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Abstract

Policy gradient methods have become a standard for training reinforcement learning
agents in a scalable and efficient manner. However, they do not account for
transition uncertainty, whereas learning robust policies can be computationally
expensive. In this paper, we introduce robust policy gradient (RPG), a policy-
based method that efficiently solves rectangular robust Markov decision processes
(MDPs). We provide a closed-form expression for the worst occupation measure.
Incidentally, we find that the worst kernel is a rank-one perturbation of the nominal.
Combining the worst occupation measure with a robust Q-value estimation yields
an explicit form of the robust gradient. Our resulting RPG can be estimated from
data with the same time complexity as its non-robust equivalent. Hence, it relieves
the computational burden of convex optimization problems required for training
robust policies by current policy gradient approaches.

1 Introduction

Markov decision processes (MDPs) provide an analytical framework to solve sequential decision-
making problems and seek the best performance in a fixed environment. Since the resulting policy can
be highly sensitive to parameter values [18], the robust MDP setting alternatively maximizes return
under the worst scenario, thus yielding robustness to uncertain environments [20, 12]. In practice,
the robust MDP paradigm quantifies the level of uncertainty through a set U determining the possible
range of model perturbations. Then, a policy is said to be robust-optimal if it reaches maximal perfor-
mance under the most adversarial model within the uncertainty set. Developing efficient solvers for
robust MDPs is of great interest, as it can lead to behavior policies with generalization guarantees [34].

If not computationally expensive, robust MDPs can be strongly NP-hard [33]. Thus, to preserve
tractability, we commonly assume that U is convex and s-rectangular, i.e., U = ×s∈SUs [20, 12, 33].
Well established in the robust reinforcement learning (RL) literature [8, 3, 9, 10, 28], the latter as-
sumption means that the overall uncertainty should be designed independently for each state. Further
simplification may consider (s, a)-rectangular uncertainty sets of the form U = ×(s,a)∈XU(s,a), albeit
this naturally leads to more conservative strategies. In any case, planning in robust MDPs can be com-
putationally costly, as it involves successive max-min problems [9, 1, 33]. To address this issue, the
works [3, 14] have established an equivalence between robustness and regularization in RL in order to
derive efficient robust planning methods for s and (s, a)-rectangular robust MDPs. Indeed, it appears
that resorting to proper regularization instead of solving a minimization problem can yield robust
behavior without requiring the polynomial time complexity of convex optimization problems [3].
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Alternatively to planning, policy gradient algorithms (PG) directly learn an optimal policy by applying
gradient steps towards better performance [25]. Due to its scalability, ease of implementation, and
adaptability to many different settings such as model-free and continuous state-action spaces [13, 24],
PG has become the workhorse of RL. Although regularization techniques such as max-entropy [7] or
Tsallis [15] have shown robust behavior without impairing computational cost, they only account for
adversarial reward [2, 6, 3]. Differently, robust PG formulations (RPG) formulations aim to address
uncertainty to reward and transition functions.

Despite their ability to propel robust behavior, RPG methods that target robust optimal policies are
still rare in the RL literature. The global convergence of RPG established in [16, 30] already ensures
global convergence of our proposed algorithm, but motivates a practical method for estimating the
gradients. Indeed, [16, 30] occult the estimation part, as they assume full access to the policy gradient.
Alternatively, the inner loop solution proposed in [30][Sec. 4.1] requires solving convex optimization
problems to find the worst model, which represents a larger time complexity of O(S4A log ϵ−1) for
(s, a)-rectangular, or O(S4A3 log ϵ−1) for s-rectangular uncertainty sets. These worst kernel and
reward models are needed to compute RPG using the policy gradient theorem [26]. Other approaches
that elicit an expression for RPG rely on a specific type of uncertainty set such as reward uncertainty
with known kernel [3, 5], r-contaminated kernel with known reward [32], or (s, a)-rectangular
uncertainty [16], whereas we aim to tackle more general robust MDPs.

In this work, we introduce an RPG method for both s and (s, a)-rectangular ball-constrained un-
certainty sets, with similar complexity as non-robust PG. Our approach provides a closed-form
expression of RPG without relying on an oracle while applying to the most common robust MDPs.
To this end, we derive the worst reward and transition functions, thus revealing the adversarial nature
of the corresponding uncertainty set. Surprisingly, we also find that the worst kernel is a rank-one
perturbation of the nominal kernel. Leveraging this rank-one perturbation enables us to derive a
robust occupation measure. We concurrently propose an alternative definition of the robust Q-value
together with an efficient way to estimate it. Combining these results enables us to obtain RPG in
closed form. Our resulting RPG update requires O(S2A log ϵ−1) computations, thus showing similar
time complexity as non-robust PG.

To summarize our contributions: (i) We establish the worst reward and transition models in closed-
form; (ii) We show that the worst-case transition function is a rank-one perturbation of the nominal;
(iii) We introduce alternative robust Q-values that can be evaluated through efficient Bellman recursion
while retrieving the robust value function; (iv) We establish an expression of RPG that can be
estimated with similar time complexity as non-robust PG. Experiments show that our RPG speeds up
state-of-the-art robust PG updates by 2 orders of magnitude.

2 Related work

Although some previous works use gradient methods to learn robust policies, they seek empirical
robustness to adversarial behavior rather than robust MDP solutions [21, 29, 4]. In that sense, our
study differs from adversarial RL as we explicitly optimize the max-min objective to find a robust
optimal policy. Accordingly, the risk-averse approach focuses on the internal uncertainty due to the
stochasticity of the system, whereas robust RL addresses the external uncertainty of the system’s
dynamics. As a result, common risk-averse objectives can be reformulated as robust problems with
specific uncertainty sets [27].

Previous studies that did aim to derive robust policy-based methods are [3, 32, 30]. These are
summarized in Table 1, which also displays the complexity of existing approaches. [3] established
RPG for s-rectangular reward-robust MDPs, i.e., robust MDPs with uncertain reward but given
kernel. Although it applies to general norms, their result does not account for transition perturbation.
Differently, in [32], the authors introduced RPG for r-contaminated MDPs, i.e., robust MDPs with
uncertainty set U := {R0}× [(1−r)P0+r∆

S ×A
S ]. Although it has similar complexity as non-robust

PG, by construction, their setting is limited to (s, a)-rectangularity with known reward and mixed
transition. As such, the proof techniques in [32] are tailor-made to the r-contamination framework
and do not apply to more general robust MDPs. In fact, we remark that the r-contamination setting is
equivalent to the action robustness approach introduced in [29], which emphasizes its limitation to
action perturbation. Differently, our RPG holds whenever the worst kernel is a rank-one perturbation
of the nominal transition function (see Lemma 4.4).
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The work [16] provides a convergence proof of robust policy mirror-descent in the (s, a)-rectangular
case, whereas we study robust policy optimization for s-rectangular uncertainty sets. In fact, its
restriction to the (s, a)-case prevents us from transposing the analysis to our setting. This is due
to the fact that the standard robust Bellman operator on Q-functions can no longer be applied on
s-rectangular sets. To address generic robust MDPs, [30] recently introduced RPG for general
uncertainty sets. Their gradient update has a complexity of O(S6A4ϵ−4), which is more expensive
than non-robust PG by a factor of S4A3ϵ−4. Both works [16, 30] additionally assume access to
an oracle gradient of the robust return with respect to the transition model. Avoiding this oracle
assumption naturally leads to even higher time complexity in [30] which is not scalable. At the same
time, the two works [16, 30] guarantee global convergence of projected robust gradient iterates, thus
establishing the potential promise of RPG. In fact, equipped with RPG convergence, the remaining
challenge in making it practical is to efficiently estimate the gradient. This represents the main
focus of our study: We aim to explicit an RPG method that generalizes existing results on specific
uncertainty sets [3, 32] while holding for s-rectangular robust MDPs.

Table 1: Time complexity of RPG update according to the type of uncertainty set. For conciseness,
the displayed complexity hides logarithmic factors in A and S. Our RPG method has the same
complexity as non-robust PG while it generalizes other RPG methods with similar efficiency.

UNCERTAINTY SET U TIME COMPLEXITY REFERENCE

{R0} × {P0} S2A log ϵ−1 [26]

{R0} × [(1− r)P0 + r∆S ×A
S ] S2A log ϵ−1 [32]

(s, a)-rectangular ball Usa
p S2A log ϵ−1 This work

(s, a)-rectangular, convex Usa S4A log ϵ−1 Convex optimization

s-rectangular ball Us
p S2A log ϵ−1 This work

s-rectangular ball (R0 +Rs
p)× {P0} S2A log ϵ−1 [3]

s-rectangular, convex Us S4A3 log ϵ−1 Convex optimization
s-rectangular, convex Us S6A4ϵ−4 [30]
s-rectangular, non-convex Us NP-hard [33]

Non-rectangular, convex U NP-hard [33]

3 Preliminaries

Notation: We denote the cardinal of an arbitrary finite set Z by |Z|. Given two real functions
a,b : Z → R, their inner product is ⟨a,b⟩Z :=

∑
z∈Z a(z)b(z), which induces the ℓ2-norm

∥a∥2 :=
√
⟨a,a⟩Z . More generally, the ℓp-norm of a is denoted by ∥a∥p whose conjugate norm is

∥a∥q := max∥b∥p≤1⟨a,b⟩Z with q−1 = 1 − p−1, by Hölder’s inequality. The vector of all zeros
(resp. all ones) with appropriate dimensions is denoted by 0 (resp. 1); the probability simplex
over Z by ∆Z := {a : Z → R+ |⟨a,1⟩Z = 1}, and IZ designates the identity matrix in RZ ×Z .
Given v ∈ RZ , we finally define the variance function as κq(v) = minw∈R∥v − w1∥q and the
mean function as ωq(v) ∈ argminw∈R∥v − w1∥q (see Tab. 2 for their closed-form expression when
q ∈ {1, 2,∞}).

3.1 Markov Decision Processes

A Markov decision process (MDP) is a tuple (S,A, γ, µ, P,R) such that S and A are finite state
and action spaces of cardinal S and A respectively, γ ∈ [0, 1) is a discount factor and µ ∈ ∆S
the initial state distribution. Denoting X := S ×A, the couple (P,R) corresponds to the MDP
model with P : X → ∆S being a transition kernel and R : X → R a reward function. A policy
π : S → ∆A maps each state to a probability distribution over A, and we denote by Π the set
of such functions. For any policy π ∈ Π, Rπ ∈ RS is the expected immediate reward defined
as Rπ(s) := ⟨πs, R(s, ·)⟩A, ∀s ∈ S, where πs is a shorthand for π(·|s). We similarly define
the stochastic matrix induced by π as Pπ(s′|s) := ⟨πs, P (s′|s, ·)⟩A, ∀s, s′ ∈ S, and extend the
occupation measure to an arbitrary initial vector ν ∈ RS by defining

dπP,ν := ν⊤(IS − γPπ)−1.
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Note that the initial vector here is not necessarily a probability measure: it can be the initial state
distribution, but also the balanced value function introduced in Sec. 4[Eq. (2)]. The performance
measure we aim to maximize is the value function vπ(P,R) := (IS − γPπ)−1Rπ, or alternatively,
the return ρπ(P,R) := ⟨µ, vπ(P,R)⟩S . We denote the optimal value function (resp. optimal return)
by v∗(P,R) = maxπ∈Π v

π
(P,R) (resp. ρ∗(P,R) = ⟨µ, v∗(P,R)⟩). It can be obtained using Bellman

operators, which are defined as Tπ
(P,R)

v := Rπ+γPπv and T ∗
(P,R)

v := maxπ∈Π T
π
(P,R)

v, ∀v ∈ RS ,

respectively [22]. For any vector v ∈ RS , we associate its Q-function Q ∈ RX such that

Q(s, a) = R(s, a) + γ⟨P (·|s, a), v⟩S , ∀(s, a) ∈ X .

Table 2: Expressions of the q-mean, the q-variance, and its gradient. We assume that the vector v is
sorted, i.e., v(si) ≥ v(si+1),∀i ∈ {1, 2, · · · , S}, and denote nl := ⌊(S+1)/2⌋, nu := ⌈(S+1)/2⌉.

ωq(v) κq(v) ∇vκq(v)

q argminw∈R∥v − w1∥q minω∈R∥v − ω1∥q ∂κq(v)
∂v(si)

∞ v(s1)+v(sS)
2

v(s1)−v(sS)
2


1
2 if i = 1

− 1
2 if i = S

0 o.w.

2
∑S

i=1 v(si)

S

√∑S
i=1(v(si)− ω2(v))2

v(si)−ω2(v)
κ2(v)

1
v(snl

)+v(snu )

2

∑nl

i=1(v(si)− v(sS−i))


1 if i < nl
−1 if i > nu
0 o.w.

With a slight abuse of notation, we can similarly define a Bellman operator over Q-values as

Tπ
(P,R)

Q(s, a) := R(s, a) + γ
∑

(s′,a′)∈X

P (s′|s, a)πs′(a′)Q(s′, a′), ∀(s, a) ∈ X .

3.2 Robust Markov Decision Processes

In a robust MDP setting, we assume that (P,R) ∈ U and aim to maximize return under the worst
model from the set. We denote the robust performance of a policy π ∈ Π by ρπU := min(P,R)∈U ρ

π
(P,R).

It is maximal when it reaches ρ∗U := maxπ∈Π ρ
π
U at an optimal robust policy π∗

U ∈ argmaxπ∈Π ρ
π
U .

When considering the robust value function vπU := min(P,R)∈U v
π
(P,R), we further need to assume

that U is convex and rectangular so that an optimal robust policy realizing v∗U := maxπ v
π
U can

be computed in polynomial time [33]. We thus assume U to be convex and rectangular in the
remainder of this work. Specifically, we denote an (s, a)-rectangular uncertainty set by Usa :=
×(s,a)∈X (P(s,a),R(s,a)). It represents a particular case of s-rectangular uncertainty which we
similarly denote by Us := ×s∈S(Ps,Rs). In both cases, there exists an optimal robust policy that is
stationary, although all optimal ones may be stochastic [33].

Similarly to non-robust MDPs, robust MDPs can be solved through Bellman recursion. Indeed, the
robust value function vπU (resp., optimal robust value function v∗U ) is known to be the unique fixed
point of the robust Bellman operator Tπ

U v := min(P,R)∈U T
π
(P,R)v (resp., the optimal robust Bellman

operator T ∗
Uv := maxπ∈Π T

π
U v), ∀v ∈ RS , both being γ-contractions for the sup-norm. Although

this ensures linear convergence of robust value iteration, the evaluation of each Bellman operator can
still be prohibitive for practical use.

3.2.1 Ball Constrained Uncertainty set

To facilitate the computation of robust Bellman updates, we consider uncertainty sets that are centered
around a nominal model (P0, R0), i.e., of the form U = (P0, R0)+(P,R), and constrained according
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to ℓp-norm balls [3, 14, 9, 1]. In the (s, a)-rectangular case, the corresponding uncertainty set is
denoted by Usa

p := Rsa
p × Psa

p = ×(s,a)∈X (P(s,a),R(s,a)) where for any (s, a) ∈ X ,

R(s,a) = {r ∈ R | |r| ≤ αs,a} , and P(s,a) =
{
p ∈ RS | ⟨p,1⟩S = 0, ∥p∥p ≤ βs,a

}
.

Similarly, an s-rectangular norm-constrained uncertainty is denoted by Us
p := ×s∈S(Ps,Rs) where

for any s ∈ S,

Rs = {r ∈ RA | ∥r∥p ≤ αs}, and Ps = {p ∈ RX | ⟨p(·, a),1⟩S = 0 ∀a ∈ A, ∥p∥p ≤ βs}.

In both cases, the kernel uncertainty set conceals linear constraints ensuring all entries in P0 + P are
non-negative. Indeed, we generally ignore P0 to satisfy these constraints in practice [23]. Although
it may include absurd models and unnecessarily lead to conservative policies, this proxy region is
appropriate for model-free robust learning. Moreover, the norm-ball structure on uncertainty sets
above enables us to compute robust Bellman updates with similar time complexity as non-robust ones
using regularization [3, 14]. We formalize this below.
Proposition 3.1. ([14, Thm. 2-3].) For any policy π ∈ Π and any rectangular ℓp-ball-constraint
uncertainty set, the robust Bellman operator is equivalent to its regularized form:

(Tπ
U v)(s) = Tπ

(P0,R0)
v(s) + Ωq(α, β, v),

where Ωq(α, β, v) := −⟨πs, αs,· + γκq(v)β
P
s,·⟩A for (s, a)-rectangular uncertainty Usa

p , and
Ωq(α, β, v) := −(αs + γβsκq(v))∥πs∥q for s-rectangular uncertainty Us

p .

In the following, we leverage the regularized formulation of robust value functions to explicitly derive
RPG for rectangular ℓp-ball uncertainty sets.

3.2.2 Robust Gradient Method

Since the robust return can be non-differentiable, we need to follow the projected sub-gradient ascent
rule in order to optimize the robust return, namely, update πk+1 := projΠ(πk + η∂πρ

πk

U ) where

∂πρ
π
U := ∇πρ

π
(P,R)

∣∣∣
(P,R)=(Pπ

U ,Rπ
U )
, (1)

η is the learning rate, projΠ denotes the orthogonal projection on Π, and (Pπ
U , R

π
U ) is the worst model

associated with π ∈ Π and U , i.e., (Pπ
U , R

π
U ) ∈ arg inf(P,R)∈U ρ

π
(P,R).

Given oracle access to sub-gradient ∂ρπU , projected gradient ascent converges to an ϵ-optimal policy
π∗
U . Moreover, under similar conditions as in the non-robust setting, projected gradient ascent holds

an iteration complexity of O(S4A2ϵ−4) [30]. Yet, the sub-gradient in (1) is generally intractable,
particularly because general convex uncertainty sets may yield NP-hard complexity. Instead, we
propose to focus on ball-constrained uncertainty sets in order to efficiently compute RPG updates.

4 Towards RPG: Expressing the worst quantities

In this section, we provide all the ingredients needed for deriving RPG. Before diving into the
gradient expression, we first settle on the general framework of policy gradient. Secondly, in Sec. 4.1,
we focus on expressing the worst model according to the nominal explicitly. Surprisingly, we find
that the worst transition kernel is a rank-one perturbation of the nominal. This finding enables us
to derive the robust occupancy measure, i.e., the visitation frequency of the worst kernel in Sec. 4.2.
As a last piece, in Sec. 4.3, we propose an alternative definition of robust Q-value and show that
it can be estimated from a specific Bellman recursion.

Consider again the projected gradient ascent rule:

πk+1 :=projΠ(πk + η∂πρ
πk

U ).

By definition of the sub-gradient in (1) and applying the standard PG theorem [26], it holds that:

∂πρ
π
U =

∑
(s,a)∈X

dπU (s)Q
π
U (s, a)∇πs(a),

5



where Qπ
U := Qπ

(Pπ
U ,Rπ

U ) is the Q-value associated with the worst-case model, and dπU := dπPπ
U

the
occupation measure of the worst transition kernel. In fact, for the uncertainty sets we focus on in
this work, the worst Q-value Qπ

U retrieves the common definition of robust Q-value [20, 28] (see
the appendix for a detailed discussion). Therefore, for conciseness and with a slight abuse, we
shall designate Qπ

U by the robust Q-value, and dπU by the robust visitation frequency. The remaining
question is how to compute these quantities and in particular, can we efficiently find the worst
parameters (Pπ

U , R
π
U )? The following part of our study aims to address these questions.

Given an uncertainty set U , let first define the normalized and balanced robust value function as:

uπU (s) :=
sign(vπU (s)− ωq(v

π
U ))∥vπU (s)− ωq(v

π
U )∥q−1

κq(vπU )
q−1

. (2)

By construction, it has zero mean and unit norm, i.e., ⟨uπU ,1⟩S = 0 and ∥uπU∥p = 1. In fact, as
stated in the result below, uπU is the gradient of the q-variance function, and correlates with the
(unnormalized, unbalanced) robust value function according to the same q-variance.
Proposition 4.1. For any policy π ∈ Π and ℓp-ball rectangular uncertainty set, the following holds:

uπU = ∇vκq(v)
∣∣∣
v=vπ

U

,

⟨uπU , vπU ⟩ = κq(v
π
U ).

4.1 Worst Kernel and Reward

In the following results, we explicit the relationship between the nominal and the worst-case model
for (s, a) and s-rectangular ℓp-balls. We will then leverage this relationship to compute the robust
Q-values and the robust occupation measure, both necessary for RPG.
Theorem 4.2 ((s, a)-rectangular case). Given uncertainty set U = Usa

p and any policy π ∈ Π, the
worst model is related to the nominal one through:

Rπ
U (s, a) = R0(s, a)− αs,a and Pπ

U (·|s, a) = P0(·|s, a)− βs,auπU .

Based on Thm. 4.2, it follows that in the (s, a)-rectangular case, the worst reward function is
independent of the employed policy. As we establish in Thm. 4.3 below, this no longer applies under
s-rectangularity. In either case, the worst kernel is policy-dependent, discouraging the system to
move toward high-rewarding states and directing it to low-rewarding ones instead. Surprisingly, the
vector penalty uπU ∈ RS additionally illustrates that the worst kernel is a rank-one perturbation of the
nominal. Indeed, considering the stochastic matrix induced by any policy π ∈ Π, we have

[Pπ
U − Pπ

0 ](s
′|s) = −

(∑
a∈A

βs,aπs(a)

)
uπU (s

′), ∀s ∈ S,

so that the perturbation matrix Pπ
U − Pπ

0 is of rank one. In the sequel, we will leverage this finding to
compute the robust visitation frequency.
Theorem 4.3 (s-rectangular case). Given uncertainty set U = Us

p and any policy π ∈ Π, the worst
model is related to the nominal one through:

Rπ
U (s, a) = R0(s, a)− αs

(
πs(a)

∥πs∥q

)q−1

and Pπ
U (·|s, a) = P0(·|s, a)− βsuπU

(
πs(a)

∥πs∥q

)q−1

.

Similarly to the (s, a)-case, the adversarial kernel is a rank-one perturbation of the nominal. Yet, an

extra dependence on the policy through the coefficient
(

πs(a)
∥πs∥q

)q−1

appears in the s-case, affecting
both the worst reward and the worst kernel. Intuitively, it means that the worst model cannot be
chosen independently for each action, but must instead depend on the agent’s policy. This further
explains why optimal policies can all be stochastic in s-rectangular robust MDPs [33].

Thms. 4.2 and 4.3 enable us to derive the worst MDP model in closed form with time complexity
O(S2A log ϵ−1), up to logarithmic factors (please see the appendix for a detailed discussion). It thus
holds the same complexity as non-robust value iteration, since we additionally need to compute the
value function to derive its corresponding regularizer [3, 14]. On the other hand, if we employ convex
optimization using value methods instead, obtaining the worst model requires a time complexity
of O(S4A log ϵ−1) in the (s, a)-rectangular case, and O(S4A3 log ϵ−1) in the s-rectangular case
[30][Sec. 4.1].
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4.2 Robust Occupation Measure

We finally derive the robust occupation measure using nominal values, which will lead to an explicit
RPG. Although intractable in general, we show that focusing on ball-constrained uncertainty enables
deriving the robust occupation matrix efficiently from the (nominal) occupation measure. We first
establish the lemma below, which leverages the fact that the worst transition function is a rank-one
perturbation of the nominal and represents our core contribution.
Lemma 4.4. Let b, k ∈ RS and P0, P1 ∈ (∆S)

S two transition matrices. If P1 = P0 − bk⊤, i.e., P1

is a rank-one perturbation of P0, then their occupation matrices Di := (I − γPi)
−1, i = 0, 1 are

related through:

D1 = D0 − γ
D0bk

⊤D0

(1 + γk⊤D0b)
.

Combining Thms. 4.2 and 4.3 with the above lemma, we obtain the robust occupation in terms of the
nominal, as stated in Thm. 4.6 below. Prior to this, we introduce the notion of expected transition
uncertainty below.
Definition 4.5. Let U a rectangular ℓp-ball-constrained uncertainty set of transition radius β. For
any policy π ∈ Π, the expected transition uncertainty at any state s ∈ S is given by βπ

s :=∑
a∈A πs(a)βs,a if U = Usa

p , and βπ
s := βs∥πs∥q if U = Us

p .
Theorem 4.6. For any rectangular ℓp-ball-constrained uncertainty and π ∈ Π, it holds that:

dπU,µ = dπP0,µ − γ
⟨dπP0,µ

, βπ⟩S
1 + γ⟨dπP0,uπ

U
, βπ⟩S

dπP0,uπ
U
. (3)

Thm. 4.6 explicitly highlights the relationship between the robust visitation frequency and the nominal
one. Thus, according to Eq. (3), the standard non-robust occupation measure in the first term needs
to be penalized by another one, dπP0,uπ

U
= (uπU )

⊤(IS − γPπ
0 )

−1, to obtain the robust occupation
measure. Recall that uπU is the balanced-scaled value function determined by π ∈ Π and uncertainty
set U . Thus, the penalty term dπP0,uπ

U
tends to zero if all coordinates of the robust value function

vector converge to the same value.

Nonetheless, our expression (3) does present some challenges. First, the visitation frequency appear-
ing in the correction term indicates that instead of taking a fixed initial state distribution, we should
start from a varying and signed measure represented by the balanced value function. Although it
suggests putting more weight on worst-performing states, obtaining a non-biased estimator for this
occupancy measure remains unclear in model-free learning. One may use importance sampling, but
as any off-policy approach, both variance and bias would need to be controlled then. Such statistical
analysis goes beyond the scope of this work.

4.3 Robust Q-values

In this section, we focus on the last element needed for RPG and aim to estimate the robust Q-
value denoted previously by Qπ

U := Qπ
(Pπ

U ,Rπ
U ). Define its associated value function as vπU (s) =

⟨πs, Qπ
U (s, ·)⟩,∀s ∈ S, π ∈ Π. Based on standard Bellman recursion, it thus holds that:

Qπ
U (s, a) = Rπ

U (s, a) + γ⟨Pπ
U (·|s, a), vπU ⟩S , ∀(s, a) ∈ X , π ∈ Π,

while Qπ
U is the unique fixed point of the γ-contracting operator

(Lπ
UQ)(s, a) := Tπ

(Pπ
U ,Rπ

U )Q(s, a), ∀Q ∈ RX . (4)

The relations above hold for general uncertainty sets, provided that we have access to the worst model.
The s-rectangularity assumption additionally enables us to retrieve the robust value function using
the Bellman operator above [33]. Concretely, we have: vπU = min(P,R)∈U v

π
(P,R) = vπ(Pπ

U ,Rπ
U ).

The following result derives a regularized operator equivalent to Lπ
U , which results in an efficient

iteration method to compute the robust Q-value.
Proposition 4.7. The Bellman operator Lπ

U defined in Eq. (4) is equivalent to:
(Lπ

UQ)(s, a) = Tπ
(P0,R0)

Q(s, a) + Ω′
q(αs,a, βs,a, v),

where v(s) := ⟨πs, Q(s, ·)⟩A, Ω′
q(α, β, v) := −(αs,a + γβs,aκq(v)) for (s, a)-rectangular uncer-

tainty Usa
p , and Ω′

q(α, β, v) := −
(

πs(a)
∥πs∥q

)q−1

(αs + γβsκq(v)) for s-rectangular Us
p .
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5 Robust Policy Gradient

We are now able to derive an RPG by combining our previous results. Notably, unlike previous works
that need to sample next-state transitions based on all models from the uncertainty set [21, 17, 4],
here, we only need the nominal kernel to get the occupation measures.
Theorem 5.1 (RPG). For any rectangular ℓp-ball-constrained uncertainty, the robust policy gradient
is given by:

∂πρ
π
U =

∑
(s,a)∈X

(
dπP0,µ(s)− c

π(s)
)
Qπ

U (s, a)∇πs(a), (5)

where

cπ(s) :=
γ⟨dπP0,µ

, βπ⟩S
1 + γ⟨dπP0,uπ

U
, βπ⟩S

dπP0,uπ
U
(s), ∀s ∈ S .

The implementation of RPG directly follows and can be found in Alg. 1. Thm. 5.1 is a straightforward
application of non-robust PG, as its proof simply consists in plugging Eq. (3) into the standard PG
expression ∂πρπU =

∑
(s,a)∈X d

π
U,µ(s)Q

π
U (s, a)∇πs(a). We obtain a regular PG in the first term,

with the robust Q-value instead of the non-robust one, plus a correction term cπ resulting from taking
the visitation frequency of the worst kernel instead of the nominal. Unlike previous work that uses
policy regularization to achieve empirical robustness in PG methods [2, 11], Thm. 5.1 establishes an
RPG that accounts for transition uncertainty and targets a robust optimal policy. It crucially relies on
the rank-one-perturbation structure of the worst transition kernel (see Lem. 4.4). As established in
Thm. 4.6, ℓp-ball uncertainty implies such property, but the converse as to whether any convex set
leads to the worst transition kernel being a rank-one perturbation of the nominal remains an open
question. For example, it would be interesting to investigate the structural properties needed on the
uncertainty set for the rank-one perturbation to hold.

Algorithm 1 RPG
Input: µ, η
Initialize: vk, πk

1: for k = 1, 2, . . . do
2: ∂πρk =

∑
(s,a)∈X

(
dπP0,µ

(s)− cπ(s)
)
Qπ

U (s, a)∇πs(a) ▷ Compute policy gradient
3: πk ← projΠ(πk + η∂πρk) ▷ Update policy
4: end for

5.1 Complexity Analysis

A major concern in solving robust MDPs is time complexity [33]. Similarly, it is of major importance
to assess the additional time required for computing an RPG update, compared to its non-robust
variant. Although previous work has analyzed the convergence rate of RPG to a global optimum
[30], it assumes access to an oracle gradient, thus occulting the computational concerns raised from
gradient estimation. In fact, the NP-hardness of non-rectangular and/or non-convex robust MDPs
[33] already indicates that their resulting RPG can be intractable.

To compute RPG in Thm. 5.1, we first need to evaluate the robust Q-value. Based on Lemma 4.7 and
the Bellman operators introduced there, our evaluation method involves an additional estimation of
the variance function κp. According to [14], this takes logarithmic time at most, using binary search.
As to the compensation term cπ in Eq. (11), it requires computing occupancy measures with respect
to two different initial vectors, namely the balanced value function and the initial distribution. Thus,
the computational cost for estimating cπ is the same as estimating a non-robust occupancy measure.
Tab. 1 summarizes the complexity of different approaches while a detailed discussion can be found in
the appendix. We refer to [30][Sec. 4.1] for the complexity of RPG based on convex optimization.

Generalization to arbitrary norms. Until now, we have focused on ℓp-norm for concreteness.
However, the above results apply to any norm ∥·∥, at least if the uncertainty set is (s, a)-rectangular,
in which case the variance function changes to κ(v) := min∥c∥≤1,1⊤c=0⟨c, v⟩ and the balanced value
to argmin∥c∥≤1,1⊤c=0⟨c, v⟩. The rank-one perturbation structure of the worst kernel is preserved, so
the robust occupation measure can be obtained similarly using Lemma 4.4. The s-rectangular is more
involved. We defer its discussion to the appendix and leave its complete derivation for future work.
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6 Experiments

In order to test the effectiveness of our RPG update, we evaluate its increased time complexity
relative to non-robust PG. In the following experiments, we randomly generate nominal models for
arbitrary state-action space sizes. Each experiment was averaged over 100 runs. We refer the reader
to the appendix for more details on the radius levels and other implementation choices.

We first focus on ℓ1-robust MDPs to compare our RPG with a convex optimization approach.
Specifically, we consider a robust PG with an optimization solver, which we designate by LP-RPG.
Indeed, recall that ℓ1-ball-constraints induce a linear program (LP) rather than a more general convex
optimization problem. Therefore, to compute the robust value function for a given policy, we
iteratively evaluate the robust Bellman operator using LP [30, Section 4.1]. Using this approximated
value function, we can compute the worst value parameters to apply PG theorem by [26] and deduce
an LP-based robust PG update. Differently, our RPG method relies on the regularized formulation
of robust value iteration proposed in [3, 14], from which we deduce the normalized-balanced value
function as in Eq. (2). We finally apply Thm. 4.6 to compute the robust occupation measure, and
Prop. 4.7 to obtain the robust Q-value.

Tab. 3 displays the results obtained for the two alternative methods described above. In all experiments,
the standard deviation was typically 2-10% so we omitted it for brevity. As can be seen in Tab. 3,
LP-RPG does not scale well compared to RPG, whereas RPG has similar time complexity as PG.
Notably, the running time of s-rectangular LP-RPG scales much better with the space size than its
(s, a)-rectangular equivalent, which confirms the theoretical complexities from Tab. 1. Yet, since
these methods were time-consuming, we repeated these for a few runs only. In fact, LP-RPG is more
expensive than RPG by 1-3 orders of magnitude, which illustrates its inefficiency. We emphasize
that here, we only focused on ℓ1-robust MDPs to leverage LP solvers in robust policy evaluation. We
expect the computational cost of LP-RPG to scale even more poorly for other ℓp-robust MDPs that
involve polynomial time-consuming convex programs.

Table 3: Comparison of the relative running time between RPG and the convex optimization approach
(here, LP). Our method is faster than LP-based updates by 1 to 3 orders of magnitude.

{(P0, R0)} Usa
1 Us

1

S A PG RPG LP-RPG RPG LP-RPG

10 10 1 1.4 326 1.4 77
30 10 1 1.4 351 1.4 109
50 10 1 1.4 408 1.4 159
100 20 1 1.5 469 1.3 268
500 50 1 1.3 925 1.3 5343

We further compare our RPG to non-robust PG on different ℓp-balls. Tab. 4 confirms the comparable
time complexity of RPG to non-robust PG, thus demonstrating the effectiveness of our method. We
note that for p ∈ {1, 2,∞}, the corresponding regularization quantities can be computed in closed
form, whereas they involve a binary search for other values [14]. We thus get a slight running-time
increase for p ∈ {5, 10}.

Table 4: Relative running time for computing RPG under different types of uncertainty sets.

S A {(P0, R0)} Usa
2 Us

2 Usa
5 Us

5 Usa
10 Us

10 Usa
∞ Us

∞

10 10 1 1.5 1.5 4.9 4.7 4.7 4.9 1.5 1.6
30 10 1 1.4 1.5 4.2 4.3 4.2 4.0 1.4 1.4
50 10 1 1.5 1.4 4.5 4.1 4.0 4.0 1.4 1.4

100 20 1 1.4 1.3 2.6 2.5 2.5 2.4 1.3 1.2
500 50 1 1.2 1.2 1.7 1.7 1.7 1.7 1.2 1.3
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7 Discussion

This paper introduced an explicit expression of RPG for rectangular robust MDPs. Our approach
involved auxiliary results such as deriving the worst model in closed form and showing that it is a
rank-one perturbation of the nominal kernel. The resulting RPG extends vanilla PG with additional
correction terms that can be derived in closed form as well. Thus, the computational time of RPG is
similar to its non-robust variant.

A key assumption that would be interesting to relax is the normed-ball structure of the uncertainty
sets considered in this study. Indeed, since the proofs of our technical results rely on norm properties,
it is still unclear if and how RPG can generalize to metric-based or f -divergence uncertainty sets.
The latter type of uncertainty can be particularly useful for data-driven settings, as the radius can be
chosen according to cross-validation or statistical bounds [10]. Another compelling direction would
be to explore other variants of RPG using mirror descent or natural policy gradient and examine their
compatibility with deep architectures, which would further demonstrate the practical efficiency of our
RPG method.
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A Balanced and Normed Vectors

In this section, we lay down some basic properties of p-normalized-balanced vectors.

First recall the p-variance and the p-mean defined as:

κp(v) = min
ω∈R
∥v − ω1∥p, ωp(v) = argmin

ω∈R
∥v − ω1∥p.

Given any v ∈ RS , let also the p-balanced-normalized function:

up(v)(s) := SIGN(v(s)− ωp(v))

(
|v(s)− ωp(v)|

κp(v)

)p−1

, ∀v ∈ RS , s ∈ S .

According to [14][Sec. 16.1, Lemma 1], the following holds:

κq(v) = −
1

ϵ

[
min

∥c∥p≤ϵ,⟨c,1⟩=0
⟨c, v⟩

]
, (6)

namely, the p-variance function is the optimal value of a linear optimization under kernel noise
constraint. The result below further characterizes the solution to the above problem.
Lemma A.1. The vector defined as c∗ := −ϵuq(v) is an optimal solution to the optimization problem

min
∥c∥p≤ϵ,⟨c,1⟩S=0

⟨c, v⟩.

Proof. It suffices to show that c∗ satisfies both constraints ∥c∗∥p ≤ ϵ and ⟨c∗,1⟩S = 0, and that it
reaches optimal value, i.e., − 1

ϵ ⟨c
∗, v⟩ = κq(v). We thus compute:

∥c∗∥p =

(∑
s∈S
|c∗(s)|p

) 1
p

=

(∑
s∈S

∣∣∣∣∣−ϵSIGN(v(s)− ωq(v))

(
|v(s)− ωq(v)|

κq(v)

)q−1
∣∣∣∣∣
p) 1

p

=

((
ϵ

κq(v)q−1

)p∑
s∈S

∣∣∣∣∣
(
|v(s)− ωq(v)|

κq(v)

)q−1
∣∣∣∣∣
p) 1

p

=
ϵ

κq(v)q−1

(∑
s∈S
|v(s)− ωq(v)|(q−1)p

) 1
p

=
ϵ

κq(v)q−1

(∑
s∈S
|v(s)− ωq(v)|q

) 1
p

(By assumption,
p+ q

pq
= 1)

=
ϵ

κq(v)q−1
κq(v)

q
p (By definition, κq(v) = ∥v − ωq1∥q)

= ϵ, (
q

p
− (q − 1) =

q − pq + p

p
= 0)

so the norm constraint is satisfied. We check the noise constraint by computing:∑
s∈S

c∗(s) =
∑
s∈S
−ϵSIGN(v(s)− ωq(v))

(
|v(s)− ωq(v)|

κq(v)

)q−1

=
−ϵ

κq(v)q−1

∑
s∈S

SIGN(v(s)− ωq(v))|v(s)− ωq(v)|q−1.

Now, considering the real function φ : w → ∥v − w1∥q and taking its derivative, we remark the
proportional relation: ∑

s∈S
c∗(s) = C · φ′(ωq(v)),
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where C ∈ R is the proportionality coefficient. By construction, ωq(v) is a minimizer of φ, so we
must have φ′(ωq(v)) = 0 and c∗ satisfies the noise constraint.

We finally show that c∗ reaches the optimal value:

−1

ϵ
⟨c∗, v⟩ = −1

ϵ
⟨c∗, v − ωq(v)1⟩ (⟨c∗,1⟩S = 0)

=
∑
s∈S

|v(s)− ωq(v)|q

κq(v)q−1
(Putting the value of c∗)

=
κq(v)

q

κq(v)q−1
(κq(v) = ∥v − ωq1∥q)

=κq(v).

A.1 Proof of Proposition 4.1

Proposition. For any policy π ∈ Π and ℓp-ball rectangular uncertainty set, the following holds:

uπU = ∇vκq(v)
∣∣∣
v=vπ

U

,

⟨uπU , vπU ⟩ = κq(v
π
U ).

Proof. The second claim directly follows from Lemma A.1 applied to v := vπU , so that by optimality,
κq(v

π
U ) = ⟨uπU , vπU ⟩. For the first claim, we take the gradient of κp(v) := minw∈R∥v−w1∥p w.r.t. v

using the envelope theorem [19]. Then, the p-balanced-normalized vector up(v) is a sub-gradient of
κp(v), that is,

up(v) = ∇κq(v),
which we apply to v := vπU .

We have the additional properties below:

• The variance function κq is translation-invariant in all-ones directions, i.e., for all ω ∈
R, κq(v) = κq(v + ω1). As a result, ⟨∇κq(v),1⟩S = 0.

• The balanced-normalized vector up(v) has unit norm, i.e., ∥up(v)∥p = 1 by Lemma A.1.

B Worst Kernel and Reward

Here we present the proofs for the worst/adversarial kernel and reward function characterization.

B.1 Proof of Theorem 4.2

Theorem ((s, a)-rectangular case). Given uncertainty set U = Usa
p and any policy π ∈ Π, the worst

model is related to the nominal one through:

Rπ
U (s, a) = R0(s, a)− αs,a and Pπ

U (·|s, a) = P0(·|s, a)− βs,auπU .

Proof. By definition,
(Pπ

Usa
p
, Rπ

Usa
p
) ∈ argmin

(P,R)∈Usa
p

Tπ
(P,R)v

π
Usa

p
.

Additionally, since Usa
p = (R0 +R)× (P0 + P), it results that:

(Rπ
Usa

p
, Pπ

Usa
p
) = (P0 + P ∗, R0 +R∗)

where
(P ∗, R∗) ∈ argmin

(P,R)∈P×R
Tπ
(P,R)v

π
Usa

p
.
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By the (s, a)-rectangularity assumption, we get that for all (s, a) ∈ X ,

(P ∗(·|s, a), R∗(s, a)) ∈ argmin
(ps,a,rs,a)∈Ps,a×Rs,a

{
rs,a + γ

∑
s′∈S

ps,a(s
′)vπUsa

p
(s′)

}
It is clear from the above that the worst reward is independent of policy π. Thus, by the ball constraint,
it is given by

R∗(s, a) = −αs,a, ∀(s, a) ∈ X .
Differently, the worst kernel depends on the value function which itself depends on the policy. It is
given by

P ∗(·|s, a) = argmin
ps,a∈Psa

{∑
s′∈S

ps,a(s
′)vπUsa

p
(s′)

}
, ∀(s, a) ∈ X .

The optimization is of the form
argmin

∥c∥p≤β,⟨c,1⟩=0

⟨c, v⟩,

so by Lemma A.1,

P ∗(s′|s, a) = −βs,aSIGN
(
vπUsa

p
(s′)− ωq(v

π
Usa

p
)
) ∣∣∣vπUsa

p
(s′)− ωq(v

π
Usa

p
)
∣∣∣q−1

κq(v)q−1
.

As a result, we proved that for all (s, a) ∈ X , Rπ
Usa

p
(s, a) = R0(s, a)− αs,a and

Pπ
Usa

p
(s′|s, a) = P0(s

′|s, a)− βs,aSIGN
(
vπUsa

p
(s′)− ωq(v

π
Usa

p
)
) ∣∣∣vπUsa

p
(s′)− ωq(v

π
Usa

p
)
∣∣∣q−1

κq(v)q−1
.

B.2 Proof of Theorem 4.3

Theorem (s-rectangular case). Given uncertainty set U = Us
p and any policy π ∈ Π, the worst model

is related to the nominal one through:

Rπ
U (s, a) = R0(s, a)− αs

(
πs(a)

∥πs∥q

)q−1

and Pπ
U (·|s, a) = P0(·|s, a)− βsuπU

(
πs(a)

∥πs∥q

)q−1

.

Proof. By definition,
(Pπ

Us
p
, Rπ

Us
p
) ∈ argmin

(P,R)∈Us
p

Tπ
(P,R)v

π
Us

p
,

and since Us
p = (R0 +R)× (P0 + P), we have

(Pπ
Us

p
, Rπ

Us
p
) = (P0 + P ∗, R0 +R∗)

where
(P ∗, R∗) ∈ argmin

(P,R)∈P×R
Tπ
(P,R)v

π
Usa

p
.

By the s-rectangularity assumption, we get that for all s ∈ S

(P ∗(·|s, ·), R∗(s, ·)) = argmin
(ps,rs)∈Ps×Rs

∑
a∈A

πs(a)

{
rs,a + γ

∑
s′∈S

ps,a(s
′)vπUsa

p
(s′)

}
.

Here, the worst reward does depend on policy π and is given by

R∗(s, a) = −αs
πs(a)

q−1∑
a πs(a)

q−1
, ∀(s, a) ∈ X .
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As for the worst kernel, it depends both on the value function and the policy. It is given by

P ∗(·|s, ·) = argmin
ps∈Ps

{∑
a∈A

πs(a)
∑
s′∈S

ps,a(s
′)vπUs

p
(s′)

}
.

The optimization of interest is of the form

min
∥ca∥p≤βs,⟨ca,1⟩=0,a∈A

{∑
a′∈A

πs(a
′)⟨ca′ , v⟩

}
,

which is equivalent to the following two-fold minimization:

min∑
a∈A(βs,a)p≤(βs)p

min
∥ca∥p≤βs,⟨ca,1⟩=0,a∈A

{∑
a′∈A

πs(a
′)⟨ca′ , v⟩

}
.

Thus, rewriting the problem in our context,

min∑
a(βs,a)p≤(βs)p

min
∥psa∥p≤βs,a,

∑
s′ psa(s′)=0

∑
a

πs(a)⟨ps,a, v⟩

= min∑
a(βs,a)p≤(βs)p

∑
a

πs(a) min
∥psa∥p≤βs,a,

∑
s′ psa(s′)=0

⟨ps,a, v⟩

= min∑
a(βsa)p≤(βs)p

∑
a

πs(a)(−βsaκq(v)) (By Lemma A.1)

=− κq(v) max∑
a(βsa)p≤(βs)p

∑
a

πs(a)βsa.

Computing the optimal β above, the optimization is now the same as in the (s, a)-rectangular case.
Hence, we have

P ∗(s′|s, a) = −βs
πs(a)

q−1

∥πs∥q−1
q

SIGN(vπUs
p
(s′)− ωq(v

π
Us

p
))

∣∣∣vπUs
p
(s′)− ωq(v

π
Us

p
)
∣∣∣q−1

κq(v)q−1
,

which ends the proof by definition of the balanced value function uπU .

C Occupation Matrix

C.1 Proof of Lemma 4.4

Lemma. Let b, k ∈ RS and P0, P1 ∈ (∆S)
S two transition matrices. If P1 = P0 − bk⊤, i.e., P1

is a rank-one perturbation of P0, then their occupation matrices Di := (I − γPi)
−1, i = 0, 1 are

related through:

D1 = D0 − γ
D0bk

⊤D0

(1 + γk⊤D0b)
.

Proof. By definition, D1 = (IS − γP1)
−1 so it follows that:

(IS − γP1)D1 = IS
⇐⇒ IS + γP1D1 = D1

⇐⇒ IS + γ(P0 − bk⊤)D1 = D1 (By assumption, P1 = P0 − bk⊤)

⇐⇒ IS − γbk⊤D1 = (IS − γP0)D1

⇐⇒ (IS − γP0)
−1(IS − γbk⊤D1) = D1 (Multiplying both sides by (IS − γP0)

−1)

⇐⇒ D0(IS − γbk⊤D1) = D1 (By definition, D0 = (IS − γP0)
−1 )

⇐⇒ D0 − γD0bk
⊤D1 = D1. (7)
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Now, multiplying both sides by k and noticing that k⊤D0b is a scalar we get

k⊤D0 − γk⊤D0bk
⊤D1 = k⊤D1

⇐⇒ k⊤D0 = (1 + γk⊤D0b)k
⊤D1

⇐⇒ k⊤D1 =
k⊤D0

(1 + γk⊤D0b)
. (8)

Combining Eqs. (7) and (8) thus yields:

D1 = D0 − γ
D0bk

⊤D0

(1 + γk⊤D0b)
,

which concludes the proof.

C.2 Proof of Theorem 4.6

Theorem. For any rectangular ℓp-ball-constrained uncertainty and π ∈ Π, it holds that:

dπU,µ = dπP0,µ − γ
⟨dπP0,µ

, βπ⟩S
1 + γ⟨dπP0,uπ

U
, βπ⟩S

dπP0,uπ
U
.

Proof. From Thms. 4.2 and 4.3, it holds that:

Pπ
U (s

′|s) = Pπ
0 (s

′|s)− βπ
s u

π
U (s

′), ∀s, s′ ∈ S .
Therefore, setting P1 := Pπ

U , P0 := Pπ
0 , b := βπ and k := uπU , we can apply Lemma 4.4 and

relate the corresponding occupation matrices. Additionally multiplying both sides of the relation by
µ⊤ ∈ R1×S yields the desired result.

D Robust Q-value

D.1 Basic Properties

In the literature, robust Q-values are defined in various ways that turn out to be conflicting for s
but non-(s, a) rectangular uncertainty sets. In this section, we propose to define the robust Q-value
solely based on the worst model. Define the robust Q-value, the robust value function, and the robust
occupation respectively as:

Qπ
U := Qπ

(Pπ
U ,Rπ

U ), dπU := dπ(Pπ
U ,Rπ

U ), vπU := vπ(Pπ
U ,Rπ

U ).

For s-rectangular uncertainty sets (in particular, for (s, a)-rectangular), the above definition of robust
value function coincides with the common one, i.e., vπ(Pπ

U ,Rπ
U ) = min(P,R)∈U v

π
(P,R) [33]. If the

uncertainty set is additionally (s, a)-rectangular (as in [31] or [3, 14]), the above definition of robust
Q-value also coincides with the common one because then,

Qπ
Usa(s, a) = min

(P,R)∈Usa

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)vπUsa(s′)

)
, ∀(s, a) ∈ X .

Getting back to our own definition, robust Q-value and value functions are related through:

vπU (s) = ⟨πs, Qπ
U (s, ·)⟩A

Qπ
U (s, a) = Rπ

U (s, a) + γ
∑
s′∈S

πs(a)P
π
U (s

′|s, a)vπU (s′),

as both quantities are defined based on worst kernel and reward, i.e., Qπ
U := Qπ

(Pπ
U ,Rπ

U ) and vπU :=

vπ(Pπ
U ,Rπ

U ).

Given an optimal robust policy π∗
U , we further use P ∗

U , R
∗
U , v

∗
U , Q

∗
U , d

∗
U as a shorthand for

P
π∗
U

U , R
π∗
U

U , v
π∗
U

U , Q
π∗
U

U , d
π∗
U

U respectively. For (s, a)-rectangular uncertainty set Usa, the optimal value
function is the best optimal Q-value, that is

v∗Usa(s) = max
a∈A

Q∗
Usa(s, a), ∀s ∈ S .
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because an optimal policy deterministically takes the action with the highest Q-value [20, 12]. This
does no longer hold for s-rectangular or coupled uncertainty sets, as there, an optimal policy may be
stochastic [33]. Still, based on Thms. 4.2 and 4.3, we get the Bellman recursion below.
Proposition D.1. Let an ℓp-ball constrained uncertainty set. Then, for all (s, a) ∈ X and π ∈ Π, the
robust Q-value satisfies the following recursion in the (s, a) and s-rectangular case respectively:

Qπ
Usa

p
(s, a) =Tπ

(P0,R0)
Qπ

Usa
p
(s, a)− αsa − γβsaκq(vπUsa

p
),

Qπ
Us

p
(s, a) =Tπ

(P0,R0)
Qπ

Us
p
(s, a)−

(
πs(a)

∥πs∥q

)q−1 (
αs + γβsκq(v

π
Us

p
)
)
.

Proof. We give proof for the (s, a)-rectangular case only. The s-rectangular case follows the exact
same lines except that it uses Thm. 4.3 instead of Thm. 4.2. We have:

Qπ
U (s, a) = Qπ

(Pπ
U ,Rπ

U )(s, a) (By definition)

= Rπ
U (s, a) +

∑
s′∈S

Pπ
U (s

′|s, a)vπUsa
p
(s′)

= R0(s, a)− αsa + γ
∑
s′∈S

(
P0(s

′|s, a)− βsauπUsa
p
(s′)
)
vπUsa

p
(s′) (By Thm. 4.2)

= R0(s, a)− αsa + γ
∑
s′∈S

P0(s
′|s, a)vπUsa

p
(s′)− γβsaκq(vπUsa

p
) (2d statement of Prop. 4.1)

= R0(s, a) + γ
∑
s′,a′

P0(s
′|s, a)πs′(a′)Qπ

Usa
p
(s′, a′)− αsa − γβsaκq(vπUsa

p
)

= Tπ
(P0,R0)

Qπ
Usa

p
(s, a)− αsa − γβsaκq(vπUsa

p
).

The above recursion applies the standard Bellman operator on robust Q-values. We can similarly
apply it on the robust value function (itself can be computed efficiently based on [3, 14]).
Corollary D.2. Let an ℓp-ball constrained uncertainty set. Then, for all (s, a) ∈ X and π ∈ Π, the
robust Q-value satisfies the following recursion in the (s, a) and s-rectangular case respectively:

Qπ
Usa

p
(s, a) = R0(s, a) + γ

∑
s′

P0(s
′|s, a)vπUsa

p
(s′)− αsa − γβsaκq(vπUs

p
),

Qπ
Us

p
(s, a) = R0(s, a) + γ

∑
s′

P0(s
′|s, a)vπUsa

p
(s′)−

(
πs(a)

∥πs∥q

)q−1 (
αs + γβsκq(v

π
Us

p
)
)
.

D.2 Evaluation

Based on the Bellman recursion above, we now derive robust Q-learning equations to learn a robust
Q-value. Precisely, we investigate if the linear operator below is contracting and can be evaluated
efficiently:

(Lπ
UQ)(s, a) := Rπ

U,v(s, a) + γ
∑

(s′,a′)∈X

Pπ
U,v(s

′|s, a)πs′(a′)Q(s′, a′), ∀Q ∈ RX , (9)

where (Pπ
U,v, R

π
U,v) ∈ argmin(P,R)∈U T

π
(P,R)

v and v(s) = ⟨πs, Q(s, ·)⟩A, ∀s ∈ S.

Proposition D.3. Consider an ℓp-ball constrained uncertainty set. Then, for all Q ∈ RX and π ∈ Π,
the operator Lπ can be evaluated as:

(Lπ
Usa

p
Q)(s, a) = Tπ

(P0,R0)
Q(s, a)− αsa − γβsaκq(v),

(Lπ
Us

p
Q)(s, a) = Tπ

(P0,R0)
Q(s, a)−

(
πs(a)

∥πs∥q

)q−1

(αs + γβsκq(v)) ,

where for all Q ∈ RX , its corresponding value is v(s) := ⟨πs, Q(s, ·)⟩, ∀s ∈ S.
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Proof. We give proof for the (s, a)-rectangular case only. The s-rectangular case follows the exact
same lines except that we take the worst model for s-rectangular balls. By definition,

(Lπ
Usa

p
Q)(s, a) = min

(P,R)∈Usa
p

R(s, a) + γ
∑

(s′,a′)∈X

P (s′|s, a)πs′(a′)Q(s′, a′)


= min

R∈Rsa
p

R(s, a) + γ min
P∈Psa

p

{∑
s′∈S

P (s′|s, a)v(s′)

}
= R0(s, a)− αs,a + γ

∑
s′∈S

P0(s
′|s, a)v(s′)− βs,aκq(v) (By [14])

= R0(s, a)− αs,a + γ
∑

(s′,a′)∈X

P0(s
′|s, a)πs′(a′)Q(s′, a′)− βs,aκq(v)

= Tπ
(P0,R0)

Q(s, a)− αs,a − βs,aκq(v).

D.3 Convergence

In the remainder of this section, we focus on ℓp-ball constrained uncertainty sets of the form Usa
p or

Us
p . Let our Q-value iteration Qn+1 := Lπ

UQn, and denote vn(s) = ⟨πs, Qn(s, ·)⟩A,∀s ∈ S, n ∈ N.

Proposition D.4. For all Q ∈ RX , denote v(s) := ⟨πs, Q(s, ·)⟩A,∀s ∈ S. Then, for any policy
π ∈ Π, the Q-value iteration defined according to Qn+1 = Lπ

UQn induces

vn+1 := T π
U vn.

Proof. By construction, for all s ∈ S we have

vn+1(s) = ⟨πs, Qn+1(s, ·)⟩A
= ⟨πs, (Lπ

UQn)(s, ·)⟩A

=
∑
a∈A

πs(a)

Rπ
U,vn(s, a) + γ

∑
(s′,a′)∈X

Pπ
U,vn(s

′|s, a)πs′(a′)Qn(s
′, a′)

 (By Eq. 9)

=
∑
a∈A

πs(a)

[
Rπ

U,vn(s, a) + γ
∑
s′∈S

Pπ
U,vn(s

′|s, a)vn(s′)

]
(By definition of vn)

= (T π
U vn)(s),

where the last equality holds because (Pπ
U,vn

, Rπ
U,vn

) ∈ argmin(P,R)∈U T π
(P,R)

vn.

As a result of the above proposition, the value iteration induced by our Q-value iteration rule converges
linearly to the robust value function, i.e., ∥vn − vπU∥∞ ≤ γn∥v0∥∞. Therefore, Q-value iterates
converge to a fixed point. Precisely, vn →n v

π
U implies that (Pπ

U,vn
, Rπ

U,vn
)→n (Pπ

U , R
π
U ), which in

turn implies that Qn →n Q
π
U . The result below further characterizes the convergence rate.

Proposition D.5. For any policy π ∈ Π, the recursion Qn+1 := Lπ
UQn, n ∈ N converges linearly to

Qπ
U .

Proof. Thanks to Prop. D.4, we have:

∥Qn+1 −Qπ
U∥∞ =∥Rπ

U,vn + γPπ
U,vnvn −R

π
U + γPπ

U v
π
U∥∞

=γ∥Pπ
U,vnvn − P

π
U v

π
U∥∞ (Rπ

U,v = Rπ
U , ∀v),

=γ∥(P0 −Bπun)vn − (P0 −BπuπU )v
π
U∥∞,
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where by the worst kernel characterization, Bπ(s, a) := βs,a for U = Usa
p and Bπ(s, a) :=

βs

(
πs(a)
∥πs∥q

)q−1

for U = Usa
p . This implies

∥Qn+1 −Qπ
U∥∞ ≤γ∥P0(vn − vπU )∥∞ + γ∥Bπ(un)

⊤vn −Bπ(uπU )
⊤vπU∥∞

≤γn+1∥v0 − vπU∥∞ + γ∥(un)⊤vn − (uπU )
⊤vπU∥ (Bπ(s, a) ≤ 1),

≤γn+1∥v0 − vπU∥∞ + γ∥(un)⊤(vn − vπU )∥+ γ∥(un − uπU )⊤vπU∥

≤γn+1∥v0 − vπU∥∞ + γn+1S∥v0 − vπU∥∞ + γ
∥R∥∞
1− γ

∥un − uπU∥∞.

Here, un, uπU is the balanced-normalized vector associated with vector vn and vπU , respectively. Recall
that the p-balanced normalized vector u associated with vector v is given by

u(s) :=
sign(v(s)− ωq(v)∥v(s)− ωq(v)∥q−1

κq(v)q−1
, (10)

where κp(v) = minw∥v − w1∥p and ωp(v) =w ∥v − w1∥p. It is easy to see that ωp, κ are
Lipschitz in v. Hence, ∥un − uπU∥∞ ≤ C · Pol(∥vn − vπU∥∞) · ψ(κ(vπU ), S,A), where Pol is a
polynomial and ψ a real function. This implies that

∥Qn+1 −Qπ
U∥∞ ≤ γn+1ψ′(κ(vπU ), ∥v0 − vπU∥∞, S,A),

which concludes our proof.

E Robust Policy Gradient

Theorem (RPG). For any rectangular ℓp-ball-constrained uncertainty, the robust policy gradient is
given by:

∂πρ
π
U =

∑
(s,a)∈X

(
dπP0,µ(s)− c

π(s)
)
Qπ

U (s, a)∇πs(a), (11)

where

cπ(s) :=
γ⟨dπP0,µ

, βπ⟩S
1 + γ⟨dπP0,uπ

U
, βπ⟩S

dπP0,uπ
U
(s), ∀s ∈ S .

Proof. The proof directly follows from plugging the robust occupation measure of Thm. 4.6 and the
robust Q-value into standard policy-gradient theorem [26].

F Complexity Analysis

In this section, we aim to derive the complexity of one RPG iteration for different uncertainty sets.
We first focus on non-robust MDPs, to then see how the complexity increases with the uncertainty
structure.

Non-robust MDPs. Computing non-robust Q-values and occupation measure takesO(S2A log(ϵ−1))
each, which represent the most expensive computations in PG. The product of dπ, Qπ and ∇π in PG
requires O(SA) operations, which is insignificant. Hence, the total cost of PG corresponds to the
computational cost of Q-values. More precisely, approximate the Q-value by Q and the occupation
measure by d with ϵ

SA tolerance, that is, ∥Q−Qπ∥∞ ≤ ϵ
SA and ∥d− dπ∥∞ ≤ ϵ

SA . This involves
O(S2A log(SAϵ−1)) operations for each. Then, we have∑

(s,a)∈X

d′(s)Q′(s, a)∇πs(a) =
∑

(s,a)∈X

(Qπ(s, a) + ϵ1(s, a))(d
π(s, a) + ϵ2(s, a))∇πs(a)

where ϵ1(s, a) := Q(s, a)−Qπ(s, a) and ϵ2(s, a) := d(s, a)− dπ(s, a). Let B be an upper bound
of ∥Qπ∥∞ and ∥dπ∥∞. Then∑

(s,a)∈X

d′(s)Q′(s, a)∇πs(a) =
∑

(s,a)∈X

(Qπ(s, a) + ϵ1(s, a))(d
π(s, a) + ϵ2(s, a))∇πs(a)

=
∑

(s,a)∈X

Qπ(s, a)dπ(s, a)∇πs(a) +O(ϵ),
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so the exact complexity of policy gradient for non-robust MDP is O(S2A log(SAϵ−1).

Convex non-rectangular uncertainty set. Robust policy improvement is strongly NP-Hard for
non-rectangular uncertainty sets, even if convex [33]. The PG method finds global optimal given
oracle access to policy gradient in polynomial time [30]. This implies that the computation of RPG
must be NP-Hard.

F.1 Helper results for Robust MDPs

Variance and mean functions. Computing κp(v) (resp. ωp(v)) with ϵ-tolerance requires
O(S log(Sϵ−1)) (resp. O(S log(ϵ−1))) computations if we use binary search [14].

Occupation measure. Let k ∈ RS be any vector. By definition,

dπP,k =

∞∑
n=0

γnk⊤(Pπ)n

and ∥∥∥∥∥dπP,k −
N−1∑
n=0

γnk⊤(Pπ)n

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

n=N

γnk⊤(Pπ)n

∥∥∥∥∥ ≤ ∥k∥
∞∑

n=N

∥γPπ∥n.

Since Pπ is a stochastic matrix, ∥Pπ∥ ≤ 1 and∥∥∥∥∥dπP,k −
N−1∑
n=0

γnk⊤(Pπ)n

∥∥∥∥∥ ≤ ∥k∥γN∥Pπ∥N

1− γ∥Pπ∥
≤ ∥k∥γ

N

1− γ
.

This implies that
∑N−1

n=0 γ
nk⊤(Pπ)n is an O(γN ) approximation of dπP,k. Now, take u0 = k and

un+1 := γ(un)
⊤P,

then
∑N−1

n=0 γ
nk⊤(Pπ)n =

∑N−1
n=0 un. Each iteration takes O(S2) computations, leading to total

cost O(S2N) for N iterations. Computing Pπ from P is O(S2A). We conclude that computing the
occupation measure has a complexity of O(S2A+ S2 log(ϵ−1)).

Lemma F.1. We can approximate dπP,k by
∑N−1

n=0 γ
n(k′)⊤(Pπ)n with complexity O(S2A +

S2 log(ϵ−1)) and tolerance∥∥∥∥∥dπP,k −
N−1∑
n=0

γnk′⊤(Pπ)n

∥∥∥∥∥ ≤ O
(
∥k∥γN + ∥k − k′∥

1− γ

)
.

Proof.∥∥∥∥∥dπP,k −
N−1∑
n=0

γnk′⊤(Pπ)n

∥∥∥∥∥ ≤
∥∥∥∥∥dπP,k −

N−1∑
n=0

γnk⊤(Pπ)n

∥∥∥∥∥+
∥∥∥∥∥
N−1∑
n=0

γnk′⊤(Pπ)n −
N−1∑
n=0

γnk⊤(Pπ)n

∥∥∥∥∥
≤ O

(
∥k∥γN

1− γ

)
+

∥∥∥∥∥
N−1∑
n=0

γnk⊤(Pπ)n −
N−1∑
n=0

γnk′⊤(Pπ)n

∥∥∥∥∥
≤ O

(
∥k∥γN

1− γ

)
+ ∥k − k′∥

∥∥∥∥∥
N−1∑
n=0

γn(Pπ)n −
N−1∑
n=0

γn(Pπ)n

∥∥∥∥∥
≤ O

(
∥k∥γN

1− γ

)
+O

(
∥k − k′∥
1− γ

)
.
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Computing Q-value given value function. Let v be an ϵ1 approximation of robust value function
vπU , that is ∥v − vπU∥∞ ≤ ϵ1. We want to compute the Q-value using the relation:

Qπ
U (s, a) = Rπ

U (s, a) +
∑
s,a

πs(a)P
π
U (s

′|s, a)vπU (s′)

= R0(s, a) + γ
∑
s′

P0(s
′|s, a)vπU (s′)− ΩU (v

π
U , π).

where ΩUs
p
(vπUs

p
, π) = πs(a)

q−1

∥πs∥q−1
q

(
αs + γβsκq(v

π
Us

p
)
)

and ΩUsa
p
(vπUsa

p
, π) = αsa + γβsaκq(v

π
Usa

p
). Let

Q be approximated from v by

Q(s, a) = R0(s, a) + γ
∑
s′

P0(s
′|s, a)v(s′)− ΩU (v, π).

We thus have

∥Qπ
U (s, a)−Q(s, a)∥∞ = γ

∥∥∥∥∥∑
s′∈S

P0(s
′|s, a)(v(s′)− vπU )

∥∥∥∥∥+ ∥ΩU (v, π)− ΩU (v
π
U , π)∥

≤ γϵ1 + ∥ΩU (v, π)− ΩU (v
π
U , π)∥

≤ γϵ1 + ∥β∥∞∥κq(v)− κq(vπU )∥

≤ γϵ1 + ∥β∥∞S
1
q ϵ1 (By Lemma F.2)

= O(S
1
q ϵ1),

so that ∥Q−Qπ
U∥∞ ≤ O(S

1
q ϵ1).

Lemma F.2. The variance function κp is Lipschitz. More precisely,

∥κp(v1)− κp(v2)∥ ≤ S
1
p ∥v1 − v2∥∞ ≤ S

1
p ∥v1 − v2∥∞, ∀v1, v2 ∈ RS .

Proof. Let vi ∈ RS and wi ∈ argminw∈R∥vi − w1∥p for i = 1, 2. Without loss of generality,
further assume that κp(v1) ≥ κp(v2). Then,

∥κp(v1)− κp(v2)∥ = κp(v1)− κp(v2)
= min

w∈R
∥v1 − w1∥p −min

w∈R
∥v2 − w1∥p (By definition)

≤ ∥v1 − w21∥p − ∥v2 − w21∥p (By definition of ω2)
≤ ∥(v1 − w21)− (v2 − w21)∥p (Reverse triangle inequality)
= ∥v1 − v2∥p

=

(∑
s∈S

(v1(s)− v2(s))p
) 1

p

≤ S
1
p ∥v1 − v2∥∞.

Lemma F.3. Qπ
Usa

p
can be approximated to ϵ tolerance with the same complexity as computing vπUsa

p

to S− 1
q ϵ.

Proof. We can compute the value function with S− 1
q ϵ tolerance. The rest of the operations are

insignificant. The result follows from above.

F.2 RPG Complexity

Let Osa
p (ϵ) be the complexity of computing vπUsa

p
with ϵ-tolerance (see [14] for more details). Calculat-

ing Q-value up to ϵ1 requires Osa
p (S− 1

q ϵ1) computations according to Lemma F.3. Letting d1 and d2
be ϵ2-approximations of dπP0,µ

and dπP0,k
respectively, their complexity is insignificant compared to

Osa
p (S− 1

q ϵ2). Now, approximating the gradient using d1, d2, Q,∇π as in Thm. 5.1 has a complexity
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of O(SA). Since the uncertainty set U is compact, all quantities are bounded. There are O(SA)
operations in Thm. 5.1, so taking ϵ1, ϵ2 = O( ϵ

SA ), we get O(ϵ) for the gradient. Hence, the total
complexity isOsa

p (S− 1
q−1A−1ϵ) which is Õ(S2A log(ϵ−1)) by hiding log factors. A similar analysis

follows for the s-rectangular case.

G Generalization to arbitrary norms

In this section, we analyze how to generalize our result to general norms that are not ℓp.

G.1 (s, a)-rectangular robust MDPs

Consider an (s, a)-rectangular uncertainty set U = Usa
∥·∥ constrained by:

Usa
∥·∥ = (P0 + P)× (R0 +R), where (P,R) = (×s,aPsa,×s,aPsa),

R(s,a) = {r ∈ R | ∥r∥ ≤ αs,a} , and P(s,a) =
{
p ∈ RS | ⟨p,1⟩S = 0, ∥p∥ ≤ βs,a

}
.

The robust Bellman operator T π
U can be evaluated as

(T π
U v)(s) =

∑
a

πs(a)
[
R(s, a)− γβs,aκ∥·∥(v) + γ

∑
s′

P (s′|s, a)v(s′)
]
,

where the variance function is defined as

κ∥·∥(v) := min
⟨u,1⟩S=0,∥u∥≤1

⟨u, vπU ⟩.

This can be used to compute the robust value function. Then the worst values can found using robust
Bellman operator T π

U and robust value function vπU as

(Pπ
U , R

π
U ) ∈ argmin

(P,R)∈U
T π
(P,R)v

π
U , [33].

It is easy to see that the worst values are given as

Rπ
U (s, a) = R0(s, a)− αs,a and Pπ

U (·|s, a) = Pπ
0 (·|s, a)− βs,auπU ,

where normalized-balanced value function uπU is a solution to

min
⟨u,1⟩S=0,∥u∥≤1

⟨u, vπU ⟩.

Observe that the worst kernel is still a rank-one perturbation of the nominal kernel. Hence, the robust
occupation measure can be obtained using Lemma 4.4 as

dπU,µ = dπP0,µ − γ
⟨dπP0,µ

, βπ⟩S
1 + γ⟨dπP0,uπ

U
, βπ⟩S

dπP0,uπ
U
, (12)

where βπ(s) =
∑

a πs(a)βs,a. The last ingredient to compute RPG is the robust Q-value which can
be computed using robust value function and worst values. However, it can be computed directly
using the following iterates:

Qn+1(s) = min
(P,R)∈U

[
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)
]

= R(s, a)− αs,a − γβs,aκ∥·∥(v) + γ
∑
s′

P (s′|s, a)v(s′),

as Qn converges to robust Q-value Qπ
U linearly.

The proofs of the above claims are very similar to the ℓp case so they are omitted. Finally, computing
the variance function κ∥·∥ and the normalized-value function uπU can be done using numerical convex
optimization methods for general norms. For the ℓp case, these can be obtained in concrete form, so
we choose to focus on ℓp in our main study.
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G.2 s-rectangular case

Generalization to s-rectangular balls of a general norm is not straightforward and may not be possible
for all types of norms. The crucial property of the ℓp-norm exploited in our rank-one perturbation
proof is ’decoupling’, that is, for all x ∈ RA×S , there must exist k, l,m ∈ R+ such that

∥x∥kp =
∑
a∈A
∥xa∥lm.

This holds in the ℓp case with k = l = m = p. Further analysis of this setting is left for future work.

G.3 Generalization to metrics and divergences

Generalizing RPG to distance or divergence-based uncertainty sets is also not obvious. Our RPG
method, in particular the robust occupation measure, crucially relies on the rank-one perturbation
characterization of the worst kernel, which might not apply for example with KL-ball constraints. We
leave this analysis for future work.

H Experiments

Parameters. All the nominal transition kernels and reward functions are generated randomly. The
number of states and the number of actions are varied. Discount factor γ = 0.9, reward noise radius
αs,a, αs = 0.1, transition noise kernel βs,a, βs = 0.01

SA .

Hardware Experiments are done on the machine with the following configuration: Intel(R) Core(TM)
i7-6700 CPU @3.40GHZ, size:3598MHz, capacity 4GHz, width 64 bits, memory size 64 GiB.

Software and codes All the experiments were done in Python using numpy, matplotlib. All codes
and results are available at https://github.com/navdtech/rpg.

Procedure and Results. All the experiments were repeated 100 times, except for Linear Programming
(LP) cases as LP methods were very time-consuming. In LP methods, experiments were repeated
5 times except for the case (S = 500, A = 100) which was done only once. As this case was
prohibitively expensive. Standard deviation in all cases was less than 10%, and typically 1 − 2%.
This conveniently illustrates the superiority of our methods over LP methods.

Observations

• Scalability of our methods. Note that our methods scale very well with large state-action
space. It takes a (small) constant times the time required by non-robust MDPs. On the other
hand, LP methods explode. Both observations confirm the theoretical time complexity.

• sa-case vs s case in LP methods. We see s-case outperforms sa-case for small state-action
spaces via LP methods. This is opposite to the theoretical time complexity of s-case which
expensive than sa-case. We believe this is due to the internal implementation issues. Note
that computing the robust value function is the most expensive step which requires evaluation
of the robust Bellman operator. In sa case, one evaluation requires solving SA LP programs
with S variables each, while for s-case, it is S LP programs with SA variables each. To
solve LP, scipy.linprog is used, we believe it does some parallelization for large LPs. Hence,
we observe less cost for sa-case. However, we observe that the cost of s-case increases
much faster than s-case, and eventually under-performing than sa-case.

H.1 RPG by LP

We compute RPG using LP in the following steps:

1. (Robust Value Iteration) Approximately compute the robust value function vπU using the
iterates vn+1 := T π

U vn. Evaluation of robust Bellman operator T π
U is done via LPs as

described below. This is the most expensive step as it requires evaluating robust Bellman
operators O(log(ϵ−1)) times, and each evaluation requires many LPs.
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2. (Adversarial Values) Compute the worst values (Pπ
U , R

π
U ) using the robust value function

from the following relation:

(Pπ
U , R

π
U ) ∈ argmin

(P,R)∈U
T π
U v

π
U .

This is also solved by LP.
3. (Policy Gradient Theorem) We now compute the RPG using policy gradient Theorem [26]

w.r.t. the adversarial values computed above, as

∂ρπU =
∑
s,a

dπPπ
U
(s)Qπ

Pπ
U ,Rπ

U
(s, a)∇πs(a).

Observe that dπP can be approximated as
∑n

n=0(γP
π)n for large n enough, and Qπ

P,R can
be approximated by dynamic programming [25]. Notably, this step and the second step are
negligible as compared to the first step.

Robust Value Iteration by LP

sa-rectangular robust MDPs. We first consider sa-rectangular L1 constrained uncertainty set
Usa
p = P ×R. Robust Bellman operator is given by

(T π
Usa

p
v)(s) = max

a
min

p∈Psa,r∈Rsa

[
r + γ

∑
s′

p(s′)v(s′)
]

︸ ︷︷ ︸
LP with S variable

.

Note that the above can be solved by A LPs as uncertainty set Usa
p = P ×R induces linear constraint

and the objective is also linear with S variables. Hence, evaluation of T π
Usa

p
v requires solving SA LPs

with S variable each.

s-rectangular robust MDPs. We now consider s-rectangular L1 constrained uncertainty set Us
p =

P ×R. Robust Bellman operator is given by

(T π
Us

p
v)(s) = min

p∈Ps,r∈Rs

∑
a

πs(a)
[
r(a) + γ

∑
s′

p(s′|a)v(s′)
]

︸ ︷︷ ︸
LP with SA variable

.

Note that the above can be solved by one LP as uncertainty set Us
p = P ×R induces linear constraint

and the objective is also linear with SA variables. Hence, evaluation of T π
Us

p
v requires solving S LPs

with SA variable each.
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