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Abstract

Large Language Models (LLMs) with strong abilities in natural language process-
ing tasks have emerged and have been applied in various kinds of areas such as
science, finance and software engineering. However, the capability of LLMs to
advance the field of chemistry remains unclear. In this paper, rather than pursuing
state-of-the-art performance, we aim to evaluate capabilities of LLMs in a wide
range of tasks across the chemistry domain. We identify three key chemistry-
related capabilities including understanding, reasoning and explaining to explore
in LLMs and establish a benchmark containing eight chemistry tasks. Our anal-
ysis draws on widely recognized datasets facilitating a broad exploration of the
capacities of LLMs within the context of practical chemistry. Five LLMs (GPT-4,
GPT-3.5, Davinci-003, Llama and Galactica) are evaluated for each chemistry
task in zero-shot and few-shot in-context learning settings with carefully selected
demonstration examples and specially crafted prompts. Our investigation found
that GPT-4 outperformed other models and LLMs exhibit different competitive
levels in eight chemistry tasks. In addition to the key findings from the comprehen-
sive benchmark analysis, our work provides insights into the limitation of current
LLMs and the impact of in-context learning settings on LLMs’ performance across
various chemistry tasks. The code and datasets used in this study are available at
https://github.com/ChemFoundationModels/ChemLLMBench.

1 Introduction

Large language models (LLMs) have recently demonstrated impressive reasoning abilities across
a wide array of tasks. These tasks are not limited to natural language processing, but also extend
to various language-related applications within scientific domains [56, 30, 24, 10]. Much of the
research on the capacity of LLMs in science has been focused on tasks such as answering medical
[30] and scientific questions [24, 25]. However, the exploration of their application to practical tasks
in the field of chemistry remains underinvestigated. Although some studies [6, 27, 63, 48] have been
conducted, they tend to focus on specific case studies rather than a comprehensive or systematic
evaluation. The exploration of LLMs’ capabilities within the field of chemistry has the potential to
revolutionize this domain and expedite research and development activities [62]. Thus, the question,

“What can LLMs do in chemistry?” is a compelling topic of inquiry for both AI researchers and
chemists. Nevertheless, there exist two challenges that hinder the answer to the topic and the further
development of LLMs in chemistry:
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• Determining the potential capabilities of LLMs in chemistry requires a systematic analysis of
both LLMs and the specific requirements of chemistry tasks. There are different kinds of tasks in
chemistry, some of which can be formulated to tasks solved by LLMs while others may not. It
is necessary to consider the specific knowledge and reasoning required for each task and assess
whether LLMs can effectively acquire and utilize that knowledge.

• Conducting reliable and wide-ranging evaluation requires diverse experimental settings and limita-
tions, that is, careful consideration and standardization of evaluation procedures, dataset curation,
prompt design, and in-context learning strategies. Additionally, the API call time consumption and
the randomness of LLMs limit the size of the testing.

To address this knowledge gap, we (a group of AI researchers and chemists) have developed a
comprehensive benchmark to provide a preliminary investigation into the abilities of LLMs across a
diverse range of practical chemistry tasks. Our aim is to gain insights that will be beneficial to both
AI researchers and chemists to advance the application of LLMs in chemistry. For AI researchers,
we provide insights into the strengths, weaknesses, and limitations of LLMs in chemistry-related
tasks, which can inform the further development and refinement of different AI techniques for more
effective applications within the field. For chemists, our study provides a better understanding of the
tasks in which they can rely on current LLMs. Utilizing our more extensive experimental setup, a
broader range of chemistry tasks can be explored to further evaluate the capabilities of LLMs.

Our investigation focuses on 8 practical chemistry tasks, covering a diverse spectrum of the chemistry
domain. These include: 1) name prediction, 2) property prediction, 3) yield prediction, 4) reaction
prediction, 5) retrosynthesis (prediction of reactants from products), 6) text-based molecule design,
7) molecule captioning, and 8) reagents selection. Our analysis draws on widely available datasets
including BBBP, Tox21 [65], PubChem [32], USPTO [29, 53, 39], and ChEBI [17, 16]. Five LLMs
(GPT-4, GPT-3.5, Davinci-003, Llama, and Galactica) [43] are evaluated for each chemistry task in
zero-shot and few-shot in-context learning settings with carefully selected demonstration examples
and specific prompts. We highlight the contributions of this paper as follows:
• We are the first to establish a comprehensive benchmark to evaluate the abilities of LLMs on a

wide range of chemistry tasks. These eight selected tasks, in consultation with chemists, not only
encompass a diverse spectrum of the chemistry domain but also demand different abilities such as
understanding, reasoning, and explaining using domain-specific chemistry knowledge.

• We provide a comprehensive experimental framework for testing LLMs in chemistry tasks. To
factor in the impact of prompts and demonstration examples in in-context learning, we have
assessed multiple input options, focusing on the description of chemistry tasks. Five representative
configurations were chosen based on their performance on a validation set, then these selected
options were applied on the testing set. The conclusion is made from five repeated evaluations on
each task, since GPTs often yield different outputs at different API calls even though the input is
the same. We thus believe that our benchmarking process is both reliable and systematic.

• Our investigations yield broader insights into the performance of LLMs on chemistry tasks. As
summarized in Table 2, our findings confirm some anticipated outcomes (e.g., GPT-4 outperforms
GPT-3 and Davinci-003), and also reveal unexpected discoveries (e.g., property prediction can be
better solved when property label semantics are included in prompts). Our work also contributes to
practical recommendations that can guide AI researchers and chemists in leveraging LLMs more
effectively in the future (see Section 5).

The paper is organized as follows. Related works are presented in Section 2. In section 3, we
elaborate on the evaluation process, including an overview of the chemistry tasks, the utilized LLMs
and prompts, and the validation and testing settings. In section 4, we summarize the main findings
(due to the space limit, evaluation details of each chemistry task can be found in Appendix). Finally,
to answer the question “What can LLMs do in chemistry?” we discuss the constraints inherent to
LLMs and how different settings related to LLMs affect performance across various chemistry tasks
in Section 5. The conclusions are summarized in section 6.

2 Related Work

Large Language Models. The rise of Large Language Models (LLMs) has marked a significant trend
in recent natural language processing (NLP) research. This progress has been fuelled by milestones
such as the introduction of GPT-3 [4], T0 [52], Flan-T5 [12], Galactica [56] and LLaMa [57]. The
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recently released GPT-4, an evolution from GPT-3.5 series, has drawn considerable attention for its
improvements in language understanding, generation, and planning [43]. Despite the vast potential of
LLMs, existing research primarily centers on their performance within general NLP tasks [8, 9]. The
scientific disciplines, notably chemistry, have received less focus. The application of LLMs in these
specialized domains presents an opportunity for significant advancements. Therefore, we conduct a
comprehensive experimental analysis to evaluate the capability of LLMs in chemistry-related tasks.

Large Language Model Evaluations. In recent years, the evaluation of LLMs like GPT has become
a significant field of inquiry. [11] showed ChatGPT’s proficiency in law exams, while technical
aspects of GPT-4 were analyzed in [43]. LLMs are also applied in healthcare [14] , mathematical
problem [18], and code generation tasks [37]. Specifically, in healthcare, the utility and safety
of LLMs in clinical settings were explored [42]. In the context of mathematical problem-solving,
studies [18, 7] have highlighted that LLMs encounter challenges with graduate-level problems,
primarily due to difficulties in parsing complex syntax. These studies underscored the complexity of
achieving task-specific accuracy and functionality with LLMs. Lastly, AGIEval [66] assessed LLMs’
general abilities but noted struggles in complex reasoning tasks.

Our work aligns with these evaluations but diverges in its focus on chemical tasks. To our knowledge,
this is the first study to transform such tasks to suit LLM processing and to perform a comprehensive
evaluation of these models’ ability to tackle chemistry-related problems. This focus will contribute to
expand our understanding of LLMs’ capabilities in specific scientific domains.

Large Language Model for Chemistry. Recent efforts integrating LLMs with the field of chemistry
generally fall into two distinct categories. One category aims to create a chemistry agent with
LLMs’ by leveraging its planning ability to utilize task-related tools. For example, Bran et al [3]
developed ChemCrow, which augmented LLMs with chem-expert designed tools for downstream
tasks such as organic synthesis and drug discovery. Similarly, by leveraging the planning and
execution ability of multiple LLMs, Boiko et al [2] developed an autonomous chemical agent to
conduct chemical experiments. The other category involves direct usage of LLMs for downstream
tasks in chemistry [27, 62, 6, 28]. While these studies have explored the performance of LLMs in
chemistry-related tasks, a systematic evaluation of their capabilities within this domain has been
lacking. Consequently, there is a noticeable gap that calls for a meticulous benchmark to thoroughly
assess the potential of LLMs in chemistry. Such a benchmark is crucial not only for identifying the
strengths and limitations of these models in a specialized scientific domain, but also to guide future
improvements and applications.

3 The Evaluation Process and Setting

The evaluation process workflow is depicted in Fig. 1. Guided by co-author Prof. Olaf Wiest (from
the Department of Chemistry at the University of Notre Dame), we identify eight tasks in discussion
with senior Ph.D. students at the NSF Center for Computer Assisted Synthesis (C-CAS). Following
this, we generate, assess, and choose suitable prompts to forward to LLMs. The acquired answers are
then evaluated both qualitatively by chemists to identify whether they are helpful in the real-world
scenario and quantitatively by selected metrics.

Chemistry tasks. In order to explore the abilities of LLMs in the field of chemistry, we concentrate
on three fundamental capabilities: understanding, reasoning, and explaining. We examine these
competencies through eight diverse and broadly acknowledged practical chemistry tasks. These tasks
are summarized in Table 1, in terms of the task type from the perspective of machine learning, the
dataset used for the evaluation, as well as the evaluation metrics. The #ICL candidates refers to the
number of candidate examples, from which we select k demonstration examples, either randomly
or based on similarity searches. These candidate sets are the training sets used in classical machine
learning models, e.g., in training classifiers or generative models. We set the test set of 100 instances,
randomly sampled from the original testing dataset (non-overlapping with the training set). To reduce
the influence of the LLMs randomness on the results, each evaluation experiment is repeated five
times and the mean and variance are reported.

LLMs. For all tasks, we evaluate the performance of five popular LLMs: GPT-4, GPT-3.5 (referred
to as GPT-3.5-turbo, also known as ChatGPT), Davinci-003, LLama and Galactica.
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Figure 1: Overview of the evaluation process

Table 1: The statistics of all tasks, datasets, the number of ICL/test samples, and evaluation metrics

Ability Task Task Type Dataset #ICL candidates #test Evaluation Metrics

Understanding
Name Prediction Generation PubChem 500 100 Accuracy

Property Prediction Classification BBBP, HIV, BACE,
Tox21, ClinTox

2053, 41127, 1514,
8014, 1484 100 Accuracy, F1 score

Reasoning

Yield Prediction Classification Buchwald-Hartwig,
Suzuki-Miyaura

3957,
5650 100 Accuracy

Reaction Prediction Generation USPTO-Mixed 409035 100 Accuracy, Validity
Reagents Selection Ranking Suzuki-Miyaura 5760 100 Accuracy
Retrosynthesis Generation USPTO-50k 40029 100 Accuracy, Validity
Text-Based Molecule Design Generation ChEBI-20 26407 100 BLEU, Exact Match, etc

Explaining Molecule Captioning Generation ChEBI-20 26407 100 BLEU, Chemists, etc

Zero-shot prompt. For each task, we apply a standardized zero-shot prompt template. As shown
in Fig. 2, we instruct the LLMs to act in the capacity of a chemist. The content within the brackets
is tailored to each task, adapting to its specific inputs and outputs. The responses from LLMs are
confined to only returning the desired output without any explanations.

Figure 2: The standardized zero-shot prompt template for all tasks.

Task-specific ICL prompt. ICL is a new paradigm for LLMs where predictions are based solely
on contexts enriched with a few demonstration examples [15]. This paper specifically denotes
ICL as a few-shot in-context learning approach, excluding the zero-shot paradigm. In order to
thoroughly examine the capacities of LLMs within each chemistry-specific task, we design a task-
specific ICL prompt template. As shown in Fig. 3. The format of the template is similar to that
used in [48]. We also partition our template into four parts: {General Template}{Task-Specific
Template}{ICL}{Question}. The {General Template} is almost the same as the zero-shot prompt,
instructing the LLMs to play the role of a chemist and specify the chemistry task with its corresponding
input and output. Considering that the responses for chemistry-related tasks must be accurate and
chemically reasonable, it is crucial to prevent LLMs from generating hallucinated information. To
this end, we introduce the {Task-Specific Template} which consists of three main components:
[Input explanation], [Output Explanation], and [Output Restrictions], specifically designed to reduce
hallucinations. These components are tailored to each task. The {ICL} part is a straightforward
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concatenation of the demonstration examples and it follows the structure "[Input]: [Input_content]
[Output]: [Output_content]". The [Input] and [Output] denote the specific names of each task’s
input and output, respectively. For example, in the reaction prediction task, the [Input] would be
"Reactants+Reagents" and the [Input_content] would be the actual SMILES of reactants and reagents.
The [Output] would be "Products" and the [Output_content] would be the SMILES of products.
Detailed ICL prompts for each task will be presented in their respective sections that follow. The
last {Question} part presents the testing case for LLMs to respond to. Fig 5 is example of our name
prediction prompt.

Figure 3: An ICL prompt template for all tasks.

Figure 4: An ICL prompt example for smiles2iupac prediction

ICL strategies. To investigate the impact of the quality and quantity of ICL examples on the
performance of each task, we explore two ICL strategies. The quality is determined by the retrieval
methods employed for finding similar examples to the sample in question. We conduct a grid search
across two strategies: {Random, Scaffold}. In the Random strategy, we randomly select k examples
from the ICL candidate pool. In the Scaffold strategy, if the [Input_content] is a molecule SMILES, we
use Tanimoto Similarity [55] from Morgan Fingerprint [41] with 2048-bits and radius=2 to calculate
the molecular scaffold similarity to find the top-k similar molecule SMILES. If the [Input_content]
is a description such as IUPAC name or others, we use Python’s built-in difflib.SequenceMatcher
tool [49] to find the top-k similar strings. To explore the influence of the quantity of ICL examples
on performance, we also perform a grid search for k, the number of ICL examples, in each task.

Experiment setup strategy. In property prediction and yield prediction tasks, we perform the grid
search of k in {4, 8}. In the name prediction, reaction prediction, and retrosynthesis tasks, we perform
the grid search of k in {5, 20}. In text-based molecule design and molecule captioning tasks, we

5



Table 2: The rank of five LLMs on eight chemistry tasks and performance highlight (NC: not
competitive, C: competitive, SC: selectively competitive, acc: accuracy).

Task GPT-4 GPT-3.5 Davinci-003 Llama2-13B-chat GAL-30B Performance highlight (comparing to baselines if any)

Name Prediction 1 2 3 4 5 NC: max. acc. 8% (Table 4)

Property Prediction 1 2 3 5 4 SC: outperform RF and XGBoost from MoleculeNet [65] (Table 6)

Yield Prediction 1 3 2 5 4 C: but 16-20% lower acc. than UAGNN [34] (Table 10)

Reaction Prediction 1 3 2 5 4 NC: 70% lower acc. than Chemformer [26] (Table 11)

Reagents Selection 2 1 3 4 5 C: 40-50% acc. (Table 12)

Retrosynthesis 2 3 1 5 4 NC: 40% lower acc. than Chemformer [26] (Table 13)

Molecule Design 1 3 2 4 5 SC: better than MolT5-Large [17] (Table 14)

Molecule Captioning 1 2 1 4 5 SC: better than MolT5-Large [17] (Table 15)

Average rank 1.25 2.375 2.125 4.5 4.5 overall: 3 SC, 2 C, 3 NC

perform the grid search of k in {5, 10} because of the maximum token limitation of LLMs. To reduce
the time consumption of API requests caused by testing on the large test set, we first construct a
validation set of size 30 which is randomly sampled from the original training set. Then we search k
and retrieval strategies ({Random, Scaffold}) on the validation set. Based on the validation set results,
we take 5 representative options when testing on 100 instances, which are randomly sampled from
the original test set. For each task, we run evaluation 5 times and report mean and standard deviation.

4 Experiment Analysis

Due to space limitations, we provide details of the evaluation on each chemistry task in Appendix by
the following order: name prediction in section A, property prediction in section B, yield prediction
in section C, reaction prediction in section D, reagents selection in section E, retrosynthesis in section
F, text-based molecule design in section G, and molecule captioning in section H. The detailed results
described in the Appendix allow us to approach the question “What can LLMs do in chemistry?"
from several directions. We discuss the key findings from our comprehensive benchmark analysis and
provide valuable insights by thoroughly analyzing the limitation of LLMs and how different settings
related to LLMs affect performance across various chemistry tasks.

4.1 Can LLMs outperform existing baselines in chemistry tasks?

Several classic predictive models based on machine learning (ML) have been developed for specific
chemistry tasks. For instance, MolR (Graph Neural Network-based) predicts molecule properties
as a binary classification problem [58]. UAGNN achieved state-of-the-art performance in yield
prediction [34]. MolT5-Large, a specialized language model based on T5, excels in translating
between molecule and text [17]. We conduct a performance analysis of GPT models and compare
their results with available baselines, if applicable. The main findings from the investigations are:
• GPT-4 outperforms the other models evaluated. The ranking of the models on 8 tasks can be found

in Table 2;
• GPT models exhibit a less competitive performance in tasks demanding precise understanding of

molecular SMILES representation, such as name prediction, reaction prediction and retrosynthesis;
• GPT models demonstrate strong capabilities both qualitatively (in Fig. 14 evaluated by chemists)

and quantitatively in text-related explanation tasks such as molecule captioning;
• For chemical problems that can be converted to classification tasks or ranking tasks, such as property

prediction, and yield prediction, GPT models can achieve competitive performance compared to
baselines that use classical ML models as classifiers, or even better, as summarized in Table 2.

These conclusions are derived from conducting five repeated evaluations on each task, using the best
evaluation setting that was discovered through a grid search on the validation set of each task. We
designate the performance of GPT models as three categories and provide in-depth discussion next.

• Tasks with not competitive (NC) performance. In tasks such as reaction prediction and
retrosynthesis, GPT models are worse than existing ML baselines trained by large amounts of
training data, partially because of the limitation on understanding molecular SMILES strings. In
reaction prediction and retrosynthesis, SMILES strings are present in both the input and output
of the GPT models. Without an in-depth understanding of the SMILES strings that represent
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reactants and products, as well as the reaction process that transforms reactants into products, it
will be difficult for GPT models to generate accurate responses, as shown in Table 11 and 13. GPT
models exhibit poor performance on the task of name prediction as well (see Table 4). This further
validates the notion that GPT models struggle with understanding long strings in formats such as
SMILES, IUPAC name, and molecular formula, and make correct translations between them.

• Tasks with competitive (C) performance. GPT models can achieve satisfactory results when the
chemistry tasks are formulated into the forms of classification (e.g., formatting yield prediction
into a high-or-not classification, instead of regression) or ranking (as seen in reagents selection),
as illustrated in Fig. 7 and 9. This is understandable, because making choices is inherently
simpler than generating products, reactants or names. GPT models can achieve an accuracy of
40% to 50% when asked to select the reactant or solvent or ligand from provided candidates.
Although GPT-4’s performance on yield prediction falls short compared to the baseline model
UAGNN [34] (with 80% versus 96% on the Buchwald-Hartwig dataset, and 76% versus 96% on the
Suzuki-coupling dataset), it demonstrates improved performance when given more demonstration
examples within the few-shot in-context learning scenario, as reported in Table 10. It is worth
noting that the UAGNN model was trained on thousands of examples for these specific reactions.
Last, while GPT models exhibit promising performance for yield prediction on the evaluated
High-Throughput Experimentation (HTE) datasets, specifically the Buchwald-Hartwig [1] and
Suzuki-Miyaura datasets [50], they perform as bad as other ML baselines on more challenging
datasets like USPTO-50k [53]. This observation indicates a potential area for future research and
improvement in the performance of GPT models on challenging chemistry datasets.

• Tasks with selectively competitive (SC) performance. GPT models are selectively competitive
on two types of tasks.

– In the property prediction task on some datasets (HIV, ClinTox), GPT models outperform
the baseline significantly, achieving F1 scores and accuracy nearing 1, as reported in Table 6
and 7. This might be due to the fact that the property labels to be predicted are included in the
prompts, with GPT models being simply tasked in responding with yes or no. For example, the
prompt includes inhibit HIV replication or drugs failed clinical trials for toxicity reason, and
we observed a significant decline in the performance of GPT models upon removing property
labels from the prompt (refer to Appendix section B). In contrast, baselines employing machine
learning models do not include the semantic meaning of these labels in their input. The input
for these models only comprises molecular representations in graph form but no labels.

– For tasks related to text, such as text-based molecule design and molecule captioning, GPT
models exhibit strong performance due to their language generation capabilities. On the task of
text-based molecule design, GPT models outperform the baseline when evaluated using NLP
metrics such as BLEU and Levenshtein. However, when it comes to exact match, the accuracy
is less than 20%, as reported in Table 14 and 15. This suggests that the molecules designed
by GPT models may not be exactly the same as the ground truth. Particularly in the context
of molecular design/generation, the exact match is a significant metric. Unlike in natural
language generation where there is some allowance for deviation from the input, molecular
design demands precise accuracy and chemical validity. However, not being precisely identical
to the ground truth does not automatically invalidate a result. Molecules generated by GPT
models may still prove to be beneficial and could potentially act as viable alternatives to the
ground truth, provided they meet the requirements outlined in the input text and the majority
(over 89%) are chemically valid (see Table 14). Nonetheless, assessing the true utility of these
generated molecules, such as evaluating their novelty in real-world applications, can be a
time-consuming undertaking.

4.2 The capability of different LLMs

As shown in Table 2, we can find that GPT-4 model shows better chemical understanding, reasoning,
and explaining abilities than Davinci-003, GPT-3.5, Llama and Galactica. This further verifies the
GPT-4 model outperforms the other models in both basic and realistic scenarios [5].

4.3 The effects of the ICL

To investigate the effects of the ICL, we introduced ICL prompting and different ICL retrieval
methods, and the different number of ICL examples in each task. Based on the experiments results of
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12 different variants of each option and evaluating their performance on the validation set, we have
the following three observations:

• In all tasks, the performance of ICL prompting is better than zero-shot prompting.

• In most tasks (in Table 4, 6, 7, 11, 13, 14, 15), using scaffold similarity to retrieve the most similar
examples of the question as ICL examples achieves better performance than random sampling.

• In most tasks (in Table 4, 6, 7, 10, 11, 14, 15), using larger k (more ICL examples) usually achieves
better performance than small k (fewer ICL examples).

These observations indicate that the quality and quantity of ICL examples plays an important role
in the performance of ICL prompting [23, 36]. This may inspire that it is necessary to design more
chemistry-specific ICL methods to build high-quality ICL examples to further improve the ICL
prompting performance.

4.4 Are molecule SELFIES representations more suitable for LLMs than SMILES
representations?

SELFIES [33] representations are more machine-learning-friendly string representations of molecules.
To investigate whether the SELFIES representations are more suitable for LLMs than SMILES
representations, we conduct experiments on four tasks, including molecule property prediction,
reaction prediction, molecule design and molecule captioning. The experiment results are shown
in Table 16, 17, 18, 19. We can observe that the results of using SELFIES in all four tasks are
inferior to those of using SMILES. This could be attributed to the fact that the pretraining datasets
for LLMs are primarily populated with SMILES-related content rather than SELFIES. Consequently,
these models are more attuned to SMILES. However, it’s worth mentioning that the occurrence of
invalid SELFIES is less frequent than that of invalid SMILES, which aligns with the inherent design
of SELFIES to ensure molecular validity.

4.5 The impact of temperature parameter of LLMs

One key hyperparameter that affects the performance of LLMs is temperature, which influences
the randomness in the model’s predictions. To determine the optimal temperature for each task, we
randomly sampled 30 data points from the datasets and performed in-context learning experiments
across various temperature settings. While optimal temperatures determined on the validation set
may not always yield optimal results on the test set, our methodology is primarily designed to
conserve token usage and API query time. To address potential discrepancies between validation
and test sets, we performed targeted temperature testing on the test sets for two molecular property
prediction datasets: BBBP and BACE. Our results are summarized in Table 3. For these tests,
we employed the GPT-4 model (using scaffold sampling with k = 8) and set temperature values
t = [0.2, 0.4, 0.6, 0.8, 1]. The result reveal that variations in the temperature parameter have a
marginal impact on test performance, with fluctuations of less than 0.05 observed in both F1 and
accuracy scores. These results validate the robustness of our initial sampling approach and underscore
the reliability of our findings across different settings.

Table 3: The F1(↑) and accuracy(↑) score of GPT-4 model(scaffold sampling, k = 8) on different
temperature setting.

F1(↑) BBBP BACE

GPT-4(t=0.2) 0.667± 0.029 0.741± 0.019
GPT-4(t=0.4) 0.712± 0.014 0.728± 0.024
GPT-4(t=0.6) 0.683± 0.016 0.736± 0.020
GPT-4(t=0.8) 0.686± 0.030 0.744± 0.025
GPT-4(t=1.0) 0.684± 0.023 0.756± 0.025

Accuracy(↑) BBBP BACE

GPT-4(t=0.2) 0.650± 0.028 0.743± 0.019
GPT-4(t=0.4) 0.691± 0.017 0.729± 0.024
GPT-4(t=0.6) 0.659± 0.016 0.736± 0.019
GPT-4(t=0.8) 0.661± 0.032 0.745± 0.025
GPT-4(t=1.0) 0.660± 0.021 0.757± 0.025
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5 Discussion

5.1 Limitation of LLMs on understanding molecular SMILES

A significant limitation of LLMs is their lack of understanding of molecular representations in
SMILES strings, which in many cases leads to inaccurate or inconsistent results as shown in Section
A for the translation of different ways to name molecules. SMILES (Simplified Molecular Input Line
Entry System) [60, 61] is a widely used textual representation for chemical structures. For example,
the SMILES string for ethanol, a simple alcohol, is “CCO”. This string represents a molecule with
two carbon atoms (C) connected by a single bond and an oxygen atom (O) connected to the second
carbon atom. SMILES strings can serve as both input and output for LLMs, alongside other natural
language text. However, several issues make it challenging for LLMs to accurately understand and
interpret SMILES strings: 1) Hydrogen atoms are not explicitly represented in SMILES strings, as
they can be inferred based on the standard bonding rules. LLMs frequently struggle to infer these
implicit hydrogen atoms and may even fail at simple tasks like counting the number of atoms in
a molecule [27, 6]. 2) A given molecule can have multiple valid SMILES representations, which
can lead to ambiguity if not properly processed or standardized. LLMs may thus fail to consistently
recognize and compare molecular structures represented by different SMILES strings. 3) LLMs do
not have any inherent understanding of SMILES strings, and treat them as a sequence of characters or
subwords. When processing long SMILES strings, LLMs rely on the byte-pair encoding tokenization
technique, which can break the string into smaller pieces or subwords in ways that do not represent
the molecular structure and properties of molecules represented by SMILES strings. Because many
tasks in cheminformatics rely on the accurate representation of a molecule by SMILES strings, the
non-competitive performance of GPT models in converting structures into SMILES strings (and vice
versa) affects downstream tasks such as retrosynthesis, reaction and name prediction. LLMs that
have an enhanced ability of handling molecular structures and their specific attributes or coupling to
existing tools such as RDKit [35] will be needed.

5.2 The limitations of current evaluation methods

Although in Text-Based Molecule Design and Molecule Captioning tasks, GPT models show compet-
itive performance compared to the baseline in some metrics (BLEU, Levenshtein, ROUGE, FCD,
etc), we observe that the exact match of GPT models is inferior to the baseline in the Text-Based
Molecule Design task and the GPT models generate some descriptions which violate chemical facts.
This divergence between metrics and real-world scenarios mainly arises because, unlike many natural
language processing tasks that can be suitably evaluated by sentence-level matching evaluation
metrics, chemistry-related tasks necessitate exact matching for SMILES and precise terminology in
descriptions. These findings spotlight the limitations of current evaluation metrics and underscore the
need for the development of chemistry-specific metrics.

5.3 Hallucination of LLMs in chemistry

Our evaluation experiments across various tasks reveal two primary types of hallucinations exhibited
by LLMs in the domain of chemistry. The first type occurs when the input is given in SMILES format
(e.g., name prediction); LLMs occasionally struggle with interpreting these SMILES correctly. For
instance, they may fail to recognize the number of atoms or certain functional groups within molecules
during name prediction tasks. The second type of hallucination arises when the expected output from
LLMs should be in the form of SMILES (e.g., reaction prediction and retrosynthesis). Here, LLMs
may produce molecules that are chemically unreasonable, suggesting a gap in understanding what
constitutes valid SMILES. Hallucination issues represent a key challenge with LLMs, particularly in
the field of chemistry which necessitates exact matching of SMILES and adherence to strict chemical
facts [62]. Current LLMs need further investigation into this problem.

5.4 Prospects of LLMs for chemistry

Overall, through an exhaustive set of experiments and analyses, we outline several promising avenues
for the application of LLMs in the field of chemistry. While LLMs underperform relative to baselines
across a majority of tasks, it’s important to note that LLMs leverage only a few examples to solve
chemistry problems, whereas baselines are trained on extensive, task-specific datasets and are limited
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to certain tasks. This observation provides valuable insights into the potential of LLMs’ generalized
intelligence in the domain of chemistry. The employment of advanced prompting techniques such as
Chain-of-thought (CoT) [59], Decomposed Prompting [31] could potentially boost the capacity of
LLMs to perform complex reasoning. On the other hand, LLMs display a considerable amount of
hallucinations in chemistry tasks, indicating that current LLMs may not yet possess the necessary
capabilities to solve practical chemistry problems effectively. However, with continuous development
of LLMs and further research into methods to avoid hallucinations, we are optimistic that LLMs can
significantly enhance their problem-solving abilities in the field of chemistry.

5.5 Impact of generating harmful chemicals

Our work demonstrate that LLMs can generate chemically valid molecules. However, it’s crucial to
acknowledge and mitigate the risks of AI misuse, such as generating hazardous substances. While
advancements in AI-enabled chemistry have the potential to bring about groundbreaking medicines
and sustainable materials, the same technology can be misused to create toxic or illegal substances.
This dual-edged potential emphasizes the necessity for stringent oversight. Without careful regulation,
these tools could not only pose significant health and safety hazards but also create geopolitical and
security challenges. Consequently, as we harness the capabilities of LLMs in the field of chemistry,
we concur with earlier research on generative models in chemistry [2, 3] that it is vital for developers
to establish robust safeguards and ethical guidelines to deter harmful applications. This is akin to the
limitations imposed on popular search engines, which can also be exploited to find information about
dangerous chemicals or procedures online.

5.6 Broader Impacts

Our work has broad impacts across multiple dimensions. First, it offers valuable insights and
recommendations for both AI researchers and chemists in academia and industry. These perspectives
enhance the effective utilization of LLMs and guide future advancements in the field. Second, our
objective evaluation of LLMs helps alleviate concerns regarding the replacement of chemists by
AI. This aspect contributes to public education, addressing misconceptions and fostering a better
understanding of the role of AI in chemistry. Furthermore, we provide a comprehensive experimental
framework for testing LLMs in chemistry tasks, which can also be applicable to other domains.
This framework serves as a valuable resource for researchers seeking to evaluate LLMs in diverse
fields. However, it is important to recognize the ethical and societal implications associated with our
work. Additionally, concerns about job displacement in the chemical industry may arise, and efforts
should be made to address these challenges and ensure a responsible and equitable adoption of AI
technologies.

6 Conclusion and Future Work

In this paper, we summarize the required abilities of LLMs in chemistry and construct a comprehensive
benchmark to evaluate the five most popular LLMs (GPT-4, GPT-3.5, Davinci-003, LLama and
Galactica) on eight widely-used chemistry tasks. The experiment results show that LLMs perform
less competitive in generative tasks which require in-depth understanding of molecular SMILES
strings, such as reaction prediction, name prediction, and retrosynthesis. LLMs show competitive
performance in tasks that are in classification or ranking formats such as yield prediction and reagents
selection. LLMs are selectively competitive on tasks involving text in prompts such as property
prediction and text-based molecule design, or explainable tasks such as molecule captioning. These
experiments indicate the potential of LLMs in chemistry tasks and the need for further improvement.
We will collaborate with more chemists in the C-CAS group, progressively integrating a wider range
of tasks that are both novel and practical. We hope our work can address the gap between LLMs and
the chemistry research field, inspiring future research to explore the potential of LLMs in chemistry.
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Appendix

A Name Prediction

For one molecule, there are different chemical naming conventions and representations such as
SMILES, IUPAC names, and graphic molecular formula. To investigate whether GPT models have
the basic chemical name understanding ability, we construct four chemical name prediction tasks that
include SMILES to IUPAC name translation (smiles2iupac), IUPAC name to SMILES translation
(iupac2smiles), SMILES to molecule formula translation (smiles2formula), and IUPAC name to
molecule formula translation (iupac2formula). We collect 630 molecules and their corresponding
names including SMILES, IUPAC name, and molecule formula from PubChem3 [32]. We randomly
sample 500 molecules as the ICL candidates, and other 30 molecules as the validation set, and other
100 molecules as the test set. For all name translation tasks, we use the exact match accuracy as the
metric to evaluate the performance.

ICL Prompt. One example of the smiles2iupac prediction is shown in Figure 5. For other name
translation tasks, we only change the underlined parts that represent different tasks and their corre-
sponding input names and output names.

Figure 5: An ICL prompt example for smiles2iupac prediction

Results. The results are reported in Table 4 (we only report representative methods along with
their optimal prompt settings via grid search on validation set). In all four name prediction tasks,
the accuracy of the best method is extremely low (0.014 in the iupac2smiles task, 0.086 in the
smiles2formula task, 0.118 in the iupac2formula task) or even 0 (in the smiles2iupac task). This
indicates the LLMs lack basic chemical name understanding ability. The accuracy of Davinci-003 is
considerably inferior to other models.

Case studies. Example results generated by GPT-4 (Scaffold, k=20) method for each task is shown
in Table 5. In all tasks, the GPT-4 model gives the wrong answers. In the smiles2formula task, we can
observe that GPT models cannot even recognize the number of Carbon and infer the correct number
of Hydrogen, demonstrating the bad chemical understanding ability of GPT models. For prospects,
some pre-training technologies such as wrapping molecules with text [38] or code-switch [64, 20]
may be helpful to align different chemical names of the same molecule to help improve LLMs’
chemical understanding.

3https://pubchem.ncbi.nlm.nih.gov
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Table 4: The accuracy (↑) of LLMs in 4 different name prediction tasks. The best LLM is in bold
font. Here k is the number of examples used in few-shot ICL. The baseline is underlined and "-"
indicates that STOUT cannot solve the smiles2formula and iupac2formula tasks.

Method smiles2iupac iupac2smiles smiles2formula iupac2formula

STOUT [47] 0.55 0.7 - -
GPT-4 (zero-shot) 0 0.008±0.008 0.048± 0.022 0.092±0.018
GPT-4 (Scaffold, k=5) 0 0.014±0.009 0.058±0.015 0.118±0.022
GPT-4 (Scaffold, k=20) 0 0.012±0.004 0.086±0.036 0.084±0.005
GPT-4 (Random, k=20) 0 0.010±0.007 0.070±0.032 0.076±0.011
GPT-3.5 (Scaffold, k=20) 0 0.010±0.000 0.052±0.004 0.044±0.009
Davinci-003 (Scaffold, k=20) 0 0 0.006±0.005 0.018±0.004
Llama2-13B-chat (Scaffold, k=20) 0 0 0.010±0.007 0
GAL-30B (Scaffold, k=10) 0 0 0 0

Table 5: Example results generated by GPT-4 (Scaffold, k=20) method for different tasks

Task Input Ground Truth Output of GPT-4 (Scaffold, k=20)

smiles2iupac CCOC(=O)C(C(C)=O)=C(C)N ethyl 2-acetyl-3-aminobut-2-enoate ethyl 2-methyl-5-oxo-2-azahept-4-en-3-oate

iupac2smiles ethyl 2-acetyl-3-aminobut-2-enoate CCOC(=O)C(C(C)=O)=C(C)N CCOC(=O)C=C(C)C(=N)C

smiles2formula Cc1noc(CCn2cc[nH]c2=O)n1 C8H10N4O2 C9H10N4O2

iupac2formula R)-(1-benzylquinolin-1-ium-4-yl)
-(5-ethenyl-1-azabicyclo[2.2.2]octan-2-yl)methanol;chloride C26H29ClN2O C23H27ClN2O

B Molecule Property Prediction

Molecule property prediction [21, 58] is a fundamental task in computational chemistry that has been
gaining significant attention in recent years due to its potential for drug discovery, material science,
and other areas in the chemistry. The task involves using machine learning techniques [22] to predict
the chemical and physical properties of a given molecule, based on its molecular structure. We aim to
further explore the potential of LLMs in molecular property prediction and assess their performance
on a set of benchmark datasets, such as BBBP(MIT license), HIV(MIT license), BACE(MIT license),
Tox21(MIT license), and ClinTox(MIT license), which were originally introduced by [65]. The
datasets are made up of extensive collections of SMILES, paired with binary labels that highlight the
particular property being evaluated, such as BBBP: Blood-Brain Barrier Penetration, HIV: inhibit
HIV replication, BACE: bindings results for a set of inhibitors of human beta-secretase, Tox21:
toxicity of compounds, and ClinTox: drugs failed clinical trials for toxicity reasons. A comprehensive
explanation of these datasets can be referenced in the original research conducted by [65]. For
ICL, we either select k samples randomly, or search the top-k most analogous molecules using
RDKit [35] to determine the Tanimoto Similarity. However, it is crucial to mention that using the
latter method does not assure an even distribution among classes. In our study, we employ a strategic
sampling method for two categories of datasets: balanced and highly imbalanced. For balanced
datasets, such as BBBP and BACE, we randomly select 30 samples for the validation process and
100 samples for testing from the original dataset. Contrastingly, for datasets exhibiting substantial
label imbalance (39684:1443 ≈ 28:1, take HIV datasets as a example), we select samples from the
majority and minority classes to achieve a ratio of 4:1. This strategic approach enables us to maintain
a representative sample for the evaluation process, despite the original high imbalance in the dataset.
To evaluate the results, we use the classification accuracy, as well as F1 score as the evaluation
metric due to the class imbalance. We benchmark our method against two established baselines from
MoleculeNet [65]: RF and XGBoost. Both baselines utilize the 1024-bit circular fingerprint as input
to predict the property as a binary classification problem.

ICL Prompt. Figure 6 illustrates a sample of our ICL prompt for property prediction. Within the
task-specific template, we include a detailed explanation of the task forecasting the penetration of
the brain-blood barrier to assist LLMs in comprehending the input SMILES from the BBBP dataset.
Additionally, we establish certain constraints for the output to conform to the specific characteristics
of the property prediction task.

Results. The results are reported as F1 in Table 6, accuracy in Table 7. We observed that GPT
models outperform the baseline model in terms of F1 on four out of five datasets. In the range of GPT
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Figure 6: An ICL prompt example for property prediction

Table 6: F1 (↑) score of LLMs and baseline in molecular property prediction tasks. k is the number of
examples used in few-shot ICL. The best GPT model is in bold font, and the baseline is underlined.

BBBP BACE HIV Tox21 ClinTox

RF 0.881 0.758 0.518 0.260 0.461
XGBoost 0.897 0.765 0.551 0.333 0.620
GPT-4 (zero-shot) 0.560 ±0.034 0.322±0.018 0.977±0.013 0.489±0.018 0.555±0.043
GPT-4 (Scaffold, k= 4) 0.498± 0.028 0.516± 0.024 0.818± 0.015 0.444± 0.004 0.731± 0.035
GPT-4 (Scaffold, k= 8) 0.587±0.018 0.666±0.023 0.797± 0.021 0.563±0.008 0.736±0.033
GPT-4 (random, k= 8) 0.469± 0.025 0.504± 0.020 0.994 ± 0.006 0.528±0.003 0.924±0.000
GPT-3.5 (Scaffold, k= 8) 0.463± 0.008 0.406± 0.011 0.807± 0.021 0.529± 0.021 0.369± 0.029
Davinci-003 (Scaffold, k= 8) 0.378± 0.024 0.649± 0.021 0.832± 0.020 0.518±0.009 0.850± 0.020
Llama2-13B-chat (Scaffold, k= 8) 0.002± 0.001 0.045± 0.015 0.069± 0.033 0.047± 0.013 0.001± 0.003
GAL-30B (Scaffold, k= 8) 0.074± 0.019 0.025± 0.013 0.014± 0.016 0.077± 0.046 0.081± 0.015

Table 7: Accuracy (↑) of LLMs and baseline in molecular property prediction tasks. k is the number
of examples used in few-shot ICL. The best GPT model is in bold font, and the baseline is underlined.

BBBP BACE HIV Tox21 ClinTox

RF 0.820 0.790 0.870 0.830 0.858
XGBoost 0.850 0.810 0.870 0.840 0.888
GPT-4 (zero-shot) 0.476± 0.036 0.499± 0.005 0.986± 0.007 0.518± 0.018 0.736± 0.027
GPT-4 (Scaffold, k= 4) 0.516± 0.022 0.514± 0.205 0.834± 0.014 0.457± 0.004 0.856± 0.014
GPT-4 (Scaffold, k= 8) 0.614±0.016 0.679±0.205 0.836± 0.020 0.737± 0.004 0.856± 0.014
GPT-4 (random, k= 8) 0.610± 0.021 0.588± 0.023 0.996±0.004 0.874±0.003 0.930±0.010
GPT-3.5 (Scaffold, k= 8) 0.463± 0.007 0.496± 0.016 0.864± 0.018 0.572± 0.026 0.578± 0.029
Davinci-003 (Scaffold, k= 8) 0.396± 0.023 0.650± 0.021 0.781± 0.004 0.682± 0.006 0.845± 0.010
Llama2-13B-chat (Scaffold, k= 8) 0.002± 0.003 0.048± 0.017 0.048± 0.025 0.053± 0.011 0.002± 0.004
GAL-30B (Scaffold, k= 8) 0.062± 0.007 0.020± 0.010 0.012± 0.009 0.030± 0.018 0.099± 0.007

models examined, GPT-4 surpasses both Davinci-003 and GPT-3.5 in predicting molecular properties.
In our investigation, we have found evidence to support that the expansion of in-context learning
(ICL) instances leads to a measurable enhancement in model performance. This underlines a direct
relationship between the extent of ICL data and the predictive precision of our models. Concurrently,
our research presents empirical evidence that scaffold sampling exceeds the performance of random
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sampling on three distinct datasets (BBBP, BACE, Tox21). A plausible explanation for this could be
the structural resemblances between the scaffold-sampled molecules and the query molecule, which
potentially biases the GPT models towards more accurate decision.

Label interpretation. The results presented in Table 6 and Table 7 indicate that the GPT-4 model
selectively outperforms the baseline models on the HIV and ClinTox datasets. This superior perfor-
mance likely stems from the inclusion of information directly related to the labels within the ICL
prompts. Specifically, in the HIV dataset, the activity test results play a crucial role. Molecules tend
to inhibit HIV replication when the activity test is categorized as "confirmed active" or "confirmed
moderately active." For the ClinTox dataset, the FDA-approval status of a molecule acts as a predictor
of its clinical toxicity. A molecule not having FDA approval is more likely to be clinically toxic. In
experiments where we excluded this contextual information from the in-context learning prompts,
the F1 and accuracy score of predictions notably declined, as evident from the results in Table 8 and
Table 9.

Table 8: Impact to F1 score of removing label context information from the in-context learning
prompts.

F1(↑) HIV ClinTox

GPT-4(zero-shot) 0.977± (0.013) 0.489± (0.018)
GPT-4(unlabelled, zero-shot) 0.554± (0.017) 0.438± (0.045)
GPT-4(few-shot) 0.797± (0.021) 0.563± (0.008)
GPT-4(unlabelled, few-shot) 0.493± (0.030) 0.478± (0.035)

Table 9: Impact to accuracy of removing label context information from the in-context learning
prompts.

Accuracy(↑) HIV ClinTox

GPT-4(zero-shot) 0.986± (0.070) 0.736± (0.027)
GPT-4(unlabelled, zero-shot) 0.628± (0.016) 0.602± (0.039)
GPT-4(few-shot) 0.836± (0.020) 0.856± (0.014)
GPT-4(unlabelled, few-shot) 0.541± (0.032) 0.630± (0.014)

C Yield Prediction

Yield prediction [51] is a critical task in chemistry, specifically in the domain of synthetic chem-
istry, which involves the design and synthesis of new compounds for various applications, such as
pharmaceuticals, materials, and catalysts. The yield prediction task aims to estimate the efficiency
and effectiveness of a chemical reaction, primarily by quantifying the percentage of the desired
product formed from the reactants. We use two High-Throughput experimentation (HTE) datasets:
Buchwald-Hartwig [1] (MIT license) and Suzuki-Miyaura dataset [50] (MIT license) for evaluation.
These datasets consist of reactions and their corresponding yields, which have been meticulously
acquired through standardized and consistent experimental setups. This uniformity ensures that the
data within each dataset is coherent, reducing the likelihood of discrepancies arising from variations
in experimental procedures or conditions. We formulate the task of yield prediction as a binary
classification problem, by determining whether a reaction is a high-yielding reaction or not. We
used only random sampling for our ICL examples as reactions in those datasets belong to the same
type. For every dataset, we randomly select 30 samples for the validation process and 100 samples
for testing from the original dataset. To evaluate the results, we use the classification accuracy
as the evaluation metric, with UAGNN [34] serving as baseline. UAGNN reports state-of-the-art
performance on yield prediction. It takes the graphs of reactants and products as input, and learns
representation of these molecules through a graph neural network, and then predicts the scaled yield .

ICL prompt. We show our ICL prompt for yield prediction with an example from Buchwald-
Hartwig dataset. As described in Figure 7, we incorporate an input explanation (wherein the reactants
are separated by ‘.’ and the products are split by ‘>>’) to assist large language models. Additionally,
output restrictions are enforced to ensure the generation of valid results.
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Figure 7: An ICL prompt example for yield prediction

Results. The results are presented in Table 10. Our analysis reveals that in the task of yield
prediction, GPT models perform below the established baseline model, UAGNN. However, it’s
worth noting that the UAGNN model was trained on the full training dataset including thousands of
examples. Considering the spectrum of GPT models under scrutiny, GPT-4 emerges as the superior
model, overshadowing both Davinci-003 and GPT-3.5 in predicting reaction yields. In the process
of our investigation, we unearthed supporting evidence that signifies the role of ICL instances in
the enhancement of model performance. This suggests an inherent correlation between the quantity
of ICL data and the predictive accuracy of the models under consideration. This phenomenon is
particularly in the case of GPT-4, we observed a significant improvement in performance when the
number of ICL examples was increased from 4 to 8, both in the Buchwald-Hartwig and Suzuki-
coupling reactions. This indicates that even within the same model architecture, the amount of
contextual data can significantly influence the predictive capabilities.

Table 10: Accuracy (↑) of yield prediction task. k is the number of examples used in few-shot ICL.
The best LLM is in bold font, and the baseline is underlined.

Buchwald-Hartwig Suzuki-coupling

UAGNN [34] 0.965 0.957
GPT-4 (zero-shot) 0.322 ± 0.034 0.214 ± 0.019
GPT-4 (random, k= 8) 0.800±0.008 0.764±0.013
GPT-4 (random, k= 4) 0.574± 0.045 0.324± 0.018
GPT-3.5 (random, k= 8) 0.585± 0.045 0.542± 0.011
Davinci-003 (random, k= 8) 0.467± 0.013 0.341± 0.017
Llama2-13B-chat 0.008± 0.007 0.006± 0.004
GAL-30B 0 0.008± 0.010
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D Reaction Prediction

Reaction prediction is a central task in the field of chemistry, with significant implications for
drug discovery, materials science, and the development of novel synthetic routes. Given a set of
reactants, the goal of this task is to predict the most likely products formed during a chemical
reaction [54, 13, 19]. In this task, we use the widely adopted USPTO-MIT dataset [29](MIT license)
to evaluate the performance of GPT models. This dataset contains approximately 470,000 chemical
reactions extracted from US patents. In the experiment, we used the USPTO mixed data set, where
the reactants and reagents strings are split by ‘.’. We randomly sampled 30 samples from the original
validation set for validation and 100 samples from the original test set for testing. We use the
Top-1 Accuracy as the evaluation metric and Chemformer [26] as the baseline due to its superior
performance among the machine learning solutions for reaction prediction. Chemformer is a seq2seq
model trained to predict the output product when given reactants and reagents as input. We also
report the percentage of invalid SMILES generated by each method.

Figure 8: An ICL prompt example for reaction prediction

ICL Prompt. One example of our ICL prompt for reaction prediction is shown in Figure 8. Given
the nature of the reaction prediction task and the characteristics of the USPTO-MIT dataset, we
enhance the task-specific template with an input explanation (stating that the input includes reactants
and reagents, which are separated by ‘.’) to assist the GPT models in understanding the input SMILES.
Moreover, we incorporate output restrictions to guide GPT models in generating chemically valid
and reasonable products.

Table 11: The performance of LLMs and baseline in the reaction prediction task. k is the number of
examples used in few-shot ICL. The best LLM is in bold font, and the baseline is underlined.

Method Top-1 Accuracy (↑) Invalid SMILES (↓)

Chemformer [26] 0.938 0%
GPT-4 (zero-shot) 0.004 ± 0.005 17.4% ± 3.9%
GPT-4 (Scaffold, k=20) 0.230 ± 0.022 7.0% ± 1.6%
GPT-4 (Random, k=20) 0.012 ± 0.008 8.4% ± 1.5%
GPT-4 (Scaffold, k=5) 0.182 ± 0.015 6.6% ± 1.5%
GPT-3.5 (Scaffold, k=20) 0.184 ± 0.005 15.6% ± 2.3%
Davinci-003 (Scaffold, k=20) 0.218 ± 0.008 11.4% ± 2.7%
Llama2-13B-chat (Scaffold, k=20) 0.032 ± 0.013 27.8% ± 5.5%
GAL-30B (Scaffold, k=5) 0.036 ± 0.011 5.2% ± 1.5%
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Results. The results are reported in Table 11. We can observe that compared to the baseline, the
performance of GPT models is considerably inferior, especially for the Zero-shot prompting (Top-1
Accuracy is only 0.004 and it generates 17.4% invalid SMILES). The less competitive results of GPT
models can be attributed to the lack of in-depth understanding of the SMILES strings that represent
reactants and products, as well as the reaction process that transforms reactants into products. It is
also worth mentioning that the high accuracy achieved by Chemformer is due to its training on the
complete dataset. More conclusions and detailed analysis are summarized in the section 5.

E Reagents Selection

Reagents selection, also known as reagent recommendation, involves the identification and proposal
of the most fitting reagents for a specific chemical reaction or process. Compared to other prediction
and generation tasks, these selection tasks might be more fitting for LLMs and carry extensive
implications. Reagent recommendation can markedly enhance reaction design by pinpointing optimal
reagents and conditions for a given reaction, thereby augmenting efficiency and effectiveness in
both academic and industrial settings. Drawing from a vast corpus of chemical knowledge, GPT
models may be able to generate suggestions, leading to chemical reactions with a greater likelihood
of yielding superior results.

In this study, we formulate four reaction component selection task from the Suzuki High-Throughput
Experimentation (HTE) dataset. The dataset, created by Perera et al[44](MIT license), evaluates the
Suzuki coupling of 5 electrophiles and 7 nucleophiles across a matrix of 11 ligands (with one blank),
7 bases (with one blank), and 4 solvents, resulting in a reaction screening dataset comprising 5,760
data points. The task of reagents selection can be divided into three categories: Reactant selection,
Ligand Selection and Solvent selection. For validation, 30 examples were randomly sampled, while
100 examples were used for testing, all taken from the original datasets. Top-1 Accuracy serves as
the assessment metric for both reactant and solvent selection, while Top-50% is utilized for ligand
selection, as the upper half of the ligands in the list typically provide satisfactory yields in chemical
reactions. This task is newly emergent in the field of chemistry, and as such, there are no established
baselines yet.

ICL prompt. One example of our ICL prompt for reagents selection is shown in Figure 9. Con-
sidering the structure of the dataset and the characteristics of the reagents, we provide detailed task
description and an answer template to guide GPT models towards the desired output.

Results. Our results are presented in Table 12. From the table, it is evident that GPT-4 and GPT-3.5
perform comparatively well in reagent selection tasks. This suggests a promising potential for GPT
models in the realm of reagent selection.

Table 12: Accuracy (↑) of LLM in the reagent selection tasks. For Reactant Selection and Solvent
selection task, we report the mean (and standard deviation) of the Top-1 Accuracy score and we
report the Top-50% accuracy score for the Ligand Selection task. The best LLM is in bold font, and
the baseline is underlined.

Reactant Selection Solvent Selection Ligand Selection

GPT-4 (zero-shot) 0.299 ±0.029 0.526±0.012 0.534±0.059
GPT-3.5 (zero-shot) 0.400±0.038 0.368±0.034 0.436± 0.020
Davinci-003 (zero-shot) 0.178± 0.034 0.463± 0.014 0.432± 0.020
Llama2-13B-chat (zero-shot) 0.145± 0.000 0.050± 0.010 0.284± 0.024
GAL-30B (zero-shot) 0.107± 0.020 0.104± 0.004 0.030± 0.016

F Retrosynthesis

Retrosynthesis planning is a crucial task in synthetic organic chemistry that involves identifying
efficient synthetic pathways for a target molecule by recursively transforming it into simpler precursor
molecules. In contrast to reaction prediction, retrosynthesis planning involves a reverse extrapolation
from the target molecule to identify the readily available reactants for its synthesis. In this study, we
use the USPTO-50k dataset [53](MIT license), which contains 50,037 chemical reactions. In our
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Figure 9: An ICL prompt example for reagents selection

experiment, we use the data splitting as [17] and we the training set which contains 40,029 reactions
as the ICL candidates. The metric and baseline are the same as the reaction prediction.

ICL Prompt. One example of our ICL prompt for reaction prediction is shown in Figure 10. As
discussed in the reaction prediction task, we also add the task-specific template to help GPT models
understand the input and restrict the output.

Figure 10: An ICL prompt example for Retrosynthesis
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Table 13: The performance of LLMs and baseline in Retrosynthesis task. The best LLM is in bold
font, and the baseline is underlined.

Method Top-1 Accuracy (↑) Invalid SMILES (↓)

Chemformer [26] 0.536 0%
GPT-4 (zero-shot) 0.006 ± 0.005 20.6% ± 4.7%
GPT-4 (Scaffold, k=20) 0.096 ± 0.013 10.4% ± 3.4%
GPT-4 (Scaffold, k=5) 0.114 ± 0.013 11.0% ± 1.2%
GPT-4 (Random, k=20) 0.012 ± 0.011 18.2% ± 4.2%
GPT-3.5 (Scaffold, k=20) 0.022 ± 0.004 6.4% ± 1.3%
Davinci-003 (Scaffold, k=20) 0.122 ± 0.013 6.0% ± 1.2%
Llama2-13B-chat (Scaffold, k=20) 0 27.2% ± 1.5%
GAL-30B (Scaffold, k=5) 0.016 ± 0.005 5.2% ± 1.8%

Results. The results are reported in Table 13. The performance of GPT models is also inferior
than the baseline due to the lack of an in-depth understanding of the SMILES strings that represent
reactants and products. Detailed analysis are summarized in the later section 5 Discussion.

G Text-Based Molecule Design

Text-Based Molecule Design is a novel task in computational chemistry and drug discovery. It
involves generating new molecules with desired molecule descriptions. In our experiment, we employ
the ChEBI-20 dataset which consists of 33,010 molecule-description pairs. The dataset is split
into 80/10/10% as the training/validation/test set [17](CC BY 4.0). We use the training set which
contains 26407 molecule-description pairs as the ICL candidates. For comparison, we use the MolT5-
Large [17] as the baseline. MolT5-Large is the initial effort to investigate the translation between
molecules and text, including tasks such as text-based molecule design and molecule captioning. It
builds upon T5 [46], an encoder-decoder Transformer model, and benefits from pretraining on a large
amount of dataset. To comprehensively evaluate the performance, we employ three different types of
metrics. The first type of metric is the chemical similarity between the ground-truth molecules and
generated molecules, measured by FTS (fingerprint Tanimoto Similarity) [55] in terms of MACCS
[49], RDK [35], and Morgan [14]. Secondly, we also use FCD (Fréchet ChemNet Distance) [45]
which allows comparing molecules based on the latent information used to predict the activity of
molecules [17]. Since the generated molecules are in SMILES string format, we also employ natural
language processing metrics including BLEU, Exact Match [17], and Levenshtein distance [40]
between the ground-truth molecules and generated molecules SMILES. Finally, to evaluate whether
generated molecules are valid, we use RDKIT [35] to check the validity of generated molecules and
report the percent of the valid molecules.

ICL Prompt. One ICL prompt example for text-based molecule design is shown in Figure 11.

Table 14: The performance of LLMs and baseline in the Text-Based Molecule Design task. The best
LLM is in bold font and the baseline is underlined.

Method BLEU (↑) Exact (↑) Levenshtein (↓) Validity (↑) MACCS FTS (↑) RDK FTS (↑) Morgan FTS (↑) FCD (↓)

MolT5-Large [17] 0.601 0.290 41.600 0.940 0.879 0.797 0.752 5.394

GPT-4
(zero-shot) 0.490±0.017 0.046±0.009 47.418±1.668 0.758±0.015 0.733±0.020 0.514±0.021 0.432±0.014 11.913±0.972

GPT-4
(Scaffold, k=10) 0.816±0.004 0.174±0.029 21.160±0.600 0.888±0.023 0.867±0.005 0.738±0.010 0.672±0.013 6.224±0.449

GPT-4
(Scaffold, k=5) 0.815±0.011 0.164±0.018 21.862±1.768 0.874±0.030 0.865±0.015 0.741±0.023 0.670±0.028 5.843±0.515

GPT-4
(Random, k=10) 0.602±0.016 0.060±0.007 42.390±1.008 0.770±0.030 0.762±0.013 0.548±0.017 0.475±0.015 10.594±0.414

GPT-3.5
(Scaffold, k=10) 0.479±0.156 0.094±0.011 82.008±40.354 0.854±0.059 0.833±0.006 0.686±0.016 0.585±0.013 8.341±0.607

Davinci-003
(Scaffold, k=10) 0.741±0.011 0.100±0.010 25.648±2.186 0.936±0.009 0.783±0.014 0.648±0.004 0.560±0.010 8.335±0.310

Llama2-13B-chat
(Scaffold, k=10) 0.626±0.013 0.020±0.000 33.956±2.648 0.782±0.008 0.679±0.015 0.568±0.014 0.454±0.009 12.387±0.437

GAL-30B
(zero-shot) 0.004±0.000 0.000±0.000 2738.136±166.093 0.956±0.011 0.233±0.011 0.109±0.006 0.053±0.002 35.091±0.774
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Figure 11: An ICL prompt example for Text-Based Molecule Design

Results. The results are reported in Table 14. We can observe that the best ICL prompting GPT
models (GPT-4 and Davinci-003) can achieve competitive performance or even outperform the
baseline in some metrics (BLEU, Levenshtein). Although the GPT models significantly underperform
the baseline in terms of exact match and Morgan FTS metrics, it’s important to note that we only
utilize a maximum of 10 examples, which is substantially less than the training set (comprising
26,407 training examples) used for the baseline. These results demonstrate the strong few-shot
text-based molecule design ability of GPT models. Last, not being exactly the same as the ground
truth doesn’t necessarily mean it’s incorrect, especially in the context of molecular design. The
molecules generated by GPT models may still be useful and can serve as alternatives to the ground
truth, given they fulfill the requirements described in the input text and a majority (over 89%) are
chemically valid.

Case studies. We select three different types of molecules (organic molecule without rings, organic
molecule with ring, and metal atom) as examples, and show the generated molecules in Figure 12.
We observe that the structure of molecules generated by the GPT-4 (Scaffold, k=10) method is more
similar to the ground truth compared to Davinci-003, GPT-4 (zero-shot), and even the baseline.
Additionally, for metal atoms design, GPT models outperform the baseline which wrongly generates
the SMILES instead of the metal atom. These cases show promising results of the molecule design
ability of GPT models. However, evaluating whether the generated molecules are helpful such as
molecule novelty in real-world scenarios is still a difficult problem. Thus we conclude that GPT
models have excellent potential in molecule design and there are prospects for investigating this
ability.

H Molecule Captioning

Molecule captioning is an important task in computational chemistry, offering valuable insights and
applications in various areas such as drug discovery, materials science, and chemical synthesis. Given
a molecule as input, the goal of this task is to generate a textual description that accurately describes
the key features, properties, and functional groups of the molecule. We also use the ChEBI-20
dataset(CC BY 4.0) and the training set of it as the ICL candidates as discussed in the Text-Based
Molecule Design Section. We use traditional captioning metrics including BLEU, ROUGE, and
METEOR for evaluation.

ICL Prompt. One example of our ICL prompt for molecule captioning is shown in Figure 13.
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Figure 12: Examples of molecules generated by different models.

Results. The results are reported in Table 15. We can observe that the best ICL prompting GPT
models (GPT-4 and Davinci-003) can achieve competitive performance or even outperform the
baseline in some metrics (BLEU-2 and BLEU-4). This indicates the inspiring capability of the GPT
models in the molecule captioning task.

Figure 13: An ICL prompt example for molecule captioning

Case studies. Same as case studies in the Text-Based Molecule Design task, we also select three
different types of molecules as examples, and the captions are shown in Figure 14. We observe that
although the performance of the baseline is close to GPT models, the captions generated by the
baseline contain more descriptions that violate the chemical facts. In contrast, the captions generated
by GPT-4 models contain only a few inaccurate descriptions, highlighting the excellent explaining
ability of GPT models. This highlights the limitations of applying traditional Natural Language
Processing (NLP) evaluation metrics to this task. Therefore, it is necessary to create more suitable
evaluation metrics for chemistry-related generation tasks.
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Table 15: The performance of LLMs and baseline in the molecule captioning task. The best LLM is
in bold font and the baseline is underlined.

Method BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

MolT5-Large [17] 0.482 0.383 0.574 0.410 0.516 0.530

GPT-4
(zero-shot) 0.062±0.001 0.013±0.001 0.192±0.002 0.040±0.002 0.125±0.002 0.209±0.002

GPT-4
(Scaffold, k=10) 0.464±0.008 0.365±0.008 0.545±0.003 0.362±0.003 0.459±0.007 0.519±0.005

GPT-4
(Scaffold, k=5) 0.456±0.003 0.357±0.004 0.540±0.005 0.355±0.007 0.455±0.005 0.505±0.005

GPT-4
(Random, k=10) 0.260±0.007 0.140±0.007 0.393±0.004 0.180±0.006 0.309±0.004 0.320±0.007

GPT-3.5
(Scaffold, k=10) 0.468±0.010 0.368±0.010 0.534±0.005 0.355±0.007 0.457±0.006 0.497±0.005

Davinci-003
(Scaffold, k=10) 0.488±0.011 0.391±0.012 0.532±0.008 0.359±0.010 0.465±0.008 0.478±0.011

Llama2-13B-chat
(Scaffold, k=10) 0.197±0.005 0.140±0.004 0.331±0.005 0.193±0.005 0.265±0.005 0.372±0.006

GAL-30B
(zero-shot) 0.008±0.000 0.002 ± 0.000 0.019±0.002 0.004±0.000 0.015±0.002 0.043±0.002

Figure 14: Examples captions generated by different models. Descriptions that violate chemical facts
are marked in grey.

I The comparison of SMILES and SELFIES

Table 16: F1 (↑) score of SMILES and SELFIES of GPT-4 model in molecular property prediction
tasks.

BBBP BACE HIV Tox21 ClinTox

SMILES 0.587± 0.018 0.666± 0.023 0.797± 0.021 0.563± 0.008 0.736± 0.033
SELFIES 0.541± 0.001 0.601± 0.036 0.784± 0.014 0.478± 0.011 0.654± 0.025
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Table 17: Performance of SMILES and SELFIES of GPT-4 model in reaction prediction task.

Top-1 Accuracy (↑) Invalid SMILES/SELFIES (↓)

SMILES 0.230± 0.022 7.0%± 1.6%
SELFIES 0.110± 0.007 1.0%± 0.0%

Table 18: Performance of SMILES and SELFIES of GPT-4 model in molecule design task.

BLEU (↑) Exact (↑) Levenshtein (↓) Validity (↑) MACCS FTS (↑) RDK FTS (↑) Morgan FTS (↑) FCD (↓)

SMILES 0.816± 0.004 0.174± 0.029 21.160± 0.600 0.888± 0.023 0.867± 0.005 0.738± 0.010 0.672± 0.013 6.224± 0.449
SELFIES 0.277± 0.009 0.100± 0.016 76.162± 2.229 0.804± 0.022 0.619± 0.010 0.467± 0.018 0.399± 0.017 13.557± 0.224

Table 19: Performance of SMILES and SELFIES of GPT-4 model in molecule captioning task.

BLEU-2 (↑) BLEU-4 (↑) ROUGE-1 (↑) ROUGE-2 (↑) ROUGE-L (↑) METEOR (↑)

SMILES 0.464± 0.008 0.365± 0.008 0.545± 0.003 0.362± 0.003 0.459± 0.007 0.519± 0.005
SELFIES 0.459± 0.012 0.367± 0.010 0.530± 0.007 0.360± 0.005 0.456± 0.005 0.490± 0.007
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