a single, non-reactive40

policy is much preferred.41

Non-reactive exploration from offline data Most exploration algorithms that we are aware of42

incorporate policy switches when they interact with the environment [Dann and Brunskill, 2015,43

Dann et al., 2017, Azar et al., 2017, Jin et al., 2018, Dann et al., 2019, Zanette and Brunskill, 2019,44

Zhang et al., 2020b]. Implementing a sequence of non-reactive policies is necessary in order to achieve45

near-optimal regret: the number of policy switches must be at least Õ (H |S| |A| log logK) where46

S,A, H,K are the state space, action space, horizon and the total number of episodes, respectively47

[Qiao et al., 2022]. With no switches, i.e., when a fully non-reactive data collection strategy is48

implemented, it is information theoretically impossible [Xiao et al., 2022] to identify a good policy49

using a number of samples polynomial in the size of the state and action space.50

However, these fundamental limits apply to the case where the agent learns from tabula rasa. In the51

more common case where offline data is available, we demonstrate that it is possible to leverage the52

dataset to design an effective non-reactive exploratory policy. More precisely, an available offline53

dataset contains information (e.g., transitions) about a certain area of the state-action space, a concept54

known as partial coverage. A dataset with partial coverage naturally identifies a ‘sub-region’ of the55

original MDP—more precisely, a sub-graph—that is relatively well explored. We demonstrate that it56

is possible to use the dataset to design a non-reactive policy that further explores such sub-region.57

The additional data collected can be used to learn a near-optimal policy in such sub-region.58

In other words, exploration with no policy switches can collect additional information and compete59

with the best policy that is restricted to an area where the original dataset has sufficient information.60

The value of such policy can be much higher than the one that can be computed using only the offline61

dataset, and does not directly depend on a concentrability coefficient [Munos and Szepesvári, 2008,62

Chen and Jiang, 2019].63

Perhaps surprisingly, addressing the problem of reactive exploration in reinforcement learning64

requires an approach that combines both optimism and pessimism in the face of uncertainty to65

explore efficiently. While optimism drives exploration, pessimism ensures that the agent explores66

conservatively, in a way that restricts its exploration effort to a region that it knows how to navigate,67

and so our paper makes a technical contribution which can be of independent interest.68

Contributions To the best of our knowledge, this is the first paper with theoretical rigor that considers69

the problem of designing an experiment in reinforcement learning for online, passive exploration,70

using a dataset of pre-collected experience. More precisely, our contributions are as follows:71

• We introduce an algorithm that takes as input a dataset, uses it to design and deploy a non-reactive72

exploratory policy, and then outputs a locally near-optimal policy.73

• We introduce the concept of sparsified MDP, which is actively used by our algorithm to design the74

exploratory policy, as well as to theoretically analyze the quality of the final policy that it finds.75

• We rigorously establish a nearly minimax-optimal upper bound for the sample complexity needed76

to learn a local ε-optimal policy using our algorithm. 177

2 Related Work78

In this section we discuss some related literature. Our work is related to low-switching algorithms, but79

unlike those, we focus on the limit case where no-switiches are allowed. For more related work about80

low-switching algorithms, offline RL, task-agnostic RL, and reward-free RL we refer to Appendix F.81

Low-switching RL In reinforcement learning, [Bai et al., 2019] first proposed Q-learning with UCB282

exploration, proving an O(H3 |S| |A| logK) switching cost. This was later improved by a factor of83

1More rigorously, our sample complexity matches the minimax lower bound when we have some degree of
knowledge for the full MDP, see the discussion in Section section 5. The lower bound for the samples needed
in reward-free case is proved in [Jin et al., 2020b], but their result applies to the non-honogeneous MDP. The
sample complexity on homogeneous MDP should be shaved off by an H factor.
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H by the UCBadvantage algorithm in [Zhang et al., 2020b]. Recently, [Qiao et al., 2022] generalized84

the policy elimination algorithm from [Cesa-Bianchi et al., 2013] and introduced APEVE, which85

attains an optimal O(H |S| |A| log logK) switching cost. The reward-free version of their algorithm86

(which is not regret minimizing) has an O(H |S| |A|) switching cost.87

Similar ideas were soon applied in RL with linear function approximation [Gao et al., 2021, Wang88

et al., 2021, Qiao and Wang, 2022] and general function approximation [Qiao et al., 2023]. Addition-89

ally, numerous research efforts have focused on low-adaptivity in other learning domains, such as90

batched dueling bandits [Agarwal et al., 2022], batched convex optimization [Duchi et al., 2018],91

linear contextual bandits [Ruan et al., 2021], and deployment-efficient RL [Huang et al., 2022].92

Our work was inspired by the problem of non-reactive policy design in linear contextual bandits.93

Given access to an offline dataset, [Zanette et al., 2021a] proposed an algorithm to output a single94

exploratory policy, which generates a dataset from which a near-optimal policy can be extracted.95

However, there are a number of additional challenges which arise in reinforcement learning, including96

the fact that the state space is only partially explored in the offline dataset. In fact, in reinforcement97

learning, [Xiao et al., 2022] established an exponential lower bound for any non-adaptive policy98

learning algorithm starting from tabula rasa.99

3 Setup100

Throughout this paper, we let [n] = {1, 2, ..., n}. We adopt the big-O notation, where Õ(·) suppresses101

poly-log factors of the input parameters. We indicate the cardinality of a set X with |X |.102

Markov decision process We consider time-homogeneous episodic Markov decision processes103

(MDPs). They are defined by a finite state space S, a finite action space A, a trasition kernel P, a104

reward function r and the episodic length H . The transition probability P (s′ | s, a), which does not105

depend on the current time-step h ∈ [H], denotes the probability of transitioning to state s′ ∈ S106

when taking action a ∈ A in the current state s ∈ S. Typically we denote with s1 the initial state.107

For simplicity, we consider deterministic reward functions r : S × A → [0, 1]. A deterministic108

non-reactive (or memoryless, or passive) policy π = {πh}h∈[H] maps a given state to an action.109

The value function is defined as the expected cumulated reward. It depends on the state s under110

consideration, the transition P and reward r that define the MDP as well as on the policy π being111

implemented. It is defined as Vh (s;P, r, π) = EP,π[
∑H

i=h r(si, ai) | sh = s], where EP,π denotes112

the expectation generated by P and policy π. A closely related quantity is the state-action value113

function, or Q-function, defined as Qh (s, a;P, r, π) = EP,π[
∑H

i=h r(si, ai) | sh = s, ah = a].114

When it is clear from the context, we sometimes omit (P, r) and simply write them as V π
h (s) and115

Qπ
h(s, a). We denote an MDP defined by S,A and the transition matrix P as M = (S,A,P).116

3.1 Interaction protocol117

Algorithm 1 Design of experiments in reinforcement learning
Input: Offline dataset D

1: Offline phase: use D to compute the exploratory policy πex

2: Online phase: deploy πex to collect the online dataset D′

3: Planning phase: receive the reward function r and use D ∪D′ to extract πfinal

Output: Return πfinal

In this paper we assume access to an offline dataset D = {(s, a, s′)} where every state-action (s, a)118

is sampled in an i.i.d. fashion from some distribution µ and s′ ∼ P(· | s, a), which is common in the119

offline RL literature [Xie et al., 2021a, Zhan et al., 2022, Rashidinejad et al., 2021, Uehara and Sun,120

2021]. We denote N(s, a) and N(s, a, s′) as the number of (s, a) and (s, a, s′) samples in the offline121

dataset D, respectively. The interaction protocol considered in this paper consists of three distinct122

phases, which are displayed in algorithm 1. They are:123

• the offline phase, where the learner uses an offline dataset D of pre-collected experience to design124

the non-reactive exploratory policy πex;125
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• the online phase where πex is deployed to generate the online dataset D′;126

• the planning phase where the learner receives a reward function and uses all the data collected to127

extract a good policy πfinal with respect to that reward function.128

The objective is to minimize the number of online episodic interactions needed to find a policy πfinal129

whose value is as high as possible. Moreover, we focus on the reward-free RL setting [Jin et al.,130

2020a, Kaufmann et al., 2021, Li et al., 2023b], which is more general than reward-aware RL. In the131

offline and online phase, the data are generated without specific reward signals, and the entire reward132

information is then given in the planning phase. One of the primary advantages of using reward-free133

offline data is that it allows for the collection of data without the need for explicit reward signals.134

This can be particularly beneficial in environments where obtaining reward signals is costly, risky,135

ethically challenging, or where the reward functions are human-designed.136

4 Algorithm: balancing optimism and pessimism for experimental design137

In this section we outline our algorithm Reward-Free Non-reactive Policy Design (RF-NPD), which138

follows the high-level protocol described in algorithm 1. The technical novelty lies almost entirely139

in the design of the exploratory policy πex. In order to prepare the reader for the discussion of the140

algorithm, we first give some intuition in section 4.1 followed by the definition of sparsified MDP141

in section 4.2, a central concept of this paper, and then describe the implementation of line 1 in the142

protocol in algorithm 1 in section 4.3. We conclude by presenting the implementation of lines 2 and 3143

in the protocol in algorithm 1.144

4.1 Intuition145

In order to present the main intuition for this paper, in this section we assume that enough transitions146

are available in the dataset for every edge (s, a) → s′, namely that the critical condition147

N(s, a, s′) ≥ Φ = Θ̃(H2) (4.1)

holds for all tuples (s, a, s′) ∈ S × A× S (the precise value for Φ will be given later in eq. (5.1)).148

Such condition is hardly satisfied everywhere in the state-action-state space, but assuming it in this149

section simplifies the presentation of one of the key ideas of this paper.150

The key observation is that when eq. (4.1) holds for all (s, a, s′), we can use the empirical transition151

kernel to design an exploration policy πex to eventually extract a near-optimal policy πfinal for any152

desired level of sub-optimality ε, despite eq. (4.1) being independent of ε. More precisely, let P̂ be153

the empirical transition kernel defined in the usual way P̂(s′ | s, a) = N(s, a, s′)/N(s, a) for any154

tuple (s, a, s′). The intuition—which will be verified rigorously in the analysis of the algorithm—is155

the following:156

If eq. (4.1) holds for every (s, a, s′) then P̂ can be used to design a non-reactive exploration policy157

πex which can be deployed on M to find an ε-optimal policy πfinal using ≍ 1
ε2 samples.158

We remark that even if the condition 4.1 holds for all tuples (s, a, s′), the empirical kernel P̂ is159

not accurate enough to extract an ε-optimal policy from the dataset D without collecting further160

data. Indeed, the threshold Φ = Θ̃(H2) on the number of samples is independent of the desired161

sub-optimality ε > 0, while it is well known that at least ∼ 1
ε2 offline samples are needed to find162

an ε-optimal policy. Therefore, directly implementing an offline RL algorithm to use the available163

offline dataset D does not yield an ε-optimal policy. However, the threshold Φ = Θ̃(H2) is sufficient164

to design a non-reactive exploratory policy πex that can discover an ε-optimal policy πfinal after165

collecting ∼ 1
ε2 online data.166

4.2 Sparsified MDP167

The intuition in the prior section must be modified to work with heterogeneous datasets and dynamics168

where N(s, a, s′) ≥ Φ may fail to hold everywhere. For example, if P(s′ | s, a) is very small169

for a certain tuple (s, a, s′), it is unlikely that the dataset contains N(s, a, s′) ≥ Φ samples for170
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that particular tuple. In a more extreme setting, if the dataset is empty, the critical condition in171

eq. (4.1) is violated for all tuples (s, a, s′), and in fact the lower bound of Xiao et al. [2022] states that172

finding ε-optimal policies by exploring with a non-reactive policy is not feasible with ∼ 1
ε2 sample173

complexity. This suggests that in general it is not possible to output an ε-optimal policy using the174

protocol in algorithm 1.175

However, a real-world dataset generally covers at least a portion of the state-action space, and so we176

expect the condition N(s, a, s′) ≥ Φ to hold somewhere; the sub-region of the MDP where it holds177

represents the connectivity graph of the sparsified MDP. This is the region that the agent knows how178

to navigate using the offline dataset D, and so it is the one that the agent can explore further using πex.179

More precisely, the sparsified MDP is defined to have identical dynamics as the original MDP on the180

edges (s, a) −→ s′ that satisfy the critical condition 4.1. When instead the edge (s, a) −→ s′ fails to181

satisfy the critical condition 4.1, it is replaced with a transition (s, a) −→ s† to an absorbing state s†.182

Definition 4.1 (Sparsified MDP). Let s† be an absorbing state, i.e., such that P
(
s† | s†, a

)
= 1 and183

r(s†, a) = 0 for all a ∈ A. The state space in the sparsified MDP M† is defined as that of the184

original MDP with the addition of s†. The dynamics P† of the sparsified MDP are defined as185

P†(s′ | s, a) =
{
P(s′ | s, a) if N(s, a, s′) ≥ Φ

0 if N(s, a, s′) < Φ,
P†(s† | s, a) =

∑
s′ ̸=s†

N(s,a,s′)<Φ

P(s′ | s, a).

(4.2)

For any deterministic reward function r : S ×A → [0, 1], the reward function on the sparsified MDP186

is defined as r†(s, a) = r(s, a); for simplicity we only consider deterministic reward functions.187

The empirical sparsified MDP M̂† = (S ∪ {s†},A, P̂†) is defined in the same way but by using188

the empirical transition kernel in eq. (4.2). The empirical sparsified MDP is used by our algorithm189

to design the exploratory policy, while the (population) sparsified MDP is used for its theoretical190

analysis. They are two fundamental concepts in this paper. By formulating the sparsified MDP, we191

restrict the transitions and rewards within the area where we know how to navigate, embodying the192

principle of pessimism. Various forms of pessimistic regularization have been introduced to address193

the challenges of partially covered offline data. Examples include a pessimistic MDP [Kidambi et al.,194

2020] and limiting policies to those covered by offline data [Liu et al., 2020].195

4.3 Offline design of experiments196

Algorithm 2 RF-UCB (M̂†,Kucb, ε, δ)

Input: δ ∈ (0, 1), ε > 0, number of episode Kucb, MDP M̂†.
1: Initialize Counter n1(s, a) = n1(s, a, s′) = 0 for any (s, a, s′) ∈ S ×A× S.
2: for k = 1, 2, ...,Kucb do
3: for h = H,H − 1, . . . , 1 do
4: Set Uk

h (s, a) = 0 for any (h, s, a) ∈ [H]× S ×A.
5: for (s, a) ∈ S ×A do
6: Calculate the empirical uncertainty Uk

h (s, a) using eq. (4.4) where ϕ is from eq. (4.3)
7: end for
8: πk

h(s) := argmaxa∈A Uk
h (s, a),∀s ∈ S and πk

h(s
†) := any action.

9: end for
10: Set initial state sk1 = s1.

11: for h = 1, 2, ...,H do Sample akh ∼ πk
h(s

k
h), s

k
h+1 ∼ P̂†(skh, a

k
h).

12: end for
13: nk+1(s, a) = nk(s, a) +

∑
h∈[H] I[(s, a) = (skh, a

k
h)].

14: nk+1(s, a, s′) = nk(s, a, s′) +
∑

h∈[H] I[(s, a, s′) = (skh, a
k
h, s

k
h+1)].

15: end for
Output: πex = Uniform{πk}k∈[Kucb].

In this section we describe the main sub-component of the algorithm, namely the sub-routine that197

uses the offline dataset D to compute the exploratory policy πex. The exploratory policy πex is a198
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mixture of the policies π1, π2, . . . produced by a variant of the reward-free exploration algorithm of199

[Kaufmann et al., 2021, Ménard et al., 2021]. Unlike prior literature, the reward-free algorithm is not200

interfaced with the real MDP M, but rather simulated on the empirical sparsified MDP M̂†. This201

avoids interacting with M with a reactive policy, but it introduces some bias that must be controlled.202

The overall procedure is detailed in algorithm 2. To be clear, no real-world samples are collected by203

algorithm 2; instead we use the word ‘virtual samples’ to refer to those generated from M̂†.204

At a high level, algorithm 2 implements value iteration using the empirical transition kernel P̂†,205

with the exploration bonus defined in eq. (4.3) that replaces the reward function. The exploration206

bonus can be seen as implementing the principle of optimism in the face of uncertainty; however, the207

possibility of transitioning to an absorbing state with zero reward (due to the use of the absorbing208

state in the definition of P̂†) implements the principle of pessimism.209

This delicate interplay between optimism and pessimism is critical to the success of the overall210

procedure: while optimism encourages exploration, pessimism ensures that the exploration efforts211

are directed to the region of the state space that the agent actually knows how to navigate, and212

prevents the agent from getting ‘trapped’ in unknown regions. In fact, these latter regions could have213

combinatorial structures [Xiao et al., 2022] which cannot be explored with non-reactive policies.214

More precisely, at the beginning of the k-th virtual episode in algorithm 2, nk(s, a) and nk(s, a, s′)215

denote the counters for the number of virtual samples simulated from M̂† at each (s, a) and (s, a, s′)216

tuple. We define the bonus function217

ϕ (x, δ) =
H

x
[log(6H |S| |A| /δ) + |S| log(e(1 + x/ |S|))], (4.3)

which is used to construct the empirical uncertainty function Uk
h , a quantity that serves as a proxy for218

the uncertainty of the value of any policy π on the spasified MDP. Specifically, for the k-th virtual219

episode, we set Uk
H+1(s, a) = 0 and s ∈ S, a ∈ A. For h ∈ [H], we further define:220

Uk
h (s, a) = Hmin{1, ϕ(nk(s, a))}+ P̂†(s, a)⊤(max

a′
Uk
h+1(·, a′)). (4.4)

Note that, the above bonus function takes a similar form of the bonus function in [Ménard et al.,221

2021]. This order of O(1/x) is set to achieve the optimal sample complexity, and other works have222

also investigated into other forms of bonus function [Kaufmann et al., 2021]. Finally, in line 10223

through line 12 the current policy πk—which is the greedy policy with respect to Uk—is simulated224

on the empirical reference MDP M̂†, and the virtual counters are updated. It is crucial to note that the225

simulation takes place entirely offline, by generating virtual transitions from M̂†. Upon termination226

of algorithm 2, the uniform mixture of policies π1, π2, . . . form the non-reactive exploration policy227

πex, ensuring that the latter has wide ‘coverage’ over M†.228

4.4 Online and planning phase229

Algorithm 2 implements line 1 of the procedure in algorithm 1 by finding the exploratory policy πex.230

After that, in line 2 of the interaction protocol the online dataset D′ is generated by deploying πex on231

the real MDP M to generate Kde trajectories. Conceptually, the online dataset D′ and the offline232

dataset D identify an updated empirical transition kernel P̃ and its sparsified version2 P̃†. Finally, in233

line 3 a reward function r is received, and the value iteration algorithm (See Appendix E) is invoked234

with r as reward function and P̃† as dynamics, and the near-optimal policy πfinal is produced. The235

use of the (updated) empirical sparsified dynamics P̃† can be seen as incorporating the principle of236

pessimism under uncertainty due to the presence of the absorbing state.237

Our complete algorithm is reported in algorithm 3, and it can be seen as implementing the interaction238

protocol described in algorithm 1.239

2For any (s, a, s′) ∈ S × A × S, we define P̃†(s′ | s, a) =
m(s,a,s′)
m(s,a)

if N(s, a, s′) ≥ Φ and P̃†(s′ | s, a) = 0 otherwise.

Finally, for any (s, a) ∈ S × A, we have P̃†(s† | s, a) = 1
m(s,a)

∑
s′∈S,N(s,a,s′)<Φ m(s, a, s′) and for any a ∈ A, we have

P̃(s† | s†, a) = 1. Here N(s, a, s′) is the counter of initial offline data and m(·, ·) is the counter of online data.
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Algorithm 3 Reward-Free Non-reactive Policy Design (RF-NPD)
Input: Offline dataset D, target suboptimality ε > 0, failure tolerance δ ∈ (0, 1].

1: Construct the empirical sparsified MDP M̂†.
2: Offline phase: run RF-UCB(M̂†,Kucb, ε, δ) to obtain the exploratory policy πex.
3: Online phase: deploy πex on the MDP M for Kde episodes to get the online dataset D′.
4: Planning phase: receive the reward function r, construct M̃† from the online dataset D′, compute

πfinal (which is the optimal policy on M̃†) using value iteration (Appendix E).
Output: πfinal.

5 Main Result240

In this section, we present a performance bound on our algorithm, namely a bound on the sub-241

optimality of the value of the final policy πfinal when measured on the sparsified MDP M†. The242

sparsified MDP arises because it is generally not possible to directly compete with the optimal policy243

using a non-reactive data collection strategy and a polynomial number of samples due to the lower244

bound of Xiao et al. [2022]; more details are given in Appendix C.245

In order to state the main result, we let K = Kucb = Kde, where Kucb and Kde are the number246

of episodes for the offline simulation and online interaction, respectively. Let C be some universal247

constant, and choose the threshold in the definition of sparsified MDP as248

Φ = 6H2 log(12H |S|2 |A| /δ). (5.1)

Theorem 5.1. For any ε > 0 and 0 < δ < 1, if we let the number of online episodes be249

K =
CH2 |S|2 |A|

ε2
polylog

(
|S| , |A| , H,

1

ε
,
1

δ

)
,

then with probability at least 1 − δ, for any reward function r, the final policy πfinal returned by250

Algorithm 3 satisfies the bound251

max
π∈Π

V1

(
s1;P†, r†, π

)
− V1

(
s1;P†, r†, πfinal

)
≤ ε. (5.2)

The theorem gives a performance guarantee on the value of the policy πfinal, which depends both252

on the initial coverage of the offline dataset D as well as on the number of samples collected in the253

online phase. The dependence on the coverage of the offline dataset is implicit through the definition254

of the (population) sparsified M†, which is determined by the counts N(·, ·).255

In order to gain some intuition, we examine some special cases as a function of the coverage of the256

offline dataset.257

Empty dataset Suppose that the offline dataset D is empty. Then the sparsified MDP identifies a258

multi-armed bandit at the initial state s1, where any action a taken from such state gives back the259

reward r(s1, a) and leads to the absorbing state s†. In this case, our algorithm essentially designs an260

allocation strategy πex that is uniform across all actions at the starting state s1. Given enough online261

samples, πfinal converges to the action with the highest instantaneous reward on the multi-armed262

bandit induced by the start state. With no coverage from the offline dataset, the lower bound of Xiao263

et al. [2022] for non-reactive policies precludes finding an ε-optimal policy on the original MDP M264

unless exponentially many samples are collected.265

Known connectivity graph On the other extreme, assume that the offline dataset contains enough266

information everywhere in the state-action space such that the critical condition 4.1 is satisfied for267

all (s, a, s′) tuples. Then the sparsified MDP and the real MDP coincide, i.e., M = M†, and so the268

final policy πfinal directly competes with the optimal policy π∗ for any given reward function in269

eq. (5.2). More precisely, the policy πfinal is ε-suboptimal on M if Õ(H2 |S|2 |A| /ε2) trajectories270

are collected in the online phase, a result that matches the lower bound for reward-free exploration of271

Jin et al. [2020b] up to log factors. However, we achieve such result with a data collection strategy272

that is completely passive, one that is computed with the help of an initial offline dataset whose size273

|D| ≈ Φ× |S|2|A| = Õ(H2|S|2|A|) need not depend on final accuracy ε.274
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Partial coverage In more typical cases, the offline dataset has only partial coverage over the state-
action space and the critical condition 4.1 may be violated in certain state-action-successor states.
In this case, the connectivity graph of the sparsified MDP M† is a sub-graph of the original MDP
M augmented with edges towards the absorbing state. The lack of coverage of the original dataset
arises through the sparsified MDP in the guarantees that we present in theorem 5.1. In this section,
we ‘translate’ such guarantees into guarantees on M, in which case the ‘lack of coverage’ is naturally
represented by the concentrability coefficient

C∗ = sup
s,a

dπ(s, a)/µ(s, a),

see for examples the papers [Munos and Szepesvári, 2008, Chen and Jiang, 2019] for background275

material on the concentrability factor. More precisely, we compute the sample complexity—in terms276

of online as well as offline samples—required for πfinal to be ε-suboptimal with respect to any277

comparator policy π, and so in particular with respect to the optimal policy π∗ on the “real” MDP M.278

The next corollary is proved in appendix B.3.279

Corollary 5.2. Suppose that the offline dataset contains280

Õ
(H4 |S|2 |A|C∗

ε

)
,

samples and that additional281

Õ
(H3 |S|2 |A|

ε2

)
online samples are collected during the online phase. Then with probability at least 1− δ, for any282

reward function r, the policy πfinal is ϵ-suboptimal with respect to any comparator policy π283

V1 (s1;P, r, π)− V1 (s1;P, r, πfinal) ≤ ε. (5.3)

The online sample size is equivalent to the one that arises in the statement of theorem 5.1 (expressed284

as number of online trajectories), and does not depend on the concentrability coefficient. The285

dependence on the offline dataset in theorem 5.1 is implicit in the definition of sparsified MDP; here286

we have made it explicit using the notion of concentrability.287

Corollary 5.2 can be used to compare the achievable guarantees of our procedure with that of an offline288

algorithm, such as the minimax-optimal procedure detailed in [Xie et al., 2021b]. The proceedure289

described in [Xie et al., 2021b] achieves (5.3) with probability at least 1− δ by using290

Õ

(
H3 |S|C∗

ε2
+

H5.5 |S|C∗

ε

)
(5.4)

offline samples3. In terms of offline data, our procedure has a similar dependence on various factors,291

but it depends on the desired accuracy ε through Õ(1/ε) as opposed to Õ(1/ε2) which is typical for292

an offline algorithm. This implies that in the small-ε regime, if sufficient online samples are collected,293

one can improve upon a fully offline procedure by collecting a number of additional online samples294

in a non-reactive way.295

Finally, notice that one may improve upon an offline dataset by collecting more data from the296

distribution µ, i.e., without performing experimental design. Compared to this latter case, notice that297

our online sample complexity does not depend on the concentrability coefficient. Further discussion298

can be found in appendix B.299

6 Proof300

In this section we prove theorem 5.1, and defer the proofs of the supporting statements to the Appendix301

A.302

3Technically, [Zhan et al., 2022] considers the non-homogeneous setting, and expresses their result in terms of
number of trajectories. In obtaining eq. (5.4), we ‘removed’ an H factor due to our dynamics being homogeneous,
and add it back to express the result in terms of number of samples. However, notice that [Zhan et al., 2022]
consider the reward-aware setting, which is simpler than reward-free RL setting that we consider. This should
add an additional |S| factor that is not accounted for in eq. (5.4), see the paper Jin et al. [2020b] for more details.
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Let us define the comparator policy π†
∗ used for the comparison in eq. (5.2) to be the (deterministic)

policy with the highest value function on the sparsified MDP:

π†
∗ := argmax

π∈Π
V1(s1;P†, r†, π).

We can bound the suboptimality using the triangle inequality as303

V1

(
s1;P†, r†, π†

∗
)
− V1

(
s1;P†, r†, πfinal

)
≤
∣∣∣V1

(
s1;P†, r†, π†

∗
)
− V1

(
s1; P̃†, r†, π†

∗

)∣∣∣
+ V1

(
s1; P̃†, r†, π†

∗

)
− V1

(
s1; P̃†, r†, πfinal

)
︸ ︷︷ ︸

≤0

+
∣∣∣V1

(
s1; P̃†, r†, πfinal − V1

(
s1;P†, r†, πfinal

))∣∣∣
≤ 2 sup

π∈Π,r

∣∣∣V1

(
s1;P†, r†, π

)
− V1

(
s1; P̃†, r†, π

)∣∣∣ .
The middle term after the first inequality is negative due to the optimality of πfinal on P̃† and r†. It304

suffices to prove that for any arbitrary policy π and reward function r the following statement holds305

with probability at least 1− δ306 ∣∣∣V1

(
s1;P†, r†, π

)
− V1

(
s1; P̃†, r†, π

)∣∣∣︸ ︷︷ ︸
Estimation error

≤ ε

2
. (6.1)

Bounding the estimation error using the population uncertainty function In order to prove307

eq. (6.1), we first define the population uncertainty function X , which is a scalar function over the308

state-action space. It represents the maximum estimation error on the value of any policy when it309

is evaluated on M̃† instead of M. For any (s, a) ∈ S × A, the uncertainty function is defined as310

XH+1(s, a) := 0 and for h ∈ [H],311

Xh(s, a) := min
{
H−h+1; 9Hϕ(m(s, a))+

(
1 +

1

H

)∑
s′

P̃† (s′ | s, a)
(
max
a′

{Xh+1 (s
′, a′)}

)}
.

We extend the definition to the absorbing state by letting Xh(s
†, a) = 0 for any h ∈ [H], a ∈ A. The312

summation
∑

s′ used above is over s′ ∈ S ∪ {s†}, but since Xh(s
†, a) = 0 for any h ∈ [H], a ∈ A,313

it is equivalent to that over s′ ∈ S. Intuitively, Xh(s, a) takes a similar form as Bellman optimality314

equation. The additional (1+1/H) factor and additional term 9Hϕ(m(s, a)) quantify the uncertainty315

of the true Q function on the sparsifed MDP and 9Hϕ(m(s, a)) will converge to zero when the316

sample size goes to infinity. This definition of uncertainty function and the following lemma follow317

closely from the uncertainty function defined in [Ménard et al., 2021].318

The next lemma highlights the key property of the uncertainty function X , namely that for any reward319

function and any policy π, we can upper bound the estimation error via the uncertainty function at320

the initial times-step; it is proved in appendix A.2.1.321

Lemma 6.1. With probability 1 − δ, for any reward function r and any deterministic policy π, it322

holds that323

|V1(s1; P̃†, r†, π)− V1(s1;P†, r†, π)| ≤ max
a

X1(s1, a) + C
√

max
a

X1(s1, a). (6.2)

The uncertainty function X contains the inverse number of online samples 1/m(s, a) through324

ϕ(m(s, a)), and so lemma 6.1 expresses the estimation error in eq. (6.1) as the maximum expected325

size of the confidence intervals supπ EP̃†,(s,a)∼π

√
1/m(s, a), a quantity that directly depends on the326

number m(·, ·) of samples collected during the online phase.327

Leveraging the exploration mechanics Throughout this section, C denotes some universal con-328

stant and may vary from line to line. Recall that the agent greedily minimizes the empirical uncer-329

tainty function U to compute the exploratory policy πex. The empirical uncertainty is defined as330

Uk
H+1(s, a) = 0 for any k, s ∈ S, a ∈ A and331

Uk
h (s, a) = Hmin{1, ϕ(nk(s, a))}+ P̂†(s, a)⊤(max

a′
Uk
h+1(·, a′)), (6.3)
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where nk(s, a) is the counter of the times we encounter (s, a) until the beginning of the k-the virtual332

episode in the simulation phase. Note that, Uk
h (s, a) takes a similar form as Xh(s, a), except that333

Uk
h (s, a) depends on the empirical transition probability P̂† while Xh(s, a) depends on the true334

transition probability on the sparsified MDP. For the exploration scheme to be effective, X and U335

should be close in value, a concept which is at the core of this work and which we formally state336

below and prove in appendix A.2.2.337

Lemma 6.2 (Bounding uncertainty function with empirical uncertainty functions). With probability338

at least 1− δ, we have for any (h, s, a) ∈ [H]× S ×A,339

Xh(s, a) ≤
C

K

K∑
k=1

Uk
h (s, a).

Notice that Xh is the population uncertainty after the online samples have been collected, while Uk
h340

is the corresponding empirical uncertainty which varies during the planning phase.341

Rate of decrease of the estimation error Combining lemmas 6.1 and 6.2 shows that (a function342

of) the agent’s uncertainty estimate U upper bounds the estimation error in eq. (6.1). In order to343

conclude, we need to show that U decreases on average at the rate 1/K, a statement that we present344

below and prove in appendix A.2.3.345

Lemma 6.3. With probability at least 1− δ, we have346

1

K

K∑
k=1

Uk
1 (s, a) ≤

H2|S|2|A|
K

polylog

(
K, |S| , |A| , H,

1

ε
,
1

δ

)
. (6.4)

Then, for any ε > 0, if we take347

K :=
CH2 |S| |A|

ε2

(
ι+ |S|

)
polylog

(
|S| , |A| , H,

1

ε
,
1

δ

)
,

then with probability at least 1− δ, it holds that348

1

K

K∑
k=1

Uk
1 (s1, a) ≤ ε2.

After combining lemmas 6.1 to 6.3, we see that the estimation error can be bounded as349 ∣∣∣V1

(
s1;P†, r†, π

)
− V1

(
s1; P̃†, r†, π

)∣∣∣ ≤ max
a

X1 (s1, a) + C
√
max

a
X1 (s1, a)

≤ Cmax
a


√√√√ 1

K

K∑
k=1

Uk
1 (s1, a) +

1

K

K∑
k=1

Uk
1 (s1, a)


≤ C

(
ε+ ε2

)
≤ Cε (for 0 < ε < const)

Here, the constant C may vary between lines. Rescaling the universal constant C and the failure350

probability δ, we complete the upper bound in equation (6.1) and hence the proof for the main result.351
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A Proof of the main result603

A.1 Definitions604

In this section, we define some crucial concepts that will be used in the proof of the main result.605

A.1.1 Sparsified MDP606

First, we restate the definition 4.1 in the main text.607

Definition A.1 (Sparsified MDP). Let s† be an absorbing state, i.e., such that P
(
s† | s†, a

)
= 1608

and r(s†, a) = 0 for all a ∈ A. The state space in the sparsified MDP M† is defined as that of the609

original MDP with the addition of s†. The dynamics P† of the sparsified MDP are defined as610

P†(s′ | s, a) =
{
P(s′ | s, a) if N(s, a, s′) ≥ Φ

0 if N(s, a, s′) < Φ,
P†(s† | s, a) =

∑
s′ ̸=s†

N(s,a,s′)<Φ

P(s′ | s, a).

(A.1)

For any deterministic reward function r : S ×A → [0, 1], the reward function on the sparsified MDP611

is defined as r†(s, a) = r(s, a); for simplicity we only consider deterministic reward functions.612

613

In the offline phase of our algorithm, we simulate the virtual episodes from the empirical version of614

sparsified MDP (See Algorithm 2). Now we formally this MDP.615

Definition A.2 (Emprical sparsified MDP). Let s† be the absorbing state defined in the sparsified616

MDP. The state space in the empirical sparsified MDP M̂† is defined as that of the original MDP617

with the addition of s†. The dynamics P̂† of the sparsified MDP are defined as618

P̂†(s′ | s, a) =

{
N(s,a,s′)
N(s,a) if N(s, a, s′) ≥ Φ

0 if N(s, a, s′) < Φ,
P̂†(s† | s, a) =

∑
s′ ̸=s†

N(s,a,s′)<Φ

N(s, a, s′)

N(s, a)
.

(A.2)

For any deterministic reward function r : S × A → [0, 1], the reward function on the empirical619

sparsified MDP is defined as r†(s, a) = r(s, a); for simplicity we only consider deterministic reward620

functions. Here, the counters N(s, a) and N(s, a, s′) are the number of (s, a) and (s, a, s′) in the621

offline data, respectively.622

623

Finally, in the planning phase, after we interact with the true environment for many online episodes,624

construct a fine-estimated sparsified MDP, which is used to extract the optmal policy of given reward625

functions. We formally define it below.626

Definition A.3 (Fine-estimated sparsified MDP). Let s† be the absorbing state defined in the sparsified627

MDP. The state space in the fine-estimated sparsified MDP M̃† is defined as that of the original628

MDP with the addition of s†. The dynamics P̃† of the sparsified MDP are defined as629

P̃†(s′ | s, a) =

{
m(s,a,s′)
m(s,a) if N(s, a, s′) ≥ Φ

0 if N(s, a, s′) < Φ,
P̃†(s† | s, a) =

∑
s′ ̸=s†

N(s,a,s′)<Φ

m(s, a, s′)

m(s, a)
.

(A.3)

For any deterministic reward function r : S ×A → [0, 1], the reward function on the fine-estimated630

sparsified MDP is defined as r†(s, a) = r(s, a); for simplicity we only consider deterministic reward631

functions. Here, the counters N(s, a) and N(s, a, s′) are the number of (s, a) and (s, a, s′) in the632

offline data, respectively, while m(s, a) and m(s, a, s′) are the counters of (s, a) and (s, a, s′) in633

online episodes.634
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A.1.2 High probability events635

In this section, we define all high-probability events we need in order to make our theorem to hold.636

Specifically, we define637

EP : =

{
∀(s, a, s′) s.t. N(s, a, s′) ≥ Φ,

∣∣∣P̂†(s′ | s, a)− P†(s′ | s, a)
∣∣∣

≤

√√√√2P̂†(s′ | s, a)
N(s, a)

log

(
12 |S|2 |A|

δ

)
+

14

3N(s, a)
log

(
12 |S|2 |A|

δ

) ;

E2 :=

∀k ∈ N, (s, a) ∈ S ×A, nk(s, a) ≥ 1

2

∑
i<k

∑
h∈[H]

d̂†πi,h(s, a)−H ln

(
6H |S| |A|

δ

) ;

E3 :=

∀k ∈ N, (s, a) ∈ S ×A, nk(s, a) ≤ 2
∑
i<k

∑
h∈[H]

d̂†πi,h(s, a) +H ln

(
6H |S| |A|

δ

) ;

E4 :=

{
∀(s, a) ∈ S ×A,KL

(
P̃†(s, a);P†(s, a)

)
≤ 1

m(s, a)

[
log

(
6 |S| |A|

δ

)
+ |S| log

(
e

(
1 +

m(s, a)

|S|

))]}
;

E5 :=

∀(s, a) ∈ [H]× S ×A,m(s, a) ≥ 1

2
Kde

∑
h∈[H]

wmix
h (s, a)−H ln

(
6H |S| |A|

δ

) ,

where638

wmix
h (s, a) :=

1

Kucb

Kucb∑
k=1

d†
πk,h

(s, a).

Here, KL(·; ·) denotes the Kullback–Leibler divergence between two distributions. Kucb is the639

number of episodes of the sub-routine RF-UCB and πi is the policy executed at the i-th episode of640

RF-UCB (See algorithm 2). Kde is the number of episodes executed in the online phase. nk(s, a) is641

the counter of (s, a) before the beginning of the k-th episode in the offline phase and m(s, a) is the642

number of (s, a) samples in the online data (See definitions in section A.1). We denote dπ,h(s, a),643

d†π,h(s, a) and d̂†π,h(s, a) as the occupancy measure of (s, a) at stage h under policy π, on P (the644

true transition dynamics), P† (the transition dynamics in the sparsfied MDP) and P̂†(the transition645

dynamics in the empirical sparsified MDP) respectively.646

For the event defined above, we have the following guarantee, which is proved in appendix A.3.1.647

Lemma A.4. For δ > 0, we have

E :=
{
EP ∪ E2 ∪ E3 ∪ E4 ∪ E5

}
happens with probability at least 1− δ,648
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A.1.3 Uncertainty function and empirical uncertainty function649

In this section, we restate the definition of uncertainty function and empirical uncertainty functions,650

as well as some intermediate uncertainty functions which will be often used in the proof. First, we651

restate the definition of bonus function.652

Definition A.5 (Bonus Function). We define653

ϕ (x) =
H

x

[
log

(
6H |S| |A|

δ

)
+ |S| log

(
e

(
1 +

x

|S|

))]
. (A.4)

Further, we define654

ϕ(x) = min {1, Hϕ(x)} . (A.5)

Next, we restate the definition of uncertainty function and empirical uncertainty function. Notice that655

the uncertainty function does not depend on reward function or specific policy π.656

Definition A.6 (Uncertainty function). We define for any (h, s, a) ∈ [H]×S×A and any deterministic657

policy π,658

XH+1(s, a) := 0,

Xh(s, a) := min

{
H − h+ 1, 9Hϕ(m(s, a)) +

(
1 +

1

H

)
P̃†(· | s, a)⊤

(
max
a′

Xh+1 (·, a′)
)}

,

where we specify659

P̃†(· | s, a)⊤
(
max
a′

{Xh+1 (·, a′)}
)
:=
∑
s′

P̃† (s′ | s, a)
(
max
a′

{Xh+1 (s
′, a′)}

)
.

In addition, we define Xh(s
†, a) = 0 for any h ∈ [H], a ∈ A. Here, the notation

∑
s′ above means660

summation over s′ ∈ S ∪
{
s†
}
. But since Xh(s

†, a) = 0 for any h ∈ [H], a ∈ A, this is equivalent661

to the summation over s′ ∈ S. P̃† is the transition probability of fine-estimated sparsified MDP662

defined in section A.1.1.663

Then, for the reader to better understand the proof, we define some intermediate quantity, which also664

measure the uncertainty of value estimation, but they may be reward or policy dependent.665

Definition A.7 (Intermediate uncertainty function). We define for any (h, s, a) ∈ [H]× S ×A and666

any deterministc policy π,667

Wπ
H+1(s, a, r) := 0,

Wπ
h (s, a, r) := min

{
H − h+ 1,

√
8

H2
ϕ (m(s, a)) ·Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
+ 9Hϕ (m(s, a)) +

(
1 +

1

H

)(
P̃†πh+1

)
Wπ

h+1(s, a, r)

}
,

where668 (
P̃†πh+1

)
Wπ

h+1(s, a, r) :=
∑
s′

∑
a′

P̃† (s′ | s, a)πh+1 (a
′ | s′)Wπ

h+1 (s
′, a′, r) .

In addition, we define Wπ
h (s

†, a, r) = 0 for any h ∈ [H], a ∈ A and any reward function r. Here,669

P̃† is the transition probability of fine-estimated sparsified MDP defined in section A.1.1.670

671

The intermediate function W is reward and policy dependent and can be used to upper bound the672

value estimation error. Further, we need to define some policy-dependent version of the uncertainty673

function, denoted as Xπ
h (s, a), as well as another quantity Y π

h (s, a, r).674

Definition A.8. We define Xπ
H+1(s, a) = Y π

H+1(s, a, r) = 0 for any π, r, s, a and675

Xπ
h (s, a) := min

{
H − h+ 1, 9Hϕ (m(s, a)) +

(
1 +

1

H

)(
P̃†πh+1

)
Xπ

h+1(s, a)

}
;
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Y π
h (s, a, r) :=

√
8

H2
ϕ (m(s, a))Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
+

(
1 +

1

H

)(
P̃†πh+1

)
Y π
h+1(s, a, r)

where676 (
P̃†πh+1

)
Xπ

h+1(s, a) =
∑
s′

∑
a′

P̃† (s′ | s, a)πh+1 (a
′ | s′)Xπ

h+1 (s
′, a′) ;(

P̃†πh+1

)
Y π
h+1(s, a, r) =

∑
s′

∑
a′

P̃† (s′ | s, a)πh+1 (a
′ | s′)Y π

h+1 (s
′, a′, r) .

In addition, we define Xπ
h (s

†, a) = Y π
h (s†, a, r) = 0 for any a ∈ A, h ∈ [H] and any reward r, any677

policy π. Here, P̃† is the transition probability of fine-estimated sparsified MDP defined in section678

A.1.1.679

680

Finally, we define the empirical uncertainty functions.681

Definition A.9. We define Uk
H+1(s, a) = 0 for any k ∈ [Kucb] and s ∈ S, a ∈ A. Further, we define682

Uk
h (s, a) = Hmin

{
1, ϕ

(
nk(s, a)

)}
+ P̂†(s, a)⊤

(
max
a′

Uk
h+1 (·, a′)

)
, (A.6)

where ϕ is the bonus function defined in eq. (A.4) and nk(s, a) is the counter of the times we encounter683

(s, a) until the beginning of the k-the episode when running the sub-routine RF-UCB in the offline684

phase.685

A.2 Proof of the key theorems and lemmas686

A.2.1 Uncertainty Functions upper bounds the estimation error687

Proof. This proof follows closely from the techniques in [Ménard et al., 2021], but here we consider688

the homogeneous MDP. We let d̃†π,h(s, a) be the probability of encountering (s, a) at stage h when689

running policy π on P̃†, starting from s1. Now we assume E happens and fix a reward function r and690

policy π. From lemma A.14, we know691 ∣∣∣V1

(
s1; P̃†, r†, π

)
− V1

(
s1;P†, r†, π

)∣∣∣ ≤ ∣∣∣Qh

(
s1, π1(a1); P̃†, r†, π

)
−Qh

(
s1, π1(s1);P†, r†, π

)∣∣∣
≤ Wπ

h (s1, π(s1), r),

where Wπ
h (s, a, r) is the intermediate uncertainty function defined in definition A.7. Here, we use692

the policy-dependent version of uncertainty function Wπ(s, a, r), which will then upper bounded693

using another two policy-dependent quantities Xπ
h (s, a) and Y π

h (s, a, r). We define these policy-694

dependent uncertainty functions to upper bound the estimation error of specific policy, but since we695

are considering a reward-free setting, which entails a low estimation error for any policy and reward,696

these quantities cannot be directly used in the algorithm to update the policy. Next, we claim697

Wπ
h (s, a, r) ≤ Xπ

h (s, a) + Y π
h (s, a, r),

where Xπ
h (s, a) and Y π

h (s, a, r) are defined in definition A.8. Actually, this is easy from the definition698

of Xπ
h (s, a), Y

π
h (s, a, r) and Wπ

h (s, a, r). For h = H + 1, this is trivial. Assume this is true for699

h+1, then the case of h is given by the definition and the fact that min {x, y + z} ≤ min {x, y}+ z700

for any x, y, z ≥ 0. Therefore, we have701 ∣∣∣V1

(
s1; P̃†, r†, π

)
− V1

(
s1;P†, r†, π

)∣∣∣ ≤ Xπ
1 (s1, π1(s1)) + Y π

1 (s1, π1(s1), r) . (A.7)

Next, we eliminate the dependency to policy π and obtain an upper bound of estimation error using702

the policy-independent uncertainty function Xh(s, a). This is done by bounding Y π
1 (s1, π1(s1), r) by703

Xπ
h (s, a) and then upper bounding Xπ

h (s, a) by Xh(s, a). From definition A.8, the Cauchy-Schwarz704

inequality and the fact that r ∈ [0, 1], we have for any reward function and any deterministic policy705

π,706

Y π
1 (s1, π1(s1), r)
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≤
∑
s,a

H∑
h=1

d̃†π,h(s, a)

(
1 +

1

H

)h−1
√

8

H2
ϕ (m(s, a)) ·Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
(Induction by successively using the definition of Y )

≤ e

H

√√√√8
∑
s,a

H∑
h=1

d̃†π,h(s, a)Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
·

√√√√∑
s,a

H∑
h=1

d̃†π,h(s, a)ϕ (m(s, a))

(Cauchy-Schwarz Inequality)

≤ e

H

√√√√8H2
∑
s,a

H∑
h=1

d̃†π,h(s, a) ·

√√√√∑
s,a

H∑
h=1

d̃†π,h(s, a)ϕ (m(s, a))

≤e

√√√√8
∑
s,a

H∑
h=1

d̃†π,h(s, a)ϕ (m(s, a)).

We notice that the right hand side of the last inequality above is the policy value of some spe-707

cific reward function when running π on P̃. Concretely, if the transition probability is P̃ and708

the reward function at (s, a) is ϕ (m(s, a)) , then the state value function at the initial state s1709

is
∑

s,a

∑H
h=1 d̃

†
π,h(s, a)ϕ (m(s, a)) . This specific reward function is non-negative and uniformly710

bounded by one, so it holds that
∑

s,a

∑H
i=h d̃

†
π,i(s, a)ϕ (m(s, a)) ≤ H −h+1. Moreover, from the711

definition of ϕ and ϕ (eq. (A.4)), we know ϕ (m(s, a)) ≤ Hϕ (m(s, a)) . Then, from the definition712

of Xh(s, a) in definition A.6, we apply an inductive argument to obtain713

∑
s,a

H∑
h=1

d̃†π,h(s, a)ϕ (m(s, a)) ≤ Xπ
1 (s1, π(s1))

for any deterministic policy π. So we have714

Y π
1 (s1, π1(s1), r) ≤ 2

√
2e
√

Xπ
1 (s1, π(s1)).

Therefore, combining the last inequality with (A.7), we have715 ∣∣∣V1

(
s1; P̃†, r†, π

)
− V1

(
s1;P†, r†, π

)∣∣∣ ≤ Xπ
1 (s1, π1(s1)) + 2

√
2e
√
Xπ

1 (s1, π1(s1)).

From the definition of Xh(s, a) (definition A.6) and Xπ
h (s, a) (definition A.8), we can see716

Xπ
h (s, a) ≤ Xh(s, a)

for any (h, s, a) and any deterministic policy π. Therefore, we conclude that717 ∣∣∣V1

(
s1; P̃†, r†, π

)
− V1

(
s1;P†, r†, π

)∣∣∣ ≤ X1(s1, π1(s1)) + 2
√
2e
√

X1(s1, π1(s1))

≤ max
a

X1(s1, a) + 2
√
2e
√

max
a

X1(s1, a).

718

A.2.2 Proof of lemma 6.2719

Proof. It suffices to prove that for any k ∈ [K], h ∈ [H], s ∈ S, a ∈ A, it holds that720

Xh(s, a) ≤ C

(
1 +

1

H

)3(H−h)

Uk
h (s, a)

since the theorem comes from an average of the inequalities above and the fact that (1 + 1/H)
H ≤ e.721

For any fixed k, we prove it by induction on h. When h = H + 1, both sides are zero by definition.722

Suppose the claim holds for h + 1; we will prove that it also holds for h. We denote Kucb as the723
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number of virtual episodes in the offline phase. From lemma A.16, the decreasing property of724

ϕ(·)(lemma A.17) and lemma A.21, we have725

Xh(s, a) ≤ CHϕ
(
nKucb(s, a)

)
+

(
1 +

2

H

)
P†(· | s, a)⊤

(
max
a′

{Xh+1(·, a′)}
)

(Lemma A.16)

≤ CHϕ
(
nk(s, a)

)
+

(
1 +

2

H

)
P†(· | s, a)⊤

(
max
a′

{Xh+1(·, a′)}
)

(Lemma A.17)

≤ CHϕ
(
nk(s, a)

)
+

(
1 +

1

H

)3

P̂†(· | s, a)⊤
(
max
a′

{Xh+1(·, a′)}
)

(Lemma A.21 and 1 + 2/H ≤ (1 + 1/H)2)

The inductive hypothesis gives us for any s′,726 (
max
a′

{Xh+1(s
′, a′)}

)
≤ C

(
1 +

1

H

)3(H−h−1) (
max
a′

Uk
h+1(s

′, a′)
)
,

which implies727

Xh(s, a) ≤ CHϕ
(
nk(s, a)

)
+

(
1 +

1

H

)3(H−h)

P̂†(· | s, a)⊤
(
max
a′

{
Uk
h+1(·, a′)

})
≤ C

(
1 +

1

H

)3(H−h) [
Hϕ

(
nk(s, a)

)
+ P̂†(· | s, a)⊤

(
max
a′

{
Uk
h+1(·, a′)

})]
. (A.8)

Again, by definition of Xh(s, a), we have728

Xh(s, a) ≤ H − h+ 1 ≤ C

(
1 +

1

H

)3(H−h)

H. (A.9)

Combining (A.8) and (A.9), as well as the definition of Uk
h (definition A.9), we prove the case of729

stage h and we conclude the theorem by induction.730

A.2.3 Upper bounding the empirical uncertainty function (lemma 6.3)731

Proof. First, we are going to prove732

1

K

K∑
k=1

Uk
1 (s, a) ≤

H2|S||A|
K

[
log

(
6H|S||A|

δ

)
+ |S| log

(
e

(
1 +

KH

|S|

))]
log

(
1 +

HK

|S||A|

)
.

(A.10)
From the definition (see algorithm 2), we know an important property of uncertainty function is that733

πk
h is greedy with respect to Uk

h . So we have734

Uk
h (s, a) = Hmin

{
1, ϕ

(
nk(s, a)

)}
+ P̂†(s, a)⊤

(
max
a′

Uk
h+1 (·, a′)

)
= Hmin

{
1, ϕ

(
nk(s, a)

)}
+
∑
s′,a′

P̂†(s′ | s, a)πk
h+1 (a

′ | s′)Uk
h+1 (s

′, a′) .

Therefore, we have735

1

Kucb

Kucb∑
k=1

Uk
1 (s1, a)

≤ 1

Kucb

Kucb∑
k=1

max
a

Uk
1 (s1, a)

≤ H

Kucb

Kucb∑
k=1

H∑
h=1

∑
(s,a)

d̂†
πk,h

(s, a)min
{
1, ϕ

(
nk(s, a)

)}
(definition A.9)
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≤ 4H2

Kucb

[
log

(
6H|S||A|

δ

)
+ |S| log

(
e

(
1 +

KucbH

|S|

))] H∑
h=1

Kucb∑
k=1

∑
(s,a)

d̂†
πk,h

(s, a)

max
{
1,
∑k−1

i=1

∑
h∈[H] d̂

†
πi,h(s, a)

}
(lemma A.20)

We apply Lemma D.7 and Jensen’s Inequality to obtain736

∑
h∈[H]

Kucb∑
k=1

∑
(s,a)

d̂†
πk,h

(s, a)
1

max
{
1,
∑k−1

i=1

∑
h∈[H] d̂

†
πi,h(s, a)

}
≤4
∑
(s,a)

log

1 +

Kucb∑
i=1

∑
h∈[H]

d̂†πi,h(s, a)

 (lemma D.7)

≤4 |S| |A| log

1 +
1

|S| |A|

Kucb∑
i=1

∑
h∈[H]

∑
(s,a)

d̂†πi,h(s, a)


≤4 |S| |A| log

(
1 +

HKucb

|S| |A|

)
Inserting the last display to the upper bound, we conclude the proof of the upper bound on U .737

Then, to prove the sample complexity, we use lemma D.8. We take738

B =
64H2 |A|

ε2

[
log

(
6H|S||A|

δ

)
+ |S|

]
and x =

Kucb

|S|

in Lemma D.8. From lemma D.8, we know there exists a universal constant C1 such that when739

x ≥ C1B log(B)2, it holds that B log(1 + x) (1 + log(1 + x)) ≤ x, which implies whenever740

Kucb ≥
64H2 |S| |A|

ε2

[
log

(
6H|S||A|

δ

)
+ |S|

]
,

it holds that741

64H2 |S| |A|
Kucb

[
log

(
6H|S||A|

δ

)
+ |S|

]
log

(
1 +

Kucb

|S|

)[
1 + log

(
1 +

Kucb

|S|

)]
≤ ε2. (A.11)

For notation simplicity, we define742

L = 16H2 |S| |A|
[
log

(
6H|S||A|

δ

)
+ |S|

]
.

Comparing the left hand side of (A.11) and the right hand side of (A.10), we know743

Right hand side of (A.10)

=
16H2 |S| |A|

Kucb
log

(
1 +

HKucb

|S| |A|

)[
log

(
6H|S||A|

δ

)
+ |S|+ |S| log

(
1 +

KucbH

|S|

)]
≤16H2 |S| |A|

Kucb

[
log(H) + log

(
1 +

Kucb

|S|

)][
log

(
6H|S||A|

δ

)
+ |S|+ |S| log

(
1 +

KucbH

|S|

)]
≤16H2 |S| |A|

Kucb

[
log(H) + log

(
1 +

Kucb

|S|

)][
log

(
6H|S||A|

δ

)
+ |S|

] [
1 + log(H) + log

(
1 +

Kucb

|S|

)]
=

L

Kucb

[
log(H) + log

(
1 +

Kucb

|S|

)][
1 + log(H) + log

(
1 +

Kucb

|S|

)]
.

It is easy to see that log(H) ≤ log (1 +Kucb/|S|) , so the right hand side of last inequality is upper744

bounded by745

4L

Kucb
log

(
1 +

Kucb

|S|

)[
1 + log

(
1 +

Kucb

|S|

)]
.
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From (A.11), we know this is upper bounded by ε2 as long as Kucb ≥ 4L/ε2. From the definition of746

L and equations (A.10) (A.11), we have when Kucb ≥ 4L/ε2, it holds that747

1

Kucb

Kucb∑
k=1

Uk
1 (s1, a) ≤ right hand side of (A.10) ≤ left hand side of (A.11) ≤ ε2.

In conclusion, this admits a sample complexity of748

Kucb =
CH2 |S| |A|

ε2

(
ι+ |S|

)
polylog

(
|S| , |A| , H,

1

ε
,
1

δ

)
.

749

A.3 Omitted proofs750

A.3.1 Proof for lemma A.4 (high probability event)751

The lemma A.4 is proved by combining all the lemmas below via a union bound. Below, we always752

denote N(s, a, s′) as the number of (s, a, s′) in the offline dataset.753

Lemma A.10. EP holds with probability at least 1− δ/6.754

Proof. For any fixed (s, a, s′) such that N(s, a, s′) ≥ Φ, we denote ni(s, a) as the index of the i-th755

time when we visit (s, a). For notation simplicity, we fix the state-action pair (s, a) here and write756

ni(s, a) as ni simply for i = 1, 2, ..., N(s, a). Notice that the total visiting time N(s, a) is random,757

so our argument is based on conditional probability. We denote Xi = I
(
s′ni

= s′
)

as the indicator758

of whether the next state is s′ when we visited (s, a) at the i-th time. From the data generating759

mechanism and the definition for the reference MDP, we know conditional on the total number760

of visiting N(s, a) and all the indexes n1 ≤ ... ≤ nN(s,a), it holds that X1, X2, ..., XN(s,a) are761

independent Bernoulli random variable with successful probability being P† (s′ | s, a) . We denote X762

as their arithmetic average. Using Empirical Bernstein Inequality (Lemma D.3), and the fact that763

1
N(s,a)

∑N(s,a)
i=1

(
Xi −X

)2 ≤ 1
N(s,a)

∑N(s,a)
i=1 X2

i = 1
N(s,a)

∑N(s,a)
i=1 Xi = P̂†(s′ | s, a), we have764

P
(
EP | ni (1 ≤ i ≤ N(s, a)) , N(s, a) = n

)
≥ 1− δ/6.

Taking integral of the conditional probability, we conclude that the unconditional probability of the765

event EP is at least 1− δ/6. Therefore, we conclude.766

Lemma A.11. For δ > 0, it holds that P
(
E4
)
≥ 1− δ/6.767

Proof. Consider for a fixed triple (s, a) ∈ S ×A. Let m(s, a) denote the number of times the tuple768

(s, a) was encountered in total during the online interaction phase. We define Xi as follows. For i ≤769

m(s, a), we let Xi be the subsequent state s′ when (s, a) was encountered the i-th time in the whole770

run of the algorithm. Otherwise, we let Xi be an independent sample from P†(s, a). By construction,771

{Xi} is a sequence of i.i.d. categorical random variables from S with distribution P† (· | s, a) . We772

denote P̃†,i
X = 1

i

∑i
j=1 δXj

as the empirical probability mass and P†
X as the probability mass of Xi.773

Then, from Lemma D.4, we have with probability at least 1− δ/6, it holds that for any i ∈ N,774

KL
(
P̃†,i
X ;P†

X

)
≤ 1

i

[
log

(
6

δ

)
+ |S| log

(
e

(
1 +

i

|S|

))]
,

which implies775

KL
(
P̃†
X ;P†(s, a)

)
≤ 1

m(s, a)

[
log

(
6

δ

)
+ |S| log

(
e

(
1 +

m(s, a)

|S|

))]
.

Using a union bound for (s, a) ∈ S ×A, we conclude.776

777
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Lemma A.12 (Lower Bound on Counters). For δ > 0, it holds that P
(
E2
)

≥ 1 − δ/6 and778

P
(
E5
)
≥ 1− δ/6.779

Proof. We denote nk
h as the number of times we encounter (s, a) at stage h before the beginning of780

episode k. Concretely speaking, we define n1
h(s, a) = 0 for any (h, s, a). Then, we define781

nk
h(s, a) = nk

h(s, a) + I
[
(s, a) = (skh, a

k
h)
]
.

We fixed an (s, a, h) ∈ [H]× S ×A and denote Fk as the sigma field generated by the first k − 1782

episodes when running RF-UCB and Xk = I
[
(skh, a

k
h) = (s, a)

]
. Then, we know Xk is Fk+1-783

measurable and E [Xk | Fk] = d̂†
πk,h

(s, a) is Fk-measurable. Taking W = ln (6/δ) in Lemma D.1784

and applying a union bound, we know with probability 1− δ/6, the following event happens:785

∀k ∈ N, (h, s, a) ∈ [H]× S ×A, nk
h(s, a) ≥

1

2

∑
i<k

d̂†πi,h(s, a)− ln

(
6H |S| |A|

δ

)
.

To finish the proof, it remains to note that the event above implies the event we want by summing786

over h ∈ [H] for each k ∈ N and each (s, a) ∈ S ×A. For the E5, the proof is almost the same.787

Lemma A.13 (Upper Bound on Counters). For δ > 0, it holds that P
(
E3
)
≥ 1− δ/6.788

Proof. We denote nk
h as the number of times we encounter (s, a) at stage h before the beginning of789

episode k. Concretely speaking, we define n1
h(s, a) = 0 for any (h, s, a). Then, we define790

nk
h(s, a) = nk

h(s, a) + I
[
(s, a) = (skh, a

k
h)
]
.

We fixed an (s, a, h) ∈ [H]× S ×A and denote Fk as the sigma field generated by the first k − 1791

episodes when running RF-UCB and Xk = I
[
(skh, a

k
h) = (s, a)

]
. Then, we know Xk is Fk+1-792

measurable and E [Xk | Fk] = d̂†
πk,h

(s, a) is Fk-measurable. Taking W = ln (6/δ) in Lemma D.2793

and applying a union bound, we know with probability 1− δ/6, the following event happens:794

∀k ∈ N, (h, s, a) ∈ [H]× S ×A, nk
h(s, a) ≤ 2

∑
i<k

d̂†πi,h(s, a) + ln

(
6H |S| |A|

δ

)
.

To finish the proof, it remains to note that the event above implies the event we want by summing795

over h ∈ [H] for each k ∈ N and each (s, a) ∈ S ×A.796

A.3.2 Proof for lemma A.14 (property of intermediate uncertainty function)797

Lemma A.14 (Intermediate Uncertainty Function). We define for any (h, s, a) ∈ [H]× S ×A and798

any deterministc policy π,799

Wπ
H+1(s, a, r) := 0,

Wπ
h (s, a, r) := min

{
H − h+ 1,

√
8

H2
ϕ (m(s, a)) ·Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
+ 9Hϕ (m(s, a)) +

(
1 +

1

H

)(
P̃†πh+1

)
Wπ

h+1(s, a, r)

}
,

where800 (
P̃†πh+1

)
Wπ

h+1(s, a, r) :=
∑
s′

∑
a′

P̃† (s′ | s, a)πh+1 (a
′ | s′)Wπ

h+1 (s
′, a′, r) .

In addition, we define Wπ
h (s

†, a, r) = 0 for any h ∈ [H], a ∈ A and any reward function r. Then,801

under E , for any (h, s, a) ∈ [H]× S ×A , any deterministic policy π, and any deterministic reward802

function r (with its augmentation r†), it holds that803 ∣∣∣Qh

(
s, a; P̃†, r†, π

)
−Qh

(
s, a;P†, r†, π

)∣∣∣ ≤ Wπ
h (s, a, r).
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Proof. We prove by induction. For h = H + 1, we know WH+1(s, a, r) = 0 by definition and the804

left hand side of the inequality we want also vanishes. Suppose the claim holds for h+ 1 and for any805

s, a. The Bellman equation gives us806

∆h := Qh

(
s, a; P̃†, r†, π

)
−Qh

(
s, a;P†, r†, π

)
≤
∑
s′

(
P̃† (s′ | s, a)− P† (s′ | s, a)

)
Vh+1

(
s′;P†, r†, π

)
︸ ︷︷ ︸

I

+
∑
s′

P̃† (s′ | s, a)
∣∣∣Vh+1

(
s′; P̃†, r†, π

)
− Vh+1

(
s′;P†, r†, π

)∣∣∣︸ ︷︷ ︸
II

Under E , we know that KL
(
P̃†;P†

)
≤ 1

Hϕ (m(s, a)) for any (s, a), so from Lemma D.5 we have807

|I| ≤
√

2

H
ϕ (m(s, a)) ·Vars′∼P†(s,a) (Vh+1 (s′;P†, r†, π)) +

2

3
(H − h)

ϕ (m(s, a))

H

≤
√

2

H
ϕ (m(s, a)) ·Vars′∼P†(s,a) (Vh+1 (s′;P†, r†, π)) +

2

3
ϕ (m(s, a)) ,

where ϕ is the bonus defined as (A.4). Here, we let f in Lemma D.5 be Vh+1

(
s′;P†, r†, π

)
. So the808

range will be H − h and the upper bound for KL divergence is given by high-probability event E . We809

further apply Lemma D.6 to get810

Vars′∼P†(s,a)

(
Vh+1

(
s′;P†, r†, π

))
≤ 2Vars′∼P̃†(s,a)

(
Vh+1

(
s′;P†, r†, π

))
+ 4Hϕ (m(s, a))

and811

Vars′∼P̃†(s,a)

(
Vh+1

(
s′;P†, r†, π

))
≤ 2Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
+ 2H

∑
s′

P̃† (s′ | s, a)
∣∣∣Vh+1

(
s′; P̃†, r†, π

)
− Vh+1

(
s′;P†, r†, π

)∣∣∣ .
Therefore, we have812

|I| ≤ 2

3
ϕ (m(s, a)) +

[
8

H
ϕ (m(s, a))Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
+ 8ϕ (m(s, a))

2

+8ϕ (m(s, a))
∑
s′

P̃† (s′ | s, a)
∣∣∣Vh+1

(
s′; P̃†, r†, π

)
− Vh+1

(
s′;P†, r†, π

)∣∣∣]1/2 .
Using the fact that

√
x+ y ≤

√
x+

√
y and

√
xy ≤ x+y

2 for positive x, y, and the definition of II,813

we obtain814

|I| ≤
√

8

H
ϕ (m(s, a)) ·Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
+ 6Hϕ (m(s, a)) +

1

H
|II| ,

which implies815

|∆h| ≤
√

8

H
ϕ (m(s, a)) ·Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
+6Hϕ (m(s, a))+

(
1 +

1

H

)
|II| .

If Hϕ (m(s, a)) ≤ 1, then we have by definition816

|∆h| ≤
√

8

H2
·Hϕ (m(s, a)) ·Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
+ 6Hϕ (m(s, a)) +

(
1 +

1

H

)
|II|

≤
√

8

H2
ϕ (m(s, a)) ·Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
+ 6Hϕ (m(s, a)) +

(
1 +

1

H

)
|II|

by definition. Otherwise, if Hϕ (m(s, a)) ≥ 1, we have817 √
8

H
ϕ (m(s, a)) ·Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
≤
√

8Hϕ (m(s, a)) ≤ 3Hϕ (m(s, a)) .
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Therefore, we have in either case818

|∆h| ≤
√

8

H2
ϕ (m(s, a)) ·Vars′∼P̃†(s,a)

(
Vh+1

(
s′; P̃†, r†, π

))
+9Hϕ (m(s, a))+

(
1 +

1

H

)
|II| .

The induction hypothesis gives us that819

|II| ≤
∑
s′

∑
a′

P̃† (s′ | s, a)πh+1 (a
′ | s′)

∣∣∣Qh+1

(
s′, a′; P̃†, r†, π

)
−Qh+1

(
s′, a′;P†, r†, π

)∣∣∣
≤
(
P̃†πh+1

)
Wπ

h+1(s, a, r).

Inserting this into the upper bound of ∆h, we prove the case of h by the definition of Wπ
h (s, a, r)820

and the simple fact that |∆h| ≤ H − h+ 1.821

A.3.3 Proof for lemma A.15 and lemma A.16 (properties of uncertainty function)822

In this section, we prove some lemmas for upper bounding the uncertainty functions Xh(s, a). We823

first provide a basic upper bound for Xh(s, a). The uncertainty function is defined in definition A.6.824

Lemma A.15. Under the high probability event E (defined in appendix A.1.2) for all (h, s, a) ∈825

[H]× S ×A, it holds that826

Xh(s, a) ≤ 11Hmin {1, ϕ (m(s, a))}+
(
1 +

2

H

)
P† (· | s, a)⊤

(
max
a′

Xh+1(·, a′)
)
.

In addition, for s = s†, from definition, we know the above upper bound naturally holds.827

Proof. For any fixed (h, s, a) ∈ [H] × S × A, from the definition of the uncertainty function, we828

know829

Xh(s, a) ≤ 9Hϕ (m(s, a)) +

(
1 +

1

H

)
P̃† (· | s, a)⊤

(
max
a′

Xh+1(·, a′)
)
.

To prove the lemma, it suffices to bound the difference between P̃† (· | s, a)⊤ (maxa′ Xh+1(·, a′))830

and P† (· | s, a)⊤ (maxa′ Xh+1(·, a′)) . Under E(which happens with probability at least 1− δ), it831

holds that KL
(
P̃†
h (· | s, a) ;P† (· | s, a)

)
≤ 1

Hϕ (m(s, a)) . Applying Lemma D.5 and a simple832

bound for variance gives us833 ∣∣∣P̃† (· | s, a)⊤
(
max
a′

Xh+1(·, a′)
)
− P† (· | s, a)⊤

(
max
a′

Xh+1(·, a′)
)∣∣∣

≤
√

2

H
Vars′∼P†(s,a)

(
max
a′

Xh+1 (s′, a′)
)
ϕ (m(s, a)) +

2

3
ϕ (m(s, a))

≤

√[
2

H
P† (· | s, a)⊤

(
max
a′

Xh+1(·, a′)2
)]

ϕ (m(s, a)) +
2

3
ϕ (m(s, a))

≤

√[
2

H
P† (· | s, a)⊤

(
max
a′

Xh+1(·, a′)
)]

·Hϕ (m(s, a)) +
2

3
ϕ (m(s, a))

≤ 1

H
P† (· | s, a)⊤

(
max
a′

Xh+1(·, a′)
)
+ 2Hϕ (m(s, a)) .

The last line comes from
√
ab ≤ a+b

2 for any positive a, b, and the fact that 1
2Hϕ(m(s, a)) +834

2
3ϕ(m(s, a)) ≤ 2Hϕ(m(s, a)). Insert this bound into the definition of Xh(s, a) to obtain835

Xh(s, a) ≤ 11Hϕ (m(s, a)) +

(
1 +

2

H

)
P† (· | s, a)⊤

(
max
a′

Xh+1(·, a′)
)
.

Noticing that Xh(s, a) ≤ H − h+ 1 ≤ 11H, we conclude.836

837
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Lemma A.16. There exists a universal constant C ≥ 1 such that under the high probability event E ,838

when 3Kucb ≥ Kde, we have for any (h, s, a) ∈ [H]× S ×A, it holds that839

Xh(s, a) ≤ CH
Kucb

Kde
ϕ
(
nKucb(s, a)

)
+

(
1 +

2

H

)
P†(· | s, a)⊤

(
max
a′

{Xh+1(·, a′)}
)
.

In addition, for s = s†, from definition, we know the above upper bound naturally holds.840

Proof. Here, the universal constant may vary from line to line. Under E , we have841

Xh(s, a)

≤CHϕ (m(s, a)) +

(
1 +

1

H

)
P̃† (· | s, a)⊤

(
max
a′

Xh+1(·, a′)
)
. (definition)

≤CHmin {1, ϕ (m(s, a))}+
(
1 +

2

H

)
P†(· | s, a)⊤

(
max
a′

{Xh+1(·, a′)}
)

(Lemma A.15)

≤CHϕ

(
Kde

∑
h∈[H]

wmix
h (s, a)

)
+

(
1 +

2

H

)
P†(· | s, a)⊤

(
max
a′

{Xh+1(·, a′)}
)
(Lemma A.18)

=CHϕ

 Kde

Kucb

Kucb∑
k=1

∑
h∈[H]

d†
πk,h

(s, a)

+

(
1 +

2

H

)
P†(· | s, a)⊤

(
max
a′

{Xh+1(·, a′)}
)

(definition)

≤CHϕ

 Kde

3Kucb

Kucb∑
k=1

∑
h∈[H]

d̂†
πk,h

(s, a)

+

(
1 +

2

H

)
P†(· | s, a)⊤

(
max
a′

{Xh+1(·, a′)}
)

(Lemma A.22 and A.17)

≤CH
Kucb

Kde
ϕ

Kucb∑
k=1

∑
h∈[H]

d̂†
πk,h

(s, a)

+

(
1 +

2

H

)
P†(· | s, a)⊤

(
max
a′

{Xh+1(·, a′)}
)

(Lemma A.17)

Since Xh(s, a) ≤ (H − h) ≤ CHKucb

Kde
, we can modify the last display as842

Xh(s, a) ≤ CH
Kucb

Kde
min

1, ϕ

Kucb∑
k=1

∑
h∈[H]

d̂†
πk,h

(s, a)

+

(
1 +

2

H

)
P†(· | s, a)⊤

(
max
a′

{Xh+1(·, a′)}
)

≤ CH
Kucb

Kde
ϕ
(
nKucb(s, a)

)
+

(
1 +

2

H

)
P†(· | s, a)⊤

(
max
a′

{Xh+1(·, a′)}
)

(Lemma A.19)

Therefore, we conclude.843

A.3.4 Proof for lemma A.17, lemma A.18, lemma A.19, lemma A.20 (properties of bonus844

function)845

For our bonus function, we have the following basic property.846

Lemma A.17. ϕ(x) is non-increasing when x > 0. For any α ≤ 1, we have ϕ(αx) ≤ 1
αϕ(x).847

Proof. We define f(x) := 1
x

[
C +D log

(
e
(
1 + x

D

))]
, where C,D ≥ 1. Then, for x > 0,848

f ′(x) = −
C +D log

(
e
(
1 + x

D

))
x2

+
D

x(D + x)
≤ −

C +D log
(
1 + x

D

)
x2

≤ 0.

Taking C = log (6H |S| |A| δ) and D = |S| , we conclude thee first claim. For the second claim, it849

is trivial since the logarithm function is increasing.850
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851

Lemma A.18. Under E , we have for any (s, a) ∈ S ×A,852

min {1, ϕ (m(s, a))} ≤ 4ϕ

(
Kde

H∑
h=1

wmix
h (s, a)

)
.

Proof. For fixed (s, a) ∈ S × A, when H ln (6H |S| |A| /δ) ≤ 1
4

(
Kde

∑
h∈[H] w

mix
h (s, a)

)
, we

know that E5 implies m(s, a) ≥ 1
4

∑
h∈[H] Kdew

mix
h (s, a), From Lemma A.17, we know

ϕ (m(s, a)) ≤ ϕ

1

4

∑
h∈[H]

Kdew
mix
h (s, a)

 ≤ 4ϕ

 ∑
h∈[H]

Kdew
mix
h (s, a)

 .

When H ln (6H |S| |A| /δ) > 1
4

(
Kde

∑
h∈[H] w

mix
h (s, a)

)
, simple algebra shows that

min {1, ϕ (m(s, a))} ≤ 1 ≤ 4H ln (6H |S| |A| /δ)
Kde

∑
h∈[H] w

mix
h (s, a)

≤ 4ϕ

Kde

∑
h∈[H]

wmix
h (s, a)

 .

Therefore, we conclude.853

854

Lemma A.19. Under E , we have for any (s, a) ∈ S ×A,855

min

{
1, ϕ

(
Kucb∑
k=1

H∑
h=1

d̂†
πk,h

(s, a)

)}
≤ 4ϕ

(
nKucb(s, a)

)
.

Proof. We consider under the event E3, it holds that for any (s, a) ∈ S ×A,856

Kucb∑
k=1

H∑
h=1

d̂†
πk,h

(s, a) ≥ 1

2
nKucb(s, a)− 1

2
H ln

(
6H |S| |A|

δ

)
.

If H ln (6H |S| |A| /δ) ≤ 1
2n

Kucb(s, a), then we have
∑Kucb

k=1

∑H
h=1 d̂

†
πk,h

(s, a) ≥ 1
4n

Kucb(s, a),857

which implies858

ϕ

(
Kucb∑
k=1

H∑
h=1

d̂†
πk,h

(s, a)

)
≤ ϕ

(
1

4
nKucb(s, a)

)
≤ 4ϕ

(
nKucb(s, a)

)
.

Otherwise, if H ln (6H |S| |A| /δ) > 1
2n

Kucb(s, a), then we have859

min

{
1, ϕ

(
Kucb∑
k=1

d̂†
πk,h

(s, a)

)}
≤ 1 ≤ 2H ln (6H |S| |A| /δ)

nKucb(s, a)
≤ 4ϕ

(
nKucb(s, a)

)
.

Combining the two cases above, we conclude.860

861

Lemma A.20. Under E , we have for any k ∈ [Kucb] and any (s, a) ∈ S ×A,862

min
{
1, ϕ

(
nk(s, a)

)}
≤ 4H

max
{
1,
∑

i<k

∑
h∈[H] d̂

†
πi,h(s, a)

} [log(6H|S||A|
δ

)
+ |S| log

(
e

(
1 +

∑
i<k

∑
h∈[H] d̂

†
πi,h(s, a)

|S|

))]
.
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Proof. Under E2, it holds that863

nk(s, a) ≥ 1

2

∑
i<k

∑
h∈[H]

d̂†πi,h(s, a)−H ln

(
6H|S||A|

δ

)
.

If H ln (6H|S||A|/δ) ≤ 1
4

∑
i<k

∑
h∈[H] d̂

†
πi,h(s, a), then nk(s, a) ≥ 1

4

∑
i<k

∑
h∈[H] d̂

†
πi,h(s, a)864

and hence,865

min
{
1, ϕ

(
nk(s, a)

)}
≤ ϕ

(
nk(s, a)

)
≤ ϕ

1

4

∑
i<k

∑
h∈[H]

d̂†πi,h(s, a)

 ≤ 4ϕ

∑
i<k

∑
h∈[H]

d̂†πi,h(s, a)

 .

This result equals to the right hand side in the lemma, because
∑

i<k

∑
h∈[H] d̂

†
πi,h(s, a) ≥866

4H ln (6H|S||A|/δ) ≥ 1 (so taking maximum does not change anything). Otherwise, if867

H ln (6H|S||A|/δ) > 1
4

∑
i<k

∑
h∈[H] d̂

†
πi,h(s, a), then868

min
{
1, ϕ

(
nk(s, a)

)}
≤ 1 ≤ 4H ln (H|S||A|/δ′)∑

i<k

∑
h∈[H] d̂

†
πi,h(s, a)

.

Since 1 ≤ 4H ln (6H|S||A|/δ) , we have869

min
{
1, ϕ

(
nk(s, a)

)}
≤ 1 ≤ 4H ln (H|S||A|/δ′)

max
{
1,
∑

i<k

∑
h∈[H] d̂

†
πi,h(s, a)

} ≤ RHS

The last inequality comes from simple algebra. Therefore, we conclude.870

A.3.5 Proof for lemma A.21 and lemma A.22 (properties of empirical sparsified MDP)871

In this section, we state two important properties of the empirical sparsified MDP and prove them.872

We remark that we do not include P
(
s† | s, a

)
in these two lemmas, since by definition s† /∈ S.873

Lemma A.21 (Multiplicative Accuracy). We set

Φ ≥ 6H2 log

(
12 |S|2 |A|

δ

)
.

Then, when H ≥ 2, under EP , we have for any (s, a, s′) ∈ S ×A× S,874 (
1− 1

H

)
P̂†(s′ | s, a) ≤ P†(s′ | s, a) ≤

(
1 +

1

H

)
P̂†(s′ | s, a).

Proof. For N(s, a, s′) < Φ, both sides are zero. For N(s, a, s′) ≥ Φ, recall P̂†(s′ | s, a) =875

N(s,a,s′)
N(s,a) , then from lemma A.10, with probability at least 1− δ,876 ∣∣∣P̂†(s′ | s, a)− P†(s′ | s, a)

∣∣∣
≤

√√√√2P̂†(s′ | s, a)
N(s, a)

log

(
12 |S|2 |A|

δ

)
+

14

3N(s, a)
log

(
12 |S|2 |A|

δ

)
(lemma A.10 and definition of EP )

=


√√√√ 2

N(s, a, s′)
log

(
12 |S|2 |A|

δ

)
+

14

3N(s, a, s′)
log

(
12 |S|2 |A|

δ

) · P̂†(s′ | s, a)

(P̂†(s′ | s, a) = N(s,a,s′)
N(s,a) )

≤

[√
1

3H2
+

7

9H2

]
· P̂†(s′ | s, a) ≤ P̂†(s′ | s, a)

H
,

where the second line comes from the lower bound on Φ. We conclude.877
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878

Lemma A.22 (Bound on Ratios of Visitation Probability). For any deterministic policy π and any879

(h, s, a) ∈ [H]× S ×A, it holds that880

1

4
d†π,h(s, a) ≤ d̂†π,h(s, a) ≤ 3d†π,h(s, a).

Here, recall that we denote d†π,h(s, a) and d̂†π,h(s, a) as the occupancy measure of (s, a) at stage h881

under policy π, on P† (the transition dynamics in the sparsfied MDP) and P̂†(the transition dynamics882

in the empirical sparsified MDP) respectively.883

We remark that for s† ̸∈ S the inequality does not necessarily hold.884

Proof. We denote Th,s,a as all truncated trajectories (s1, a1, s2, a2, ..., sh, ah) up to stage h such that885

(sh, ah) = (s, a). Notice that if τh = (s1, a1, s2, a2, ..., sh, ah) ∈ Th,s,a, then it holds that si ̸= s†886

for 1 ≤ i ≤ h− 1. We denote P (·;P′, π) as the probability under a specific transition dynamics P′887

and policy π. For any fixed (h, s, a) ∈ [H]×S ×A and any fixed τ ∈ Th,s,a, we apply Lemma A.21888

to get889

P
[
τ ; P̂†, π

]
=

h∏
i=1

πi (ai | si)
h−1∏
i=1

P̂† (si+1 | si, ai)

≤
(
1 +

1

H

)H h∏
i=1

πi (ai | si)
h−1∏
i=1

P† (si+1 | si, ai) ≤ 3P
[
τ ;P†, π

]
and890

P
[
τ ; P̂†, π

]
=

h∏
i=1

πi (ai | si)
h−1∏
i=1

P̂† (si+1 | si, ai)

≥
(
1− 1

H

)H h∏
i=1

πi (ai | si)
h−1∏
i=1

P† (si+1 | si, ai) ≥
1

4
P
[
τ ;P†, π

]
.

We conclude by rewriting the visiting probability as891

d†π,h(s, a) =
∑

τ∈Th,s,a

P
[
τ ;P†, π

]
; d̂†π,h(s, a) =

∑
τ∈Th,s,a

P
[
τ ; P̂†, π

]
.

892
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B Additional comparisons893

B.1 Comparison with other comparator policy894

Our main result compares the sub-optimality of the policy πfinal against the optimal policy on the895

sparsified MDP. We can further derive the sub-optimality of our output with respect to any comparator896

policy on the original MDP M. If we denote π∗, π
†
∗ and πfinal as the global optimal policy, the897

optimal policy on the sparsified MDP and the policy output by our algorithm, respectively, and denote898

π as the comparator policy, we have899

V1 (s1,P, r, π)− V1 (s1,P, r, πfinal)

≤V1 (s1,P, r, π)− V1

(
s1,P†, r, π

)
+ V1

(
s1,P†, r, π

)
− V1

(
s1,P†, r, π†

∗
)︸ ︷︷ ︸

≤0

+V1

(
s1,P†, r, π†

∗
)
− V1

(
s1,P†, r, πfinal

)︸ ︷︷ ︸
≲ε

+V1

(
s1,P†, r, πfinal

)
− V1 (s1,P, r, πfinal)︸ ︷︷ ︸

≤0

≲V1 (s1,P, r, π∗)− V1

(
s1,P†, r, π∗

)︸ ︷︷ ︸
Approximation Error

+ε. (B.1)

Here, the second term is non-positive from the definition of π†
∗, the third term is upper bounded by ε900

due to our main theorem (Theorem 5.1), and the last term is non-positive from the definition of the901

sparsified MDP. Since the connectivity graph of the sparsified MDP is a sub-graph of the original902

MDP, for any policy, the policy value on the sparsified MDP must be no higher than that on the903

original MDP.904

At a high level, the ε term in the last line of (B.1) represents the error from the finite online episodes,905

while the approximation error term V1 (s1,P, r, π) − V1

(
s1,P†, r, π

)
measures the policy value906

difference of π on the original MDP and the sparsified one, representing the coverage quality of the907

offline dataset. If the dataset covers most of what π covers, then this gap should be small. When π is908

the global optimal policy π∗, this means the data should cover the state-actions pairs where optimal909

policy covers. The approximation error here plays a similar role as the concentrability coefficient in910

the offline reinforcement learning.911

B.2 Comparison with offline reinforcement learning912

Our algorithm leverages some information from the offline dataset, so it is natural to ask how we913

expect that offline dataset to be, compared to traditional offline reinforcement learning does. In914

offline RL, we typically require the concentrablity condition, namely good coverage for the offline915

dataset, in order to achieve a polynomial sample complexity. Specifically, if we assume the offline916

data are sampled by first sampling (s, a) i.i.d. from µ and then sampling the subsequent state from the917

transition dynamics, then the concentrability condition says the following constant C∗ is well-defined918

and finite.919

C∗ := sup
(s,a)

dπ∗(s, a)

µ(s, a)
< ∞.

The concentrability coefficient can be defined in several alternative ways, either for a set of policies920

or with respect to a single policy [Chen and Jiang, 2019, Zhan et al., 2022, Xie et al., 2021b, Zanette921

et al., 2021b]. Here, we follow the definition in [Xie et al., 2021b]. This means, the sampling922

distribution must covers the region where the global optimal policy covers, which is a very similar923

intuition obtained from our setting.924

[Xie et al., 2021b] also gave optimal sample complexity (in terms of state-action pairs) for an offline925

RL algorithm is926

N = Õ

(
C∗H3 |S|

ε2
+

C∗H5.5 |S|
ε

)
,

which is minimax optimal up to logarithm terms and higher order terms. Similar sample complexity927

were also given in several literature [Yin and Wang, 2020, Yin et al., 2020, Xie and Jiang, 2020b].928
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Uniform data distribution For simplicity, we first assume µ to be uniform on all state-action929

pairs and the reward function to be given. Consider we have N state-action pairs in the offline data,930

which are sampled i.i.d. from the distribution µ. Notice that here, the global optimal policy π∗ still931

differs from the optimum on the sparsified MDP π†
∗, since even if we get enough samples from each932

(s, a) pairs, we might not get enough samples for every (s, a, s′) and hence, not all (s, a, s′) will be933

included in the set of known tuples.934

Concretely, if we consider the case when we sample each state-action pair for N/(|S| |A|) times935

and simply treat the transition frequency as the true probability, then for any N(s, a, s′) < Φ, it936

holds that P (s′ | s, a) = N(s,a,s′)
N(s,a) = N(s,a,s′)|S||A|

N ≤ Φ|S||A|
N . So for any any N(s, a, s′) ≥ Φ, we937

know P(s′ | s, a) = P†(s′ | s, a); while for any N(s, a, s′) < Φ, we have P (s′ | s, a) ≤ Φ|S||A|
N and938

P†(s′ | s, a) = 0. Therefore, we have939 ∣∣P(s′ | s, a)− P†(s′ | s, a)
∣∣ ≤ Φ |S| |A|

N
From the value difference lemma (lemma D.11), we can upper bound the approximation error by940

V1 (s1,P, r, π)− V1

(
s1,P†, r, π

)
= EP,π

 H∑
h=1

∑
sh+1

(
P†(sh+1 | sh, ah)− P(sh+1 | sh, ah)

)
· Vh (sh+1,P, r, π)

∣∣∣∣sh = s


(lemma D.11)

≤ EP,π

 H∑
h=1

∑
sh+1

Φ |S| |A|
N

·H
∣∣∣∣sh = s

 (the value function is upper bounded by H)

≤ ΦH2 |S|2 |A|
N

(summation over h ∈ [H] and sh+1 ∈ S)

≍ Õ

(
H4 |S|2 |A|

N

)
. (definition of Φ in (5.1))

Therefore, to get an ε-optimal policy compared to the global optimal one, we need the number of941

state-action pairs in the initial offline dataset D to be942

N = Õ

(
H4 |S|2 |A|

ε

)
.

From the theorem 5.1, the offline data size we need here is actually significantly smaller than what943

we need for an offline algorithm. As long as sup(s,a) d
π∗(s, a) is not too small, for instance, larger944

than H−1.5, then we shave off the whole 1/ε2 term. The order of offline sample complexity here is945

actually O(1/ε) instead of O(1/ε2) typical in offline RL, and this is significantly smaller in small946

ε regime. To compensate the smaller offline sample size, actually we need more online sample to947

obtain an globally ε-optimal policy, and we summarize the general requirement for offline and online948

sample size in corollary 5.2.949

Non-uniform data distribution Assume the data generating distribution µ is not uniform but still950

supported on all (s, a) pairs such that dπ∗(s, a) > 0, so that the concentrability coefficient in offline951

RL is still well defined. We simply consider the case when each state-action pair (s, a) is sampled by952

Nµ(s, a) times and treat the transition frequency as the true underlying probability. Then, following953

a very similar argument as in the last paragraph, the number of state-action pairs needed in the initial954

offline dataset in order to extract an ε-globally optimal policy is955

N = Õ

(
H4 |S|

ε

∑
s,a

dπ∗(s, a)

µ(s, a)

)
.

Here, the quantity

C† :=
∑
s,a

dπ∗(s, a)

µ(s, a)
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plays a similar role of classical concentrability coefficient and also measures the distribution shift956

between two policies. In the worst case, this coefficient can be |S| |A|C∗, resulting in an extra957

|S| |A| factor compared to the optimal offline sample complexity. However, we still shave off the958

entire 1/ε2 term and also shave off H1.5 in the 1/ε term.959

Partial coverage data Under partial coverage, we expect the output policy πfinal to be competitive960

with the value of the best policy supported in the region covered by the offline dataset. In such case,961

theorem 5.1 provides guarantees with the best comparator policy on the sparsified MDP M†. In order962

to gain further intuition, it is best to ‘translate’ such guarantees into guarantees on M.963

In the worst case, the data distribution µ at a certain (s, a) pair can be zero when dπ(s, a) > 0,964

which implies the concentrability coefficient C∗ = ∞. Here, π is an arbitrary comparator policy. In965

this case, either classical offline RL algorithm or our policy finetuning algorithm cannot guarantee966

an ε-optimal policy compared to the global optimal policy. However, we can still output a locally967

ε-optimal policy, compared to the optimal policy on the sparsified MDP.968

In order to compare πfinal to any policy on the original MDP, we have the corollary 5.2, which will969

be proved in appendix B.3.970

The statement in corollary 5.2 is a quite direct consequence of theorem 5.1, and it expresses the971

sub-optimality gap of πfinal with respect to any comparator policy π on the original MDP M. It can972

also be written in terms of the sub-optimality: If we fix a comparator policy π, then with probability973

at least 1− δ, for any reward function r, the policy πfinal returned by algorithm 2 satisfies:974

V1 (s1;P, r, π)− V1 (s1;P, r, πfinal) = Õ
( H |S|

√
|A|√

Kde︸ ︷︷ ︸
Online error

+
H4 |S|
N

∑
s,a

dπ(s, a)

µ(s, a)︸ ︷︷ ︸
Offline error

)

= Õ

(
H |S|

√
|A|√

Kde

+
H4 |S|2 |A|

N
sup
s,a

dπ(s, a)

µ(s, a)
.

)
,

where Kde is the number of online episodes and N is the number of state-action pairs in offline data.975

Here, the sub-optimality depends on an online error as well as on an offline error. The online error is976

the one that also arises in the statement of theorem 5.1. It is an error that can be reduced by collecting977

more online samples, i.e., by increasing K, with the typical inverse square-root depedence 1/
√
K.978

However, the upper bound suggests that even in the limit of infinite online data, the value of πfinal979

will not approach that of π∗ because of a residual error due to the offline dataset D. Such residual980

error depends on certain concentrability factor expressed as
∑

s,a
dπ(s,a)
µ(s,a) ≤ |S||A| sups,a

dπ(s,a)
µ(s,a) ,981

whose presence is intuitive: if a comparator policy π is not covered well, our algorithm does not982

have enough information to navigate to the area that π tends to visit, and so it is unable to refine983

its estimates there. However the dependence on the number of offline samples N = |D| is through984

its inverse, i.e., 1/N as opposed to the more typical 1/
√
N : such gap represents the improvable985

performance when additional online data are collected non-reactively.986

It is useful to compare corollary 5.2 with what is achievable by using a minimax-optimal online987

algorithm[Xie et al., 2021b]. In this latter case, one can bound the sub-optimality gap for any988

comparator policy π with high probability as989

V1

(
s1;P, r†, π

)
− V1

(
s1;P, r†, πfinal

)
≤ Õ

(√
H3 |S|
N

sup
s,a

dπ(s, a)

µ(s, a)

)
. (B.2)

B.3 Proof of corollary 5.2990

Let’s denote D = {(si, ai, s′i)}i∈[N ] as the offline dataset, where N as the total number of tuples. We991

keep the notation the same as in the main text. We use N(s, a) and N(s, a, s′) to denote the counter992

of (s, a) and (s, a, s′) in the offline data D. The state-action pairs are sampled i.i.d. from µ(s, a)993

and the subsequent states are sampled from the transition dynamics. We fix a comparator policy π994

and assume µ(s, a) > 0 for any (s, a) such that dπ(s, a) > 0, which implies a finite concentrability995

constant C∗. Here, dπ(s, a) is the occupancy probability of (s, a) when executing policy π, averaged996

over all stages h ∈ [H].997
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Similar to the Section B.1, we have998

V1 (s1,P, r, π)− V1 (s1,P, r, πfinal)

≤V1 (s1,P, r, π)− V1

(
s1,P†, r, π

)
+ V1

(
s1,P†, r, π

)
− V1

(
s1,P†, r, π†

∗
)︸ ︷︷ ︸

≤0

+V1

(
s1,P†, r, π†

∗
)
− V1

(
s1,P†, r, πfinal

)
+ V1

(
s1,P†, r, πfinal

)
− V1 (s1,P, r, πfinal)︸ ︷︷ ︸

≤0

≲V1 (s1,P, r, π)− V1

(
s1,P†, r, π

)︸ ︷︷ ︸
Approximation Error

+V1

(
s1,P†, r, π†

∗
)
− V1

(
s1,P†, r, πfinal

)︸ ︷︷ ︸
Estimation Error

. (B.3)

where π†
∗ and πfinal are the optimal policy on the sparsified MDP and the policy output by our999

algorithm, respectively, and π is the fixed comparator policy. Here, the second term is non-positive1000

from the definition of π†
∗, the last term is non-positive from the definition of the sparsified MDP .1001

This is because, for any state-action pair (s, a) and any fixed policy π, the probability of reaching1002

(s, a) under P† will not exceed that under the true transition probability P. If we denote the visiting1003

probability under π and P (or P† resp.) as dπ,h(s, a) (d†π,h(s, a) resp.), then we have1004

d†π,h(s, a) ≤ dπ,h(s, a)

for any h ∈ [H], s ∈ S, a ∈ A. Note that, for s = s†, this does not hold necessarily. Them, for any1005

policy π, we have1006

V1

(
s1,P†, r, π

)
=

H∑
h=1

∑
s,a

d†π,h(s, a)r(s, a) (definition of policy value)

=

H∑
h=1

∑
s̸=s†,a

d†π,h(s, a)r(s, a) (r(s†, a) = 0 for any a)

≤
H∑

h=1

∑
s̸=s†,a

dπ,h(s, a)r(s, a) = V1 (s1,P, r, π) .

Therefore, we get V1

(
s1,P†, r, πfinal

)
− V1 (s1,P, r, πfinal) ≤ 0 when we take π = πfinal.1007

From the main result (Theorem 5.1), we know the estimation error is bounded as1008

V1

(
s1,P†, r, π†

∗
)
− V1

(
s1,P†, r, πfinal

)︸ ︷︷ ︸
Estimation Error

≲ Õ

(
H|S|

√
|A|√

Kde

)
, (B.4)

where Kde is the number of online episodes. Therefore, to make the right hand side of (B.4) less than1009

ε/2, one needs at least Õ
(

H2|S||A|
ε2

)
online episodes. This is exactly what the main result shows.1010

1011

So it suffices to bound the approximation error term. From the value difference lemma (Lemma1012

D.11), we have1013 ∣∣V1 (s1,P, r, π)− V1

(
s1,P†, r, π

)∣∣
=

∣∣∣∣∣EP,π

[
H∑
i=1

(
P†(· | si, ai)− P(· | si, ai)

)⊤
Vi+1

(
·;P†, r, π

) ∣∣∣∣s1 = s

]∣∣∣∣∣
=

∣∣∣∣∣
H∑
i=1

∑
si,ai

dπ,h(si, ai)
(
P†(· | si, ai)− P(· | si, ai)

)⊤
Vi+1

(
·;P†, r, π

)∣∣∣∣∣
(by expanding the expectation)

≤H |S| ·
H∑
i=1

∑
si,ai

dπ,h(si, ai)

(
sup
s′

∣∣P†(s′ | si, ai)− P(s′ | si, ai)
∣∣) .

(Vi+1 ≤ H and the inner product has |S| terms)
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We define1014

dπ(s, a) =
1

H

H∑
h=1

dπ,h(s, a) (B.5)

as the average visiting probability. Then, we have1015

∣∣V1 (s1,P, r, π)− V1

(
s1,P†, r, π

)∣∣ ≤ |S|H2
∑
s,a

[
sup
s′

∣∣P†(s′ | s, a)− P(s′ | s, a)
∣∣ dπ(s, a)] ,

(B.6)

So it suffices to upper bound
∣∣P†(s′ | s, a)− P(s′ | s, a)

∣∣. Notice here we only consider s ̸= s† and1016

s′ ̸= s†, since the value function starting from s† is always zero.1017

For (s, a, s′), if N(s, a, s′) ≥ Φ, it holds that P†(s′ | s, a) = P(s′ | s, a). Otherwise, from1018

the definition, we know P†(s′ | s, a) = 0, so it suffices to bound P(s′ | s, a) in this case. From1019

lemma B.1, we know that with probability at least 1−δ/2, for any (s, a, s′) such that N(s, a, s′) < Φ,1020

it holds that1021

P(s′ | s, a) ≤
2N(s, a, s′) + 2 log

(
2 |S|2 |A| /δ

)
N(s, a)

.

Then we deal with two cases. When Nµ(s, a) ≥ 6Φ, from lemma B.2 we have1022

P(s′ | s, a) ≤
4N(s, a, s′) + 2 log

(
4 |S|2 |A| /δ

)
Nµ(s, a)− 2 log (2 |S| |A| /δ)

≤
4Φ + 2 log

(
4 |S|2 |A| /δ

)
Nµ(s, a)− 2 log (2 |S| |A| /δ)

.

From the definition of Φ, we know that 2 log
(
4 |S|2 |A| /δ

)
≤ Φ and 2 log (2 |S| |A| /δ) ≤ Φ,1023

which implies1024

P(s′ | s, a) ≤ 5Φ

Nµ(s, a)− Φ
≤ 6Φ

Nµ(s, a)
.

The last inequality comes from our assumption for Nµ(s, a) ≥ 6Φ.1025

In the other case, when Nµ(s, a) < 6Φ, it holds that1026

P(s′ | s, a) ≤ 1 ≤ 6Φ

Nµ(s, a)

for any (s, a, s′). Therefore, for any for any (s, a, s′) such that N(s, a, s′) < Φ, we have1027

P(s′ | s, a) ≤ 6Φ

Nµ(s, a)
. (B.7)

Combining equations (B.7) and (B.6), we know for any comparator policy π, it holds that1028

∣∣V1 (s1,P, r, π)− V1

(
s1,P†, r, π

)∣∣︸ ︷︷ ︸
Approximation Error

≲
ΦH2 |S|

N

∑
s,a

dπ(s, a)

µ(s, a)
≲ Õ

(
H4 |S|
N

∑
s,a

dπ(s, a)

µ(s, a)

)
,

where N is the total number of transitions in the offline data. In order to make the right hand side of1029

last display less than ε/2, one needs at least1030

Õ
(H4 |S|

ε

∑
s,a

dπ(s, a)

µ(s, a)

)
≤ Õ

(H4 |S|2 |A|C∗

ε

)
,

offline transitions. Combining the proof for estimation error and approximation error, we conclude.1031
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B.4 Proof for lemma B.1 and lemma B.21032

Lemma B.1. With probability at least 1− δ/2, for any (s, a, s′) ∈ S ×A× S, it holds that1033

N(s, a, s′) ≥ 1

2
N(s, a)P (s′ | s, a)− log

(
2 |S|2 |A|

δ

)
.

Proof. We fixed (s, a, s′) and denote I as the index set where (si, ai) = (s, a) for i ∈ I. We range the1034

indexes in I as i1 < i2 < ... < iN(s,a). For j ≤ N(s, a), we denote Xj = I
(
s′ij = s′

)
, which is the1035

indicator of whether the next state is s′ when we encounter (s, a) the j-th time. When j ≥ N(s, a),1036

we denote Xj as independent Bernoulli random variables with successful rate P(s′ | s, a). Then, we1037

know Xj for all j ∈ N are i.i.d. sequence of Bernoulli random variables. From Lemma D.1, we know1038

with probability at least 1− δ/2, for any positive integer n, it holds that1039

n∑
j=1

Xj ≥
1

2

n∑
j=1

P(s′ | s, a)− log

(
2

δ

)
.

We take n = N(s, a) (although N(s, a) is random, we can still take it because for any n the inequality1040

above holds) to get1041

N(s, a, s′) =

N(s,a)∑
j=1

Xj ≥
1

2
N(s, a)P(s′ | s, a)− log

(
2

δ

)
.

Applying a union bound for all (s, a, s′), we conclude.1042

1043

Lemma B.2. With probability at least 1− δ/2, for any (s, a) ∈ S ×A, it holds that1044

N(s, a) ≥ 1

2
Nµ(s, a)− log

(
2 |S| |A|

δ

)
.

Proof. If µ(s, a) = 0, this is trivial. We fixed an (s, a) such that µ(s, a) > 0. For j ≤ N, we denote1045

Xj = I (sj = s, aj = a) , which is the indicator of whether the j-th state-action pair we encounter in1046

the offline dataset is (s, a). When j ≥ N, we denote Xj as independent Bernoulli random variables1047

with successful rate µ(s, a). Then, we know Xj for all j ∈ N are i.i.d. sequence of Bernoulli random1048

variables. From Lemma D.1, we know with probability at least 1− δ/2, for any positive integer n, it1049

holds that1050
n∑

j=1

Xj ≥
1

2

n∑
j=1

µ(s, a)− log

(
2

δ

)
.

We take n = N to get1051

N(s, a) =

N∑
j=1

Xj ≥
1

2
Nµ(s, a)− log

(
2

δ

)
.

Applying a union bound for all (s, a) such that µ(s, a) > 0, we conclude.1052
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C Lower bound1053

In this section we briefly discuss the optimality of the algorithm. Although the following consid-1054

erations are also mentioned in the main text, here we mention how they naturally lead to a lower1055

bound.1056

Lower bound for reward-free exploration Consider the MDP class M defined in the proof of1057

the lower bound of Theorem 4.1 in [Jin et al., 2020b]. Assume that the dataset arises from a logging1058

policy πlog which induces the condition N(s, a, s′) ≥ Φ for all (s, a, s′) ∈ S ×A for every instance1059

of the class. In this case, every MDP instance M ∈ M and its sparsified version M† coincide. Then1060

the concatenation of the logging policy πlog and of the policy πfinal produced by our algorithm (i.e.,1061

algorithm 3) can be interpreted as a reactive policy, which must comply with the reward free lower1062

bound established in Theorem 4.1 of [Jin et al., 2020b]. More precisely, the reward-free sample1063

complexity lower bound established in Theorem 4.1 in [Jin et al., 2020b] is1064

Ω
( |S|2|A|H2

ε2

)
(C.1)

trajectories. This matches the sample complexity of theorem 5.1. Notice that the number of samples1065

originally present in the dataset can be1066

|S|2|A| × Õ(H2) = Õ(H2|S|2|A|), (C.2)
a term independent of the accuracy ε. Given that when ϵ ≤ 1 we have1067

Õ(H2|S|2|A|) + Ω
( |S|2|A|H2

ε2

)
= Ω

( |S|2|A|H2

ε2

)
,

our algorithm is unimprovable beyond constant terms and logarithmic terms in a minimax sense.1068

Lower bound for non-reactive exploration Consider the MDP class M defined in the proof of1069

the lower bound in Theorem 1 of [Xiao et al., 2022]. It establishes an exponential sample complexity1070

for non-reactive exploration when no prior knowledge is available. In other words, in absence of any1071

data about the MDP, non-reactive exploration must suffer an exponential sample complexity. In such1072

case, our theorem 5.1 (correctly) provides vacuous guarantees, because the sparsified MDP M is1073

degenerate (all edges lead to the absorbing state).1074

Combining the two constructions It is possible to combine the MDP class M1 from the paper1075

[Xiao et al., 2022] with the MDP class M2 from the paper [Jin et al., 2020b]. In lieu of a formal1076

proof, here we provide only a sketch of the construction that would induce a lower bound. More1077

precisely, consider a starting state s1 where only two actions—a = 1 and a = 2—are available.1078

Taking a = 1 leads to the start state of an instance of the class M1, while taking a = 2 leads to the1079

start state of an instance of the class M2; in both cases the transition occurs with probability one and1080

zero reward is collected.1081

Furthermore, assume that the reward function given over the MDPs in M1 is shifted such that the1082

value of a policy that takes a = 1 in s1 and then plays optimally is 1 and that the reward functions on1083

M2 is shifted such that the value of a policy which takes a = 2 initially and then playes optimally is1084

2ε.1085

In addition, assume that the dataset arises from a logging policy πlog which takes a = 2 initially and1086

then visits all (s, a, s′) uniformly.1087

Such construction and dataset identify a sparsified MDP which coincide with M2 with the addition1088

of s1 (and its transition to M2 with zero reward). Intuitively, a policy with value arbitrarily close to 11089

must take action a = 1 which leads to M1, which is the portion of the MDP that is unexplored in the1090

dataset. In this case, unless the agent collects exponentially many trajectories in the online phase, the1091

lower bound from [Xiao et al., 2022] implies that it is not possible to discover a policy with value1092

close to 1 (e.g., larger than 1/2). On the other hand, our theorem 5.1 guarantees that πfinal has a1093

value at least ε, because πfinal is ε-optimal on the sparsified MDP—i.e., ε-optimal when restricted1094

to an instance on M2—with high probability using at most ∼ H2|S|2|A|/ε2 trajectories. This value1095

is unimprovable given the lower bound of Jin et al. [2020b], which applies to the class M2.1096

For completeness, in the next sub-section we refine the lower bound of [Xiao et al., 2022] to handle1097

mixture policies.1098
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D Technical lemmas and proofs1099

Lemma D.1 (Lemma F.4 in [Dann et al., 2017]). Let Fi for i = 1 . . . be a filtration and X1, . . . Xn

be a sequence of Bernoulli random variables with P (Xi = 1 | Fi−1) = Pi with Pi being Fi−1-
measurable and Xi being Fi measurable. It holds that

P

(
∃n :

n∑
t=1

Xt <

n∑
t=1

Pt/2−W

)
≤ e−W .

Lemma D.2. Let Fi for i = 1 . . . be a filtration and X1, . . . Xn be a sequence of Bernoulli random
variables with P (Xi = 1 | Fi−1) = Pi with Pi being Fi−1-measurable and Xi being Fi measurable.
It holds that

P

(
∃n :

n∑
t=1

Xt >

n∑
t=1

2Pt +W

)
≤ e−W .

Proof. Notice that 1
u2 [exp(u)− u− 1] is non-decreasing on R, where at zero we continuously1100

extend this function. For any t ∈ N, since Xt − Pt ≤ 1, we have exp (Xt − Pt)− (Xt − Pt)− 1 ≤1101

(Xt − Pt)
2
(e− 2) ≤ (Xt − Pt)

2
. Taking expectation conditional on Ft−1 and noticing that Pt−Xt1102

is a Martingale difference sequence w.r.t. the filtration Ft, we have1103

E [exp (Xt − Pt) | Ft−1] ≤ 1+E
[
(Xt − Pt)

2 | Ft−1

]
≤ exp

[
E
[
(Xt − Pt)

2 | Ft−1

]]
≤ exp (Pt) ,

where the last inequality comes from the fact that conditional on Ft−1, Xt is a Bernoulli random
variable. We define Mn := exp [

∑n
t=1 (Xt − 2Pt)] , which is a supermartingale from our deriva-

tion above. We define now the stopping time τ = min
{
t ∈ N : Mt > eW

}
and the sequence

τn = min
{
t ∈ N : Mt > eW ∨ t ≥ n

}
. Applying the convergence theorem for nonnegative super-

martingales (Theorem 4.2.12 in [Durrett, 2019]), we get that limt→∞ Mt is well-defined almost
surely. Therefore, Mτ is well-defined even when τ = ∞. By the optional stopping theorem for non-
negative supermartingales (Theorem 4.8.4 in [Durrett, 2019], we have E [Mτn ] ≤ E [M0] ≤ 1 for all
n and applying Fatou’s lemma, we obtain E [Mτ ] = E [limn→∞ Mτn ] ≤ lim infn→∞ E [Mτn ] ≤ 1.
Using Markov’s inequality, we can finally bound

P

(
∃n :

n∑
t=1

Xt > 2

n∑
t=1

Pt +W

)
> P(τ < ∞) ≤ P

(
Mτ > eW

)
≤ e−WE [Mτ ] ≤ e−W .

1104

Lemma D.3 (Empirical Bernstein Inequality, Theorem 11 in [Maurer and Pontil, 2009]). Let n ≥ 2
and x1, · · · , xn be i.i.d random variables such that |xi| ≤ A with probability 1 . Let x̄ = 1

n

∑n
i=1 xi,

and V̂n = 1
n

∑n
i=1 (xi − x̄)

2, then with probability 1− δ we have∣∣∣∣∣ 1n
n∑

i=1

xi − E[x]

∣∣∣∣∣ ≤
√

2V̂n log(2/δ)

n
+

14A

3n
log(2/δ)

Lemma D.4 (Concentration for KL Divergence, Proposition 1 in [Jonsson et al., 2020]). Let
X1, X2, . . . , Xn, . . . be i.i.d. samples from a distribution supported over {1, . . . ,m}, of proba-
bilities given by P ∈ Σm, where Σm is the probability simplex of dimension m− 1. We denote by P̂n

the empirical vector of probabilities. Then, for any δ ∈ [0, 1], with probability at least 1− δ, it holds
that

∀n ∈ N,KL
(
P̂n,P

)
≤ 1

n
log

(
1

δ

)
+

m

n
log
(
e
(
1 +

n

m

))
.

We remark that there is a slight difference between it and the original version. In [Jonsson et al.,1105

2020], they use m − 1 instead of m. But since the second term of the right hand side above is1106

increasing with m, our version also holds.1107
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Lemma D.5 (Bernstein Transportation, Lemma 11 in [Talebi and Maillard, 2018]). For any function
f and any two probability measure Q,P which satisfy Q ≪ P, we denote VP [f ] := VarX∼P(f(X))
and S(f) := supx f(x)− infx f(x). We assume VP [f ] and S(f) are finite, then we have

EQ[f ]− EP [f ] ⩽
√

2VP [f ]KL(Q,P ) +
2

3
S(f)KL(Q,P ),

EP [f ]− EQ[f ] ⩽
√
2VP [f ]KL(Q,P ).

Lemma D.6 (Difference of Variance, Lemma 12 in [Ménard et al., 2021]). Let P,Q be two probability
measure on a discrete sample space of cardinality S. Let f, g be two functions defined on S such that
0 ≤ g(s), f(s) ≤ b for all s ∈ S, we have that

VarP(f) ≤ 2VarP(g) + 2bEP|f − g| and

VarQ(f) ≤ VarQ(f) + 3b2∥P−Q∥1,
Further, if KL (P;Q) ≤ α, it holds that1108

VarQ(f) ≤ 2VarP(f) + 4b2α.

Lemma D.7. For any sequence of numbers z1, . . . , zn with 0 ≤ zk ≤ 1, we have
n∑

k=1

zk

max
[
1;
∑k−1

i=1 zi

] ≤ 4 log

(
n∑

i=1

zi + 1

)

Proof.
n∑

k=1

zk

max
[
1;
∑k−1

i=1 zi

] ≤ 4

n∑
k=1

∑k
i=1 zi −

∑k−1
i=1 zi

2 + 2
∑k−1

i=1 zi

≤ 4

n∑
k=1

∑k
i=1 zi −

∑k−1
i=1 zi

1 +
∑k

i=1 zi

≤ 4

n∑
k=1

∫ ∑k
i=1 zi

∑k−1
i=1 zi

1

1 + x
dx ≤ 4 log

(
n∑

i=1

zi + 1

)
.

1109

Lemma D.8. For B ≥ 16 and x ≥ 3, there exists a universal constant C1 ≥ 4, such that when1110

x ≥ C1B log(B)2,

it holds that1111

B log(1 + x) (1 + log(1 + x)) ≤ x.

Proof. We have1112

B log(1 + x) (1 + log(1 + x)) ≤ B (1 + log(1 + x))
2 ≤ B (1 + log(2x))

2 ≤ B [log(6x)]
2
.

We define f(x) := x−B [log(6x)]
2
, then we have f ′(x) = 1− 2B log(6x)

x . Since x ≥ 2C1B log(B),1113

we have1114

f ′(x) ≥ 1− log(12C1B log(B))

C1 log(B)
.

We can take C1 ≥ 1 such that C1 log(B)− log(12C1B log(B)) ≥ 0 whenever B ≥ 16. Therefore,1115

we know f(x) is increasing when x ≥ C1B log(B)2. Then, it suffices to prove1116 [
log
(
6C1B log(B)2

)]2 ≤ C1 log(B)2.

Since
[
log
(
6C1B log(B)2

)]2 ≤ 2 log(B)2 + 2
[
log
(
6C1 log(B)2

)]2
, it suffices to prove1117

log
(
6C1 log(B)2

)
≤
√

C1 − 2

2
log(B).

When C1 ≥ 4, the difference of right hand side and left hand side s always increasing w.r.t. B for1118

fixed C1. Therefore, it suffices to prove the case when B = 16. Noticing that we can always take1119

a sufficiently large uniform constant C1 such that the inequality above holds when B = 16, we1120

conclude.1121
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Lemma D.9 (Chain rule of Kullback-Leibler divergence, Exercise 3.2 in [Wainwright, 2019]). Given
two n-variate distributions Q and P, show that the Kullback-Leibler divergence can be decomposed
as

D(Q;P) = D (Q1;P1) +

n∑
j=2

EQj−1
1

[
D
(
Qj

(
· | Xj−1

1

)
;Pj

(
· | Xj−1

1

))]
,

where Qj

(
· | Xj−1

1

)
denotes the conditional distribution of Xj given (X1, . . . , Xj−1) under Q,1122

with a similar definition for Pj

(
· | Xj−1

1

)
.1123

Lemma D.10 (Bretagnolle-Huber Inequality, Theorem 14.1 in [Lattimore and Szepesvári, 2020]).
Let P and Q be probability measures on the same measurable space (Ω,F), and let A ∈ F be an
arbitrary event. Then,

P(A) +Q (Ac) ≥ 1

2
exp(−D(P;Q))

where Ac = Ω\A is the complement of A.1124

Lemma D.11 (Value Difference Lemma, Lemma E.15 in [Dann et al., 2017]). For any two MDPs1125

M′ and M′′ with rewards r′ and r′′ and transition probabilities P′ and P′′, the difference in values1126

with respect to the same policy π can be written as1127

V ′
i (s)− V ′′

i (s) = E′′

[
H∑
t=i

(r′ (st, at, t)− r′′ (st, at, t)) | si = s

]

+ E′′

[
H∑
t=i

(P′ (st, at, t)− P′′ (st, at, t))
⊤
V ′
t+1 | si = s

]
where V ′

H+1(s) = V ′′
H+1(s) = 0 for any state s and the expectation E′ is taken with respect to P′1128

and π and E′′ with respect to P′′ and π.1129

E Details of the planning phase1130

In this section, we provide some details of the planning phase in algorithm 3. In the planning phase,1131

we are given a reward function r : S×A → [0, 1] and we compute an estimate of sparsified transition1132

dynamics P̃†, which is formally defined appendix A.1.1. The goal of the planning phase is to compute1133

the optimal policy πfinal on the MDP specified by the transition dynamics P̃† and reward function1134

r†, where r† is the sparsified version of r : r†(s, a) = r(s, a) and r†(s†, a) = 0 for any a ∈ A. To1135

compute the optimal policy, we iteratively apply the Bellman optimality equation. First, we define1136

Q̃H(s, a) = r†(s, a) for any (s, a) and solve1137

πfinal,H(s) = argmax
a∈A

r†(s, a).

Then, for h = H − 1, H − 2, ..., 2, 1, we iteratively define1138

Q̃h(s, a) := r†(s, a) +
∑
s′

P̃† (s′ | s, a) Q̃h+1(s
′, πfinal,h+1(s

′))

for any (s, a), and then solve1139

πfinal,h(s) = argmax
a∈A

Q̃h(s, a)

for any s ∈ S. For s† and any h ∈ [H], πfinal,h(s
†) can be arbitrary action. Then, from the property1140

of Bellman optimality equation, we know πfinal is the optimal policy on P̃† and r†.1141

F More related works1142

Other low-switching algorithms Low-switching learning algorithms were initially studied in the1143

context of bandits, with the UCB2 algorithm [Auer et al., 2002] achieving an O(A logK) switching1144
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cost. Gao et al. [2019] demonstrated a sufficient and necessary O(A log logK) switching cost for1145

attaining the minimax optimal regret in multi-armed bandits. In both adversarial and stochastic online1146

learning, [Cesa-Bianchi et al., 2013] designed an algorithm that achieves an O(log logK) switching1147

cost.1148

Reward-free reinforcement learning In reward-free reinforcement learning (RFRL) the goal is to1149

find a near-optimal policy for any given reward function. [Jin et al., 2020a] proposed an algorithm1150

based on EULER [Zanette and Brunskill, 2019] that can find a ε policy with Õ(H5 |S|2 |A| /ε2)1151

trajectories. Subsequently, [Kaufmann et al., 2021] reduces the sample complexity by a factor H by1152

using uncertainty functions to upper bound the value estimation error. The sample complexity was1153

further improved by another H factor by [Ménard et al., 2021].1154

A lower bound of Õ(H2 |S|2 |A| /ε2) was established for homogeneous MDPs by [Jin et al., 2020a],1155

while an additional H factor is conjectured for non-homogeneous cases. [Zhang et al., 2021] proposed1156

the first algorithm with matching sample complexity in the homogeneous case. Similar results are1157

available with linear [Wang et al., 2020a, Wagenmaker et al., 2022, Zanette et al., 2020] and general1158

function approximation [Chen et al., 2022, Qiu et al., 2021].1159

Offline reinforcement learning In offline reinforcement learning the goal is to learn a near-optimal1160

policy from an existing dataset which is generated from a (possibly very different) logging policy.1161

Offline RL in tabular domains has been investigated extensively [Yin and Wang, 2020, Jin et al.,1162

2020c, Nachum et al., 2019, Rashidinejad et al., 2021, Kallus and Uehara, 2022, Xie and Jiang,1163

2020a]. Similar results were shown using linear [Yin et al., Xiong et al., 2022, Nguyen-Tang et al.,1164

2022, Zanette et al., 2021b] and general function approximation[Xie et al., 2021a, Long et al., 2021,1165

Zhang et al., 2022, Duan et al., 2021, Jiang and Huang, 2020, Uehara and Sun, 2021, Zanette1166

and Wainwright, 2022, Rashidinejad et al., 2022, Yin et al., 2022]. Offline RL is effective when1167

the dataset ‘covers’ a near optimal policy, as measured by a certain concentrabiluty factor. In the1168

function approximation setting additional conditions, such as Bellman completeness, may need to be1169

approximately satisfied [Munos and Szepesvári, 2008, Chen and Jiang, 2019, Zanette, 2023, Wang1170

et al., 2020b, Foster et al., 2021, Zhan et al., 2022].1171

Task-agnostic reinforcement learning Another related line of work is task-agnostic RL, where1172

N tasks are considered during the planning phase, and the reward functions is collected from the1173

environment instead of being provided directly. [Zhang et al., 2020a] presented the first task-agnostic1174

algorithm, UBEZero, with a sample complexity of Õ(H5 |S| |A| log(N)/ε2). Recently, [Li et al.,1175

2023a] proposed an algorithm that leverages offline RL techniques to estimate a well-behaved1176

behavior policy in the reward-agnostic phase, achieving minimax sample complexity. Other works1177

exploring effective exploration schemes in RL include [Hazan et al., 2019, Du et al., 2019, Misra1178

et al., 2020]. [Li et al., 2023b] also considered an offline-to-online reinforcement learning algorithm1179

which explores the environment using two mixed policies in a reward-free mode.1180
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