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Abstract

The lack of standardized benchmarks for reinforcement learning (RL) in sustain-
ability applications has made it difficult to both track progress on specific domains
and identify bottlenecks for researchers to focus their efforts. In this paper, we
present SustainGym, a suite of five environments designed to test the performance
of RL algorithms on realistic sustainable energy system tasks, ranging from electric
vehicle charging to carbon-aware data center job scheduling. The environments
test RL algorithms under realistic distribution shifts as well as in multi-agent set-
tings. We show that standard off-the-shelf RL algorithms leave significant room
for improving performance and highlight the challenges ahead for introducing RL
to real-world sustainability tasks.

1 Introduction

While reinforcement learning (RL) algorithms have demonstrated tremendous success in applications
ranging from game-playing, e.g., Atari and Go, to robotic control, e.g., [1–3], most RL algorithms
continue to only be benchmarked using toy environments—e.g., OpenAI Gym [4]. These toy
environments generally do not have realistic physical constraints, nor realistic environmental shifts
over time. Furthermore, these environments are generally limited to single-agent systems, whereas
real-world systems tend to involve coordination and/or competition between actors. The realism gap
limits the reliable deployment of off-the-shelf RL algorithms in real-world systems.

Developing better RL algorithms to address these challenges requires a means of empirically bench-
marking and comparing the performance of different algorithms in real-world settings. Our inspiration
comes from progress in supervised machine learning (ML), where widespread adoption of break-
through techniques was fueled by large datasets with standardized benchmarks, such as ImageNet for
computer vision [5] and the GLUE benchmark for natural language processing [6]. More recently,
many supervised learning datasets have been created to address specific real-world sustainability
challenges, such as monitoring global progress towards sustainable development goals [7].

In this work, we introduce SustainGym, a suite of 5 RL environments that realistically model
sustainability settings, summarized in Table 1:
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Table 1: Summary of environments included in SustainGym and their features. The “Single agent”
and “Multi-agent” rows indicate what an individual RL agent controls in that environment.

Env EVChargingEnv ElectricityMarketEnv DatacenterEnv CogenEnv BuildingEnv

Control
task

charging rates for
EV charging
stations

market bids for a
grid-connected
battery storage
system

virtual capacity
curve for a
carbon-aware
data center

dispatch set
points for
turbines

heating supply for
buildings

Modeled
after

charging
networks at
Caltech & JPL

generic test case
(IEEE
RTS-GMLC)

(loosely) a
Google data
center

specific combined
cycle gas
generation plant
in the U.S.

generic DoE
commercial
reference
building models

Single
agent

all EV charging
stations

single battery
system

single data center all 4 turbine units all buildings

Multi-
agent

one EV charging
station,
cooperative

N/A N/A one turbine unit,
cooperative

one room,
cooperative

Actions discrete or
continuous

discrete or
continuous

continuous mixed discrete &
continuous

discrete or
continuous

Rewards cost + CO2 cost + CO2 penalty + CO2 cost + CO2 temperature
difference +
energy use

Distribution
shift

MOER, EV
arrivals

MOER, load MOER renewable wind
penetration

outdoor
temperature

• EVChargingEnv models the problem of scheduling electric vehicle (EV) charging to meet
user needs while minimizing CO2 emissions.

• ElectricityMarketEnv models a grid-scale battery storage system bidding into the elec-
tricity market to generate profit (through price arbitrage) and reduce CO2 emissions.

• DatacenterEnv models a datacenter deciding on a “virtual capacity curve” to shift flexible
jobs towards times of day with lower CO2 emissions.

• CogenEnv models a combined cycle cogeneration plant producing steam and electricity to
meet local demand while minimizing fuel usage and ramp costs.

• BuildingEnv models the thermal control of building energy systems to reduce the total
electricity consumption while satisfying the user-specified temperature requirement.

A key feature of SustainGym environments is their support for testing RL algorithms under realistic
and natural exogenous distribution shifts, which generally fall under two categories:

1. Shifts in demand. In each environment, RL agents choose actions to satisfy some “demand”
that is often affected by the behavior of unmodeled agents. For example, in EVChargingEnv,
the demand is the amount of energy that needs to be delivered to EVs that have arrived
at the charging network. This demand changed significantly at the start of the COVID-19
pandemic when EV drivers changed their driving behaviors (Figure 2).

2. Shifts in environmental parameters. Real-world environments are rarely static, and Sus-
tainGym environments reflect changing environment parameters due to temporal and/or
climate changes. For example, a battery storage controller for ElectricityMarketEnv
makes decisions to minimize marginal CO2 emissions, but the distribution of CO2 emissions
varies over time as power plants are added to or removed from the electric grid (Figure 1).

Notably, the distribution shifts reflected in SustainGym are unlike the “sim-to-real” or offline-vs-
online RL distribution shifts that have been more commonly studied in the literature. The sim-to-real
distribution shift comes from imperfect modeling of the environment, whereas the offline-to-online
RL distribution shift is caused by a change in the policy used to generate trajectories. In contrast,
the exogenous distribution shifts in SustainGym are not due to imperfect environments nor policy
mismatches, but rather more fundamental changes in the transition dynamics of the Markov decision
processes. Note that only the transition dynamics experience distribution shift; the state space, action
space, and reward functions do not change.

Two other similar lines of work to the distribution shifts in SustainGym are nonstationary RL
environments [8] and distributionally robust RL [9]. However, whereas nonstationary RL typically
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Figure 1: (left) MOER values from two different regions (a.k.a. “balancing authorities”) in California,
Pacific Gas & Electric (PGE) and Southern California Edison (SCE). Solid line is the mean MOER
over all days in a month at a given time of day. Shaded region is ±1 std. dev. (right) MOER forecast
error increases with the forecast horizon.

evaluates an RL agent’s performance over the course of a changing environment, SustainGym
benchmarks RL agents’ ability to generalize to new (unseen) distribution shifts. Distributionally
robust RL generally assumes that the set of environmental distributions are known at training time,
which is not necessarily the case for the settings considered in SustainGym.

In addition to modeling realistic distribution shifts, SustainGym is distinctive for its inclusion
multi-agent interactions, physical constraints, and mixtures of discrete and continuous actions, as
summarized in Table 1.

To demonstrate the use of the SustainGym, we perform experiments with off-the-shelf RL algorithms.
We find that these algorithms have mixed performance on SustainGym. Furthermore, we show that
distribution shifts may reduce the performance of these algorithms significantly, demonstrating a
need for more robust algorithms. Finally, comparisons against non-RL baselines and oracles show
that RL has significant room for improvement.

Due to page constraints, the main text of this paper summarizes key design choices and experimental
observations for SustainGym. Details can be found in Appendix B. Code, licenses, and instructions
for using SustainGym can be found on GitHub.1

Related Work. Prior work related to SustainGym includes ConservationGym, which focuses on
ecological applications [10], PowerGridWorld for power system modeling and simulation [11], and
CityLearn for simulation of demand response and urban energy management [12], among others. RL
environments and algorithms for both EV charging [13–15] and electricity markets [16–18] have also
been released. Compared to these works, the unique aspects of SustainGym are its focus on tracking
estimated CO2 emissions and its ability to test RL algorithms in settings with challenging distribution
shifts, physical constraints, and interactions between multiple agents. We expect SustainGym to serve
as a benchmark for the progress of RL algorithm development for sustainable energy systems.

2 Environments

This section introduces the 5 environments in SustainGym and summarizes their design choices.

Marginal CO2 emissions. Three environments (EVChargingEnv, ElectricityMarketEnv,
DatacenterEnv) impose a cost PCO2

(in $/kgCO2) on the simulated CO2 emissions induced by the
actions of an agent as a result of changes in electricity consumption. To do so, our environments use
data on California’s historical marginal operating emissions rate (MOER, in kgCO2/kWh), which
is the increase in CO2 emissions per increase in energy demand. The MOER at time t is denoted
mt ∈ R+, and the forecasts generated at time t for the next k time steps are denoted m̂t:t+k−1|t ∈ Rk.
By default, we use k = 36. Figure 1 shows how MOER values and their forecasts vary across time
and between different regions in California.

1https://github.com/chrisyeh96/sustaingym/
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Figure 2: EV arrival vs. departure times for the Caltech EV charging network. Historical data is in
blue, and log-likelihood contours from a 30-component GMM are in orange. The distribution of EV
arrival and departure times changed noticeably when the COVID-19 pandemic began in early 2020.

2.1 EVChargingEnv

EVChargingEnv uses ACNSim [13] to simulate the charging of EVs based on actual data gathered
from EV charging networks between fall 2018 and summer 2021 [19, 20]. ACNSim is a “digital twin”
of actual EV charging networks at Caltech and JPL, which have n = 54 and 52 charging stations
(abbrv. EVSEs, Electric Vehicle Supply Equipment), respectively. ACNSim accounts for nonlinear
EV battery charging dynamics and unbalanced 3-phase AC power flows, and is thus very realistic.
ACNSim (and therefore EVChargingEnv) can be extended to model other charging networks as well.
When drivers charge their EVs, they provide an estimated time of departure and amount of energy
requested. Because of network and power constraints, not all EVSEs can simultaneously provide
their maximum charging rates (a.k.a. “pilot signals”).

Each episode starts at midnight and runs at 5-minute time steps for 24 hours. At each time step, the
agent simultaneously decides all n EVSE pilot signals to be executed for the duration of that time
step. Its objective is to maximize charge delivery while minimizing carbon costs and obeying the
network and power constraints.

Observation Space. An observation at time t is s(t) = (t, d, e,mt−1, m̂t:t+k−1|t). t ∈ [0, 1] is the
fraction of day. d ∈ Zn is estimated remaining duration of each EV (in # of time steps). e ∈ Rn

+ is
remaining energy demand of each EV (in kWh). If no EV is charging at EVSE i, then di = 0 and
ei = 0. If an EV charging at EVSE i has exceeded the user-specified estimated departure time, then
di becomes negative, while ei may still be nonzero.

Action Space. EVChargingEnv exposes a choice of discrete actions a(t) ∈ {0, 1, 2, 3, 4}n, repre-
senting pilot signals scaled down by a factor of 8, or continuous actions a(t) ∈ [0, 1]n representing
the pilot signal normalized by the maximum signal allowed M (in amps) for each EVSE. Physical
infrastructure in a charging network constrains the set At of feasible actions at each time step t
[20]. Furthermore, the EVSEs only support discrete pilot signals, so At is nonconvex. To satisfy
these physical constraints, EVChargingEnv can project an agent’s action a(t) into the convex hull of
At and round it to the nearest allowed pilot signal, resulting in final normalized pilot signals ã(t).
ACNSim processes ã(t) and returns the actual charging rate Mā ∈ Rn

+ (in amps) delivered at each
EVSE, as well as the remaining demand ei(t+ 1).

Reward Function. The reward function is a sum of three components: r(t) = p(t)−cV (t)−cC(t).
The profit term p(t) aims to maximize energy delivered to the EVs. The constraint violation cost
cV (t) penalizes network and power constraint violations. Finally, the CO2 emissions cost cC(t),
which is a function of the MOER mt and charging action, aims to reduce emissions by encouraging
the agent to charge EVs when the MOER is low.

Distribution Shift. EVChargingEnv supports real historical data as well as data sampled from a
30-component Gaussian Mixture Model (GMM) fit to historical data. We fitted GMMs to 4 disjoint
historical periods, as defined in [21]. Figures 2 and 6 show the distribution of arrival and departure
times in each of these 4 periods, for both the historical data as well as the GMM log-likelihoods.
From these figures, it is evident that the pattern of user arrival and departure times changes over
time, with the most drastic shift happening between Fall 2019 and Spring 2020, which is when the
COVID-19 pandemic began.
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Multiagent Setting. The multiagent setting features n agents, each deciding the pilot signal for a
single EVSE. The reward is split evenly among the agents. Each agent obtains the global observation,
except that the estimated remaining durations and energy demands for other EVSEs are delayed by
td time steps.

2.2 ElectricityMarketEnv

ElectricityMarketEnv simulates a realtime electricity market for 33 generators and 1 80MWh
battery storage system connected on a 24-bus congested transmission network based on the widely-
used IEEE RTS-24 test case [22], with 5-minute settlements and load data from IEEE RTS-GMLC
[23]. While ElectricityMarketEnv is not modeled after any particular real-world transmission
network, the RTS-GMLC electricity load profile was designed to be representative of a modern
transmission network located in the southwestern U.S.

All participants submit bids to the market operator (MO) at every time step. Based on the bids,
the MO solves the multi-timestep security-constrained economic dispatch (SCED) problem which
determines the price and amount of electricity purchased from (or sold by) each generator and battery
to meet realtime electricity demand. Each episode runs for 1 day, with 5-minute time intervals. The
agent controls the battery system and is rewarded for submitting bids that result in charging (buy)
when prices are low, and discharging (sell) when prices and CO2 emissions are high, thus performing
price arbitrage.

Observation Space. An observation is s(t) = (t, e, a(t −
1), xt−1, pt−1, lt−1, l̂t:t+k−1,mt−1, m̂t:t+k−1|t). t ∈ [0, 1] represents the time of day. e ∈ R+ is the
agent’s battery level (in MWh). a(t − 1) ∈ R2×k

+ is the previous action taken. xt−1 ∈ R is the
previous dispatch (in MWh) asked of the agent. pt−1 ∈ R+ is the previous price experienced by the
agent (in $/MWh). lt−1 ∈ R+ is the previous demand experienced by the agent (in MWh), while
l̂t:t+k−1 ∈ Rk is the forecasted demand for the next k steps.

Action Space. An agent action is a bid a(t) = (ac, ad) ∈ Rk
+ × Rk

+, representing prices ($/MWh)
that the agent is willing to pay (or receive) for charging (or discharging) per MWh of energy, for the
next k + 1 time steps starting from time t. The generators are assumed to always bid their fixed true
cost of generation. The environment solves the optimal dispatch problem to determine the electricity
price pt and the agent’s dispatch xt ∈ R, which is the amount of energy that the agent is obligated to
sell into or buy from the grid within the next time step. The dispatch in turn determines the storage
system’s next energy level. We also provide a wrapper that discretizes the action space into 3 actions
only: charge, do nothing, or discharge.

Reward Function. The reward function encourages the agent to maximize profit from charging
decisions while minimizing associated carbon emissions. It is a sum of three components: r(t) =
rR(t) + rC(t)− cT (t). The revenue term rR(t) = ptxt is the immediate revenue from the dispatch.
The CO2 emissions reward term rC(t) = PCO2

mtxt represents the price of CO2 emissions displaced
or incurred by the battery dispatch. The terminal cost cT (t), which is nonzero only when t = T ,
encourages the battery to have the same energy level at the end of the day as when it started. We also
provide an option to delay all reward signals until the terminal time (intermediate rewards are 0).

Distribution Shift. Distribution shift for ElectricityMarketEnv comes from changes in both
electricity demand and MOER profiles between summer and winter months.

2.3 DatacenterEnv

DatacenterEnv is a simulator for carbon-aware job scheduling in datacenters, which aims to reduce
the carbon emissions associated with electrcity usage in a datacenter. Carbon-aware job scheduling is
premised upon two facts: (i) a significant fraction of a datacenter’s workload (e.g., up to 50% in some
of Google datacenters [24, 25]) is comprised of low priority jobs whose execution can be delayed,
and (ii) the carbon intensity of the electric grid fluctuates predictably over time. Therefore, if the
execution of low priority workload is delayed to a time of day with “greener” energy, the datacenter’s
carbon emissions can be minimized.

DatacenterEnv is loosely modeled after a Google datacenter. We assume that jobs are scheduled
according to a priority queue, with jobs spread evenly across the available machines. Following

5



0h 4h 8h 12h 16h 20h 0h
Time of day

0

200

400

600

En
er

gy
 d

em
an

d 
(M

W
)

0h 4h 8h 12h 16h 20h 0h
Time of day

0

200

400

600

En
er

gy
 d

em
an

d 
(M

W
)

0h 4h 8h 12h 16h 20h 0h
Time of day

250

500

750

1000

1250

St
ea

m
 d

em
an

d 
(k

lb
/h

r)

Figure 3: Electricity demand without (left) and with wind (middle), and steam demand (right) on a
15 minute basis for 253 days in CogenEnv dataset, with 6 random traces highlighted for each.

Radovanovic et al. [26], we implement workload execution delay by artificially limiting the total
datacenter capacity with a virtual capacity curve (VCC) at each time step. If more jobs are enqueued
than the VCC permits, then the jobs must wait until the VCC is raised high enough to allow the jobs
to run. Simulation is carried out by replaying a sample of real job traces from a Google cluster from
May 2019 [25]. One timestep in the environment corresponds to one hour, and each episode lasts the
whole month.

Observation Space. An observation s(t) = (a(t− 1), dt, n, m̂t:t+23|t) ∈ R27 contains the active
VCC a(t− 1) set from the previous time step, currently running compute load dt, number of jobs
waiting to be scheduled n, as well as the forecasted MOER for the next 24h m̂t:t+23|t.

Action Space. At time t, the agent sets the VCC, a(t) ∈ [0, 1], for the next time step. This action
denotes the fraction of the datacenter’s maximum capacity allowed to be allocated by the scheduler.

Reward Function. The reward consists of two components that encourage the agents to trade-off
between scheduling more jobs and reducing associated carbon emissions. The first component
penalizes the agent when jobs are scheduled more than 24h after they were originally submitted. The
second component is a carbon emissions cost. Formally, the reward is specified as

r(t) = dt ·mt + 1[t%24=0] max

(
0, 0.97wt − C

23∑
h=0

a(t− h)

)
where dt ·mt is the carbon emissions, C is the datacenter’s maximum capacity, and wt is the total
job-hours of enqueued jobs on that day.

Distribution Shift. The distribution shift in DatacenterEnv comes from changes in the MOER
between 2019 and 2021.

2.4 CogenEnv

CogenEnv simulates the operation of a combined cycle gas power plant tasked with meeting local
steam and energy demand. Conventional dispatchable generators suffer decreased efficiency as a result
of frequent ramping, posing a particular challenge as increasing penetrations of variable renewables
necessitate larger and more frequent ramps to ensure supply-demand balance. Thus, optimal operation
of cogeneration resources requires balancing the competing objectives of minimizing fuel use,
anticipating future ramp needs, and ensuring delivery of sufficient energy and steam to the grid.

While CogenEnv models a specific combined cycle gas generation plant in the U.S. (anonymized and
location withheld for security reasons), the basic environment setup is a representative prototype of
more general dispatchable resource generation control tasks, due to its complexity (the number of
variables, mixed continuous/binary decisions, complementary trains of the plant all needing to be
controlled together). In addition, the environment is readily modifiable to accommodate other cost
structures (e.g., changing the relative magnitude of the constraint penalties vs. the ramping cost).

Observation Space. An observation takes the form

s(t) = (τ, a(t− 1), Tt:t+k, Pt:t+k, Ht:t+k, d
p
t:t+k, d

q
t:t+k, π

p
t:t+k, π

f
t:t+k),

where τ = t/96 is the time (normalized by number of 15 minute intervals in a day), a(t− 1) is the
agent’s previous action, Tt:t+k, Pt:t+k, and Ht:t+k are current and k forecast steps of temperature,
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pressure, and relative humidity, respectively, dpt:t+k and dqt:t+k are current and k forecast steps of
electricity and steam demand, respectively, and πp

t:t+k and πf
t:t+k are current and k forecast steps of

electricity and fuel price, respectively.

Action Space. The action space is a vector a(t) ∈ R15 specifying dispatch setpoints and other
auxiliary variables for all turbines in the plant. Specifically, for each of three gas turbines, the agent
specifies (a) a scalar turbine electricity output, (b) a scalar heat recovery steam flow, (c) a binary
evaporative cooler switch setting, and (d) a binary power augmentation switch setting. In addition,
for the steam turbine, the agent specifies (a) a scalar turbine electricity output, (b) a scalar steam flow
through the plant condenser, and (c) an integer number of cooling tower bays employed.

Reward Function. The reward function is comprised of three components:
r(t) = − (rf (a(t);Tt, Pt, Ht) + rr(a(t); a(t− 1)) + rc(a(t); d

p
t , d

q
t )) .

rf (a(t);Tt, Pt, Ht) is the generator fuel consumption in response to dispatch a(t). rr(a(t); a(t− 1))
is the ramp cost, captured via an ℓ1 norm penalty for any change in generator electricity dispatch
between consecutive actions. rc(a(t); d

p
t , d

q
t ) is a constraint violation penalty, penalizing any unmet

electricity and steam demand, as well as any violation of the plant’s dynamic operating constraints.
The sum of these three components is negated to convert costs to rewards.

Distribution Shift. CogenEnv considers distribution shifts in the renewable generation profiles,
and specifically, increasing penetration of wind energy. This increased variable renewable energy
on the grid necessitates more frequent ramping in order to meet electricity demand, and may pose a
challenge for RL algorithms trained on electricity demand traces without such variability.

Multiagent Setting. The multiagent setting treats each turbine unit (each of the three gas turbines
and the steam turbine) as an individual agent whose action is the turbine’s electricity dispatch decision
and auxiliary variable settings. The negative reward of each agent is the sum of the corresponding
turbine unit’s fuel consumption, ramp cost, and dynamic operating constraint penalty, as well as a
shared penalty for unmet electricity and steam demand that is split evenly across agents. All agents
observe the global observation.

2.5 BuildingEnv

BuildingEnv considers the control of the heat flow in a multi-zone building so as to maintain a
desired temperature setpoint. Building temperature simulation uses first-principled physics models.
Users can either choose from a pre-defined list of buildings (Office small, School primary, Apartment
midrise, and Office large) and three climate types and cities (San Diego, Tucson, New York) provided
by the Department of Energy (DoE) Building Energy Codes Program [27] or define a customized
BuildingEnv environment by importing any self-defined EnergyPlus building models. Each episode
runs for 1 day, with 5-minute time intervals (H = 288, τ = 5/60 hours).

Observation Space. For a building with M indoor zones, the state s(t) ∈ RM+4 contains observ-
able properties of the building environment at timestep t:

s(t) = (T1(t), . . . , TM (t), TE(t), TG(t), Q
GHI(t), Q̄p(t)),

where Ti(t) is zone i’s temperature at time step t, Q̄p(t) is the heat acquisition from occupant’s
activities, QGHI(t) is the heat gain from the solar irradiance, and TG(t) and TE(t) denote the ground
and outdoor environment temperature. In practice, the agent may have access to all or part of the
state variables for decision-making depending on the sensor setup. Note that the outdoor/ground
temperature, room occupancy, and heat gain from solar radiance are time-varying uncontrolled
variables from the environment.

Action Space. The action a(t) ∈ [−1, 1]M sets the controlled heating supplied to each of the M
zones, scaled to [−1, 1].

Reward Function. The objective is to reduce energy consumption while keeping the temperature
within a given comfort range. The default reward function is a weighted ℓ2 reward, defined as

r(t) = −(1− β) ∥a(t)∥2 − β∥T target(t)− T (t)∥2
where T target(t) = [T target

1 (t), . . . , T target
M (t)]⊤ are the target temperatures and T (t) =

[T1(t), . . . , TM (t)]⊤ are the actual zonal temperatures. BuildingEnv also allows users to cus-
tomize reward functions by changing the weight term β or the parameter p defining the ℓp norm.
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Table 2: Distribution shift experiments
Environment What shifts Original setting Shifted setting

EVChargingEnv EV sessions, MOER Summer 2019 Summer 2021
DatacenterEnv MOER May 2019 May 2021
CogenEnv Wind penetration 0 MW wind 300 MW wind
BuildingEnv Ambient temperature Summer 2004 Winter 2003

Users can customize the reward function to consider CO2 emissions and temperature constraints such
as upper and lower temperature bounds.

Distribution Shift. BuildingEnv features distribution shifts in the ambient outdoor temperature
profile TE which varies with different seasons. BuildingEnv supports the distribution shifts due to
the variation of seasons, located cities of the buildings, and can examine the challenges brought by
such shifts in the RL environment.

Multiagent Setting. In the multiagent setting for BuildingEnv, each agent controls the heating
action for a single zone in the building. It must coordinate with other agents to maximize overall
reward. Each agent obtains the same global observation and reward.

3 Experiments

For each of the 5 environments in SustainGym, we implemented baseline non-RL algorithms as
well as off-the-shelf RL algorithms trained using either RLLib [28] or Stable-Baselines3 (SB3) [29].
For most environments, we tested off-policy soft actor-critic (SAC) [30] and on-policy proximal
policy optimization (PPO) [31]. Note that neither RLLib nor SB3 has an implementation of SAC that
supports mixed discrete and continuous actions, as found in CogenEnv. For EVChargingEnv, we
also tested multi-agent implementations of PPO and SAC, where the same policy is shared across
agents. Non-RL algorithms tested include random policies and model predictive control (MPC),
which is a model-based controller. Detailed descriptions of the implementations for each algorithm,
including hyper-parameter tuning, are given in Appendix B. Finally, to test distribution shift, we
trained RL agents in both “original” and “shifted” environments, then compared their performance
on the shifted environment, as described in Table 2.

4 Discussion and Conclusion

Our experiments, shown in Figure 4, demonstrate a wide range of outcomes for off-the-shelf RL
algorithms, with no single algorithm outperforming all the rest. In EVChargingEnv, for example,
most of the RL algorithms perform no better than random actions, with the exception of multi-agent
PPO with discrete actions. On DatacenterEnv and BuildingEnv, we notice a wider spread of
returns across the different RL algorithms. In contrast, model-based MPC algorithms, where available,
tend to perform more consistently than most RL algorithms.

In terms of distribution shift, we see a wide range of outcomes between agents trained on the
original environments versus the shifted environments. Surprisingly, in CogenEnv, both single-
agent and multi-agent policies trained on the shifted environment perform worse on the shifted
environment than agents trained on the original environment. We believe this result may be due to
the increased variability of shifted environment, making the shifted environment harder to learn in.
In DatacenterEnv, the shift in MOER values shows essentially no effect on agent performance.
In EVChargingEnv, agents trained on the shifted environment generally perform slightly better
than agents trained on the original environment. In BuildingEnv, agents trained on the shifted
environment perform much better.

These results highlight that the distribution shifts present in SustainGym environments provide
substantial opportunities for future research, including robust RL algorithms [32] as well as online
learning under distribution shift. Developing RL algorithms that are robust to these natural distribution
shifts will be critical for deploying RL in the real-world high-impact sustainability settings such as
those modeled by SustainGym environments.
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Figure 4: Experimental results for all 5 environments comparing performance on the shifted environ-
ment between RL algorithms trained on the original environment (blue) and RL algorithms trained
on the shifted environment (orange). Policies using discretized actions are indicated with “-d”, and
multi-agent policies are prefixed with “MA-”. For a complete description of the experiments, please
see Appendix B.

Multi-agent RL. SustainGym is currently designed to support multi-agent RL in 3 environments,
with the goal of upgrading all environments with multi-agent support in the future. In the two
environments for which we tested multi-agent RL policies (EVChargingEnv and CogenEnv), the
multi-agent PPO (MA-PPO) policies out-performed all other RL policies. We suspect that this may
be because the action spaces in these environments factorize well across agents, so the multi-agent
policies can learn more efficiently. Furthermore, we suspect that multi-agent policies may have
the potential of performing better under distribution shift, since their environments are naturally
non-stationary during training. We notice this to be true for both EVChargingEnv and CogenEnv: of
the RL policies trained on the original environments, the multi-agent policies performed best when
tested on the shifted environment.

Future work. SustainGym is under active development, with several key directions of future work:

• Comprehensive support for multi-agent RL. Currently, only 3 out of the 5 environ-
ments support multi-agent RL. We are working to extend the two other environments
ElectricityMarketEnv and DatacenterEnv to the multi-agent RL setting. For
ElectricityMarketEnv, we plan on introducing multiple batteries into the same trans-
mission network, each controlled by separate competing agents. This will be the first

9



competitive multi-agent RL environment in SustainGym. (All other environments feature
cooperative multi-agent RL.) For DatacenterEnv, we plan on introducing multiple datacen-
ters spread across geographic regions to enable both temporal and geographic carbon-aware
load shifting. Each datacenter would be its own agent.

• Different degrees of distribution shift. Currently, SustainGym environments feature a binary
choice of distribution shift: an original environment, and a shifted environment. We plan on
introducing more settings with varying degrees of distribution shift.

• More environments. We welcome new environment ideas and contributions to SustainGym
and are working with potential collaborators to extend the scope of environments.

Limitations We conclude by acknowledging general limitations of SustainGym. First, SustainGym
only captures very limited dimensions of sustainability (i.e., energy and CO2 emissions) and does not
account for other aspects such as water usage and other pollutants associated with energy production.
We welcome collaboration with experts in these other sustainability domains to help us improve the
sustainability mission of SustainGym. Second, SustainGym is limited in the types of distribution
shifts that are considered. Finally, while SustainGym environments have been designed to be
reasonably representative of various sustainable energy settings, there is inevitably a gap between
SustainGym simulations and actual hardware systems. A detailed discussion of the representativeness,
generalizability, and limitations of each environment can be found in Appendix B.
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Appendix

A Metadata

A.1 Hosting and maintenance

SustainGym is hosted as a Python package on GitHub and PyPI. SustainGym is semantically
versioned, and the version accompanying this publication is designated v1.0.

A guide for contributors is available in the GitHub repo.

The following authors are the maintainers for each environment in SustainGym:

• Christopher Yeh: EVChargingEnv, ElectricityMarketEnv, DatacenterEnv
• Nicolas Christianson: CogenEnv
• Chi Zhang: BuildingEnv

A.2 Licenses and responsibility

SustainGym as a whole is released under a CC BY 4.0 license.2 However, the CogenEnv and
accompanying code is released under a more restrictive CC BY-NC-SA 4.0 license,3 per the terms of
the model provider Enexsa. These licenses are available in our GitHub repo.

The authors bear all responsibility in case of violation of rights. SustainGym does not contain any
personally identifiable data, nor any offensive content.

A.3 Compute requirements

The experiments for this paper were run on Amazon AWS virtual machines, Google Colab notebooks,
as well as a Caltech internal compute cluster. Most of these compute resources featured NVIDIA
GPUs.

A.4 Intended uses

SustainGym is intended as a testbed for RL algorithms in sustainability-focused energy systems.
While significant efforts have been undertaken to make the SustainGym environments closely match
real-world systems, performance on SustainGym environments is not a guarantee of performance on
real-world systems.

B Environment and Experiment Details

B.1 EVChargingEnv

Assumptions. In addition to the description given in Section 2.1, EVChargingEnv makes the
following assumptions:

• EVs staying overnight can be ignored. Upon the start of each episode, we assume the garage
is empty. Analysis of historical traces on the adaptive charging network show that at most
12 cars at one time stay through midnight. Because this number is small compared to the
number of stations, we do not expect the assumption of an empty garage at the start of
the day to significantly impact the accuracy of the environment in representing real-world
settings.

• All EVs have identical batteries. Because ACN-Data does not include data on the model
of each EV, yet ACN-Sim models battery charging dynamics which vary based on battery
capacity, we assume that all EVs contain 100 kWh batteries and come with an initial state
of charge such that if the EV were charged to the amount of the user-requested energy, the
battery would be full. Energies requested over 100 kWh are capped at 100 kWh. We use the
Linear2StageBattery battery model within ACN-Sim.

2https://creativecommons.org/licenses/by/4.0/
3https://creativecommons.org/licenses/by-nc-sa/4.0/
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Thus, each historical charging session includes time of EV arrival, estimated departure, actual
departure, energy delivered, and EVSE ID.

Feasible action space. Let L denote physical infrastructure resources (e.g., transformers or break-
ers) in the charging network. These infrastructure resources are characterized by (A, ϕ, c, v) where
A ∈ R|L|×n accounts for the charging network layout, ϕ ∈ Rn is the voltage phase angle of each
EVSE, c ∈ R|L| is the capacity limit for each resource, and v ∈ R+ is the EVSE voltage (in kV).
Along with the demand at each EVSE, (A, ϕ, c) defines the time-dependent set of valid actions At.
Lastly, let M = 32 denote the maximum allowed pilot signal (in amps) for each EVSE.

When an agent gives the environment its desired normalized pilot signals a(t) ∈ [0, 1], the projection
into the convex hull of At is performed by solving the following convex optimization problem:

min
â∈Rn

∥a(t)− â∥2 (1a)

s.t. 0 ≤ âi ≤ 1 ∀i ∈ {1, . . . , n} (1b)
Mâivτ ≤ ei ∀i ∈ {1, . . . , n} (1c)∣∣∣∣∣

n∑
i=1

AliMâie
jϕi

∣∣∣∣∣︸ ︷︷ ︸
|Il|

≤ cl ∀l ∈ L (1d)

Here, j =
√
−1 is the imaginary number and Il is the aggregate current through constraint l ∈ L.

The quantity Mâivτ computes the energy (in kWh) to be charged from EVSE i during the next time
step. The continuous pilot signals Mâ are then rounded to the set of discrete pilot signals supported
by each EVSE, resulting in the final pilot signals Mã(t).

Reward function. The profit term p(t) aims to maximize the amount of energy delivered to the
EVs. Let π ∈ R+ denote a fixed marginal profit (in $/kWh) that the EV charging network earns for
each unit of energy delivered and v ∈ R+ be the voltage (in kV) of the charging network. Then,

p(t) = π

n∑
i=1

Māivτ = πMā⊤1vτ

where 1 denotes a vector of all ones. The constraint violation cost cV (t) aims to reduce physical
constraint violations and encourage the agent’s action a(t) to be in At. We penalize violation costs
with a weight λV (in $/kWh), so

cV (t) = λV

∑
l∈L

max{Il(t)− cl, 0}vτ

where Il is the electrical current and cl is the maximum current capacity at resource l. By default, we
set λV = 0.01.

Finally, the CO2 emissions cost cC(t) aims to reduce emissions by encouraging the agent to charge
EVs when the MOER is low. We have

cC(t) = PCO2
mt

n∑
i=1

Māivτ = PCO2
mtMā⊤1vτ

Model predictive control (MPC). As a baseline non-RL algorithm, we consider a model predictive
control (MPC) controller similar to what is proposed in [20]. Let w ≤ k denote the length of the
lookahead window (up to the number of MOER forecast steps k). Then, at every time step t, the
MPC controller solves the following optimization problem:
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max
a0,...,aw−1∈Rn

w−1∑
k=0

(π − PCO2
m̂t+k|t)Mak⊤1vτ (2a)

s.t. 0 ⪯ ak ⪯ 1 ∀k ∈ {0, . . . , w − 1} (2b)
w−1∑
k=0

Makvτ ⪯ e (2c)

aki = 0 ∀i ∈ {1, . . . , n}, k ≥ di (2d)∣∣∣∣∣
n∑

i=1

AliMaki e
jϕi

∣∣∣∣∣︸ ︷︷ ︸
|Il|

≤ cl, ∀l ∈ L, k ∈ {0, . . . , w − 1} (2e)

The optimization problem plans pilot signals for the next w time steps to maximize revenue and
minimize forecasted carbon emissions cost. (2c) ensures that the pilot signals do not over-charge the
EVs. (2d) prevents charging EVs after their estimated departure times. (2e) is the usual infrastructure
constraint.

Only the first planned pilot signal Ma0 is used. It is rounded to the set of discrete pilot signals
supported by each EVSE, resulting in the final pilot signal Mã(t). On the next time step, the MPC
algorithm resolves the optimization problem. Figure 4a shows the distribution of returns for “MPC-3”,
which sets w = 3.

Training. The entire summer 2021 period [21] was selected as the testing period. We performed
three splits: 1) by RL algorithm (PPO and multi-agent PPO vs. SAC and multi-agent SAC), 2)
continuous vs. discrete action space, and 3) training data generated by GMMs based on out-of-
distribution data (summer 2019) vs. in-distribution data (summer 2021). In each of the four cases,
we used action projection during training and testing, eliminating costs of network violations. We
tested 3 learning rates for each algorithm: PPO (5e-6, 5e-5, 5e-4) and SAC (1e-2, 1e-3, 1e-4). These
learning rates were chosen as the default RLLib learning rates for each algorithm, scaled by factors
of 10, 1, and 0.1. For each learning rate, three different random seeds were tested, and the model
with the best training performance was selected.

Representativeness and Generalizability As mentioned in Section 2.1, EVChargingEnv is based
on the actual EV charging networks in place at Caltech and the Jet Propulsion Laboratory (JPL), both
located in Pasadena, California, U.S.A. EVChargingEnv uses a “digital twin” of these networks,
called ACN-Sim [13], as well as real historical EV charging data [19], in the simulation of the RL
environment. While different EV charging networks may have different constraints, the adaptive EV
charging problem is similar across all networks (i.e., deciding pilot signals for EVSEs to maximize
energy delivery while minimizing costs and satisfying network and power constraints). In this
way, EVChargingEnv is very representative of this type of control task. Furthermore, the code for
ACN-Sim is open-source and well-documented,4 which allows EVChargingEnv to be extended to
model other charging networks as well.

Limitations As mentioned under “Assumptions” above, EVChargingEnv uses some simplifying
assumptions, in part because of limited data availability. Furthermore, the reward function in
EVChargingEnv currently assigns a fixed marginal profit per unit of energy delivered to an EV,
whereas larger EV charging networks are often affected by time-varying wholesale electricity prices.
Finally, electricity grid failures and communication failures are not modeled in EVChargingEnv.

B.2 ElectricityMarketEnv

System Model and Motivation. ElectricityMarketEnv aims to simulate grid-scale battery
storage systems participating in an energy market for a regional transmission network. A battery has

4https://acnportal.readthedocs.io/
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Table 3: ElectricityMarketEnv parameters. The k-th entry of a vector gt is denoted gk,t.
Param. Domain Unit Description

t [1, . . . , T ] 5 min index of real-time interval (usually 5-15 min)
T Z+ number of periods in each epoch, typically 1 day

for 5 min intervals
h {0, 1, . . . , T} length of the lookahead horizon
τ [t, . . . , t+ h] 5 min index of the interval in each multi-interval looka-

head subproblem

N Z+ number of nodes in network
M Z+ number of lines in the network
NG Z+ number of generators
ND Z+ number of loads
NB Z+ number of batteries
i [1, . . . , N ] index of node
j [1, . . . ,M ] index of line
k [1, . . . , NG, ND, NB ] index of generator, load, or battery
B RM×M

+ Ω−1 network susceptance matrix
C {−1, 0, 1}N×M node-line network incidence matrix
Σ {−1, 0, 1}N×(ND+NG+2NB) participant-to-node mapping matrix
H RM×N generation shift factor matrix
fmax RM

+ MVA maximum power flow along each line

d̂t RND MW vector of predicted (average) load in interval t
g,g RNG

+ MW min/max generation limits (assumed to be time
invariant)

bc,bd RNB
+ MW max charge/discharge limits (assumed to be time

invariant)
x,x RNB

+ MWh min/max state of charge limits (assumed to be time
invariant)

xf RNB
+ MWh final state of charge required at interval T

x0 RNB
+ MWh initial state of charge at beginning of epoch

ηc
k, ηd

k (0, 1] charge and discharge efficiency of battery k
cgk,t R+ $/MWh marginal cost of generator k in interval t
cb,ck,t R+ $/MWh marginal cost of battery k charging in interval t
cb,dk,t R+ $/MWh marginal cost of battery k discharging in interval t

two objectives: make profit from price arbitrage (buy low, sell high) while minimizing its associated
CO2 emissions. The CO2 emissions are accounted for when both charging and discharging:

• When a battery charges energy from the grid, it incurs the CO2 emissions associated with
grid’s current marginal emissions rate (MOER).

• When a battery discharges energy into the grid, it offsets other generators that would have
had to supply more electricity, thereby reducing CO2 emissions commensurate with the
grid’s current MOER.

Network congestion refers to physical limits on transmission line capacity that prevent a generator
from supplying electricity to a load at an arbitrary bus (a.k.a. “node”) on the network. Such constraints
lead to inefficiencies but are present in almost all real-world transmission networks. Thus, modeling
these transmission constraints is important for ensuring electricity grid reliability.

The parameters of ElectricityMarketEnv are listed in Table 3. The default environment is based
on the Region 1 in the IEEE Reliability Test System (RTS) [23], with 5-minute settlements (δ = 5/60
hours), an episode length of T = 288 (1 day), and a lookahead horizon of h = 36 steps (3 hours).
The IEEE RTS network features N = 24 nodes (a.k.a. buses) connected with M = 38 lines.
Connected to the network are NG = 33 conventional thermal generators and ND = 17 loads. The
network is slightly modified to add a single (NB = 1) 80MWh battery system located at bus 11,
with maximum charge/discharge rate bc = bd = 20MW, and initial and final state of charge (SOC)
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x = 0, x0 = xf = 40MWh. Charge/discharge efficiency is set to ηc = ηd = 0.95, and the minimum
generation limit for all generators is changed to g = 0.

We assume that an independent system operator (ISO) solves standard security-constrained economic
dispatch (SCED) with the DC (decoupled) power flow equations. “Security-constrained” means that
line limits are respected. The formulation has the following features:

• 3 classes of market participants: generators, loads, and storage
• DC PF equations
• Line flows and constraints
• Linear cost functions
• Nodal demand timeseries

The formulation lacks the following features that may be considered important in a practical imple-
mentation of SCED:

• Unit commitment for thermal units
• Line and generator outage contingencies, e.g., N − 1 security
• Operating reserves
• Piecewise linear and quadratic generator cost functions
• Flexible, curtailable load
• Renewable generators
• Generator ramping constraints

Battery storage. There are NB batteries in the system, of which only one is seeking to learn an
optimal bidding strategy. Assign index k = 1 to this unit.

The bid must satisfy power bounds and non-simultaneity. The strategic battery must manage its own
state of charge. The other B− 1 batteries are assumed to be managed by the ISO. We do not consider
the possibility of simultaneous charge/discharge.

The state of charge evolution of each battery is linear in charge/discharge efficiency parameters ηci ,
ηdi . The charge/discharge limits and the SOC constraints are assumed to be known by the system
operator for all units and are not part of the strategic agent’s bid. The initial state of charge in each
interval is given by the solution from the previous interval’s lookahead optimization.

Generation and load. There are NG generators in the system, with potentially multiple generators
at each node. We do not consider ramping limits on generators or non-convexities from start-up and
shutdown costs and constraints. The generators are constrained between their minimum (g = 0) and
maximum production limits g. It is assumed that a feasible unit commitment exists for the given g
and g.

The load vector dt ∈ RND is taken to be fixed (inflexible load). The demand prediction for τ > t is
given by d̂τ , provided by an hourly day-ahead forecast.

Table 4: Definitions of problem variables. Variables are optimized in the economic dispatch problem.
Variable Domain Unit Description

pt RN MW vector of nodal power injections in interval t
dt RND MW vector of load power injections in interval t
gt RNG MW vector of generator power injections in interval t
bc
t RNB

+ MW vector of battery charging power injections in interval t
bd
t RNB

+ MW vector of battery discharging power injections in interval t
xt RNB

+ MWh vector of battery states of charge in interval t
λt R Lagrange multiplier corresponding to the power balance

constraint 1⊤pt = 0
µ±

t RM Lagrange multiplier vectors corresponding to upper/lower
line limit constraints

πt RN $/MWh market-clearing nodal price vector for interval t
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Powerflow equations and line limits. The line susceptance matrix is B = diag(B1, . . . , BM ) ∈
RM×M

+ where Bj ∈ R is the susceptance of line j.

The matrix C ∈ {−1, 0, 1}N×M is node-edge incidence matrix of the graph.

The slack bus of the network is assigned WLOG to node index i = 1. By convention the voltage
angle of this node is fixed:

θ1,t = 0 ∀t.

Given a vector of nodal real power injections pt ∈ RN , the power flows along lines in the network
ft ∈ RM is given by ft = Hpt with the generation shift matrix H ∈ RM×N defined as H :=

BC⊤ (CBC⊤)†.

Economic dispatch problem. We implement a version of SCED called multi-interval lookahead
real-time economic dispatch. In this version of the market clearing, the systems operator seeks to
clear the market sequentially for each timestep (e.g., every 5 mins), optimizing over the current
interval t plus a lookahead horizon of h additional intervals. Only the solution from interval t is
retained; the remaining h decisions are advisory. In systems with intertemporal constraints (e.g.,
energy storage, unit commitment, ramping), it is necessary to perform this multi-interval dispatch to
improve ex-post optimality and as well as to retain feasibility. In practice, North American ISOs all
solve a version of multi-interval dispatch.

For interval t, the multi-interval SCED problem is

min
gt,bc

t ,b
d
t

δ

t+h∑
τ=t

 Ng∑
k=1

cgk,τgk,τ +

Nb∑
k=1

cb,dk,τ b
d
k,τ − cb,ck,τ b

c
k,τ

 (3a)

s.t. Σ[d⊤
τ ,g

⊤
τ ,b

c⊤
τ ,bd⊤

τ ]⊤ = pτ ∀τ = t, . . . , t+ h (3b)

λτ ⊥ 1⊤pτδ = 0 ∀τ = t, . . . , t+ h (3c)

µ+
τ ,µ

−
τ ⊥ |Hpt| ≤ fmax ∀τ = t, . . . , t+ h (3d)

dτ = d̂τ ∀τ = t, . . . , t+ h (3e)
g ≤ gτ ≤ g ∀τ = t, . . . , t+ h (3f)

0 ≤ bc
τ ≤ bc ∀τ = t, . . . , t+ h (3g)

0 ≤ bd
τ ≤ bd ∀τ = t, . . . , t+ h (3h)

xτ = xτ−1 + diag(ηc)bc
τδ − diag(ηd)−1bd

τδ ∀τ = t, . . . , t+ h (3i)
x ≤ xτ ≤ x ∀τ = t, . . . , t+ h (3j)
xt−1 = x∗

t−1 (3k)

xt+h = xf (3l)

Here, x∗
t−1 is the state of charge decision from the previous interval. The constraint says that the

current state of charge is whatever the battery was charged/discharged to in the previous dispatch.

In order to ensure that the battery is never simultaneously charging and discharging (i.e., for every
k ∈ {1, . . . , Nb} and τ ∈ {t, . . . , t + h}, at most one of bck,τ and bdk,τ should be nonzero), we can
instead formulate the problem as a mixed-integer linear program:
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min
gt,bc

t ,b
d
t

δ

t+h∑
τ=t

 Ng∑
k=1

cgk,τgk,τ +

Nb∑
k=1

cb,dk,τ b
d
k,τ − cb,ck,τ b

c
k,τ

 (4a)

s.t. Σ[d⊤
τ ,g

⊤
τ ,b

c⊤
τ ,bd⊤

τ ]⊤ = pτ ∀τ = t, . . . , t+ h (4b)

1⊤pτδ = 0 ∀τ = t, . . . , t+ h (4c)
|Hpt| ≤ fmax ∀τ = t, . . . , t+ h (4d)

dτ = d̂τ ∀τ = t, . . . , t+ h (4e)
g ≤ gτ ≤ g ∀τ = t, . . . , t+ h (4f)

zτ ∈ {0, 1}Nb ∀τ = t, . . . , t+ h (4g)

0 ≤ bc
τ ≤ bc ⊙ zτ ∀τ = t, . . . , t+ h (4h)

0 ≤ bd
τ ≤ bd ⊙ (1− zτ ) ∀τ = t, . . . , t+ h (4i)

xτ = xτ−1 + diag(ηc)bc
τ − diag(ηd)−1bd

τ ∀τ = t, . . . , t+ h (4j)
x ≤ xτ ≤ x ∀τ = t, . . . , t+ h (4k)
xt−1 = x∗

t−1 (4l)

xt+h = xf (4m)

However, the mixed-integer linear program does not produce dual-variables the same way that the
original linear program does. In order to recover nodal prices, we first solve the mixed-integer linear
program to determine the optimal values for zτ . Then, in the linear program, we replace bc with
bc ⊙ zτ and bd with bd ⊙ (1− zτ ), and we solve the linear program to get the nodal prices from
the dual variables. Although this procedure requires solving two optimization problems (first the
MILP, and later the linear program), in practice solving the linear program is very fast, since the
optimization variables can be initialized to their optimal values from the MILP.

Market clearing and settlement. The market clears when optimization problem (3) has a feasible
solution, denoted (g∗

t ,b
c∗
t ,bd∗

t ). The nodal vector of market clearing prices π ∈ RN (in $/MWh) is
defined by a function of dual variables λ∗

t ,µ
+
t
∗
,µ−

t
∗
:

πt := λ∗
t1+H⊤(µ+

t
∗ − µ−

t
∗
)

For each interval t, the settlement rule for generator k at node i is:

1. Generator k produces power g∗k,t
2. Generator k receives revenue πi,tg

∗
k,t

The settlement rules for loads and batteries are analogous. When a battery is charging (bck,t > 0), it
pays the nodal price; when it is discharging (bdk,t > 0), it receives the nodal price.

Representativeness and Generalizability While ElectricityMarketEnv is not modeled after
any particular real-world transmission network, it simulates the transmission network from the
widely-used IEEE Reliability Test System (IEEE RTS-24) [22]. As the IEEE RTS-24 test case
did not include electricity load data, we chose to incorporate load data from the recent 2019 IEEE
RTS-GMLC update [23], which was designed to be representative of a modern transmission network
located in the southwestern U.S., featuring a variety of renewable and distributed generators as well
as representative electricity load profiles. According to industry experts, both the IEEE RTS-24 and
IEEE RTS-GMLC are simplified but standard test cases. Furthermore, ElectricityMarketEnv has
a modular design and is readily modified to simulate a particular network.

The multi-time-step security-constrained economic dispatch problem (SCED) implemented in
ElectricityMarketEnv (3) is also representative of how market operators schedule generators and
determine nodal prices in most electricity markets in the U.S.A.

Limitations Designing ElectricityMarketEnv to be easy to use necessitated some limitations
in what could be modeled. First, the default IEEE RTS-24 network only features 24 buses, which
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is smaller than most real-world transmission networks. However, because each step of the environ-
ment requires solving a mixed-integer linear program, a larger test case would have significantly
increased the amount of time taken in the environment and thus slowed down any RL training.
Users who wish to test their RL algorithms in larger transmission networks are welcome to modify
ElectricityMarketEnv for their needs.

Second, ElectricityMarketEnv is only based on data representative of modern electricity markets
in the U.S.A., whereas many regions around the world still feature vertically-integrated energy
monopolies and/or “traditional” electricity markets that may not necessarily solve a similar SCED
optimization problem.

Finally, ElectricityMarketEnv only features distribution shifts in the form of changes in the
marginal carbon emissions and load profiles between summer and winter months. In the real-world,
distribution shifts also occur when more generators are added to the network, when older generators
are retired, and when the transmission network changes (e.g., when new transmission lines are added
upgraded, or when transmission lines are taken offline by extreme weather events).

B.3 DatacenterEnv

System Model and Motivation. DatacenterEnv is inspired by the carbon-aware job scheduling
approach adopted by Google’s datacenters, as described in [26]. The Google approach can be
summarized as follows. Each day, the system plans the 24-hour virtual capacity curve (VCC) for the
next day by solving a constrained optimization problem whose objective is to minimize a weighted
sum of expected carbon emissions and expected peak power consumption. The main constraint is
that the VCC for the next day must sum to the 97th-percentile of the predicted total daily capacity
requirement. Capacity is measured in terms of normalized CPU compute units. The VCC artificially
limits the total datacenter capacity at each hour, forcing enqueued jobs to be scheduled later than they
would otherwise run. The goal is to reduce the number of running jobs when the carbon intensity of
the electrical grid (CO2 emissions per electrical energy used) is high, and run more jobs when the
carbon intensity is low. By time-shifting jobs, the datacenter is able to reduce its CO2 emissions.

The VCC-based approach to carbon-aware job scheduling is scheduler-agnostic as it works with any
scheduler (e.g., a FIFO queue, or a priority queue). The details of job placement (which physical
machine runs each job) and job prioritization (which jobs run first) are up to the scheduler.

Whereas the Google approach plans a whole day’s VCC at once, DatacenterEnv allows RL agents
to plan the VCC one hour at a time. Furthermore, DatacenterEnv makes the following simplifying
assumptions compared to the Google approach described above:

• DatacenterEnv does not provide any predictions of the next-day predicted total daily
capacity, instead relying on the reward function to penalize an agent for failing to plan a
VCC that meets 97% of the day’s capacity.

• DatacenterEnv does not account for peak power consumption.
• DatacenterEnv uses a simple scheduler based on a priority queue, and jobs are randomly

placed on any available machine. Machine constraints are not accounted for.

In DatacenterEnv, the data used to simulate a datacenter workload is subsampled from Cluster
A from the Google Cluster Workload Traces May 2019 dataset [25]. The 47,276 jobs in our
subsample includes widely varying priorities, ranging from 0 (low priority) to 450 (high priority,
latency-sensitive). We assume that our datacenter consists of 101 identical machines.

Training. We trained PPO, SAC, and deep deterministic policy gradient (DDPG) [33] RL algorithms
on DatacenterEnv using PyTorch with RLLib’s default hyperparameters for 60 episodes.

Representativeness, Generalizability, and Limitations DatacenterEnv is loosely based on a
Google data center from May 2019. As most datacenters do not disclose their exact job scheduling
mechanisms and machine specifications, DatacenterEnv uses several simplifying assumptions. It
uses a simple priority queue for scheduling jobs, and it assumes that there are no constraints for
which jobs can be placed on which machine. However, DatacenterEnv does use a subsample of
actual job traces from a Google datacenter in May 2019, which includes information for each job
such as priority, duration, and compute usage. As DatacenterEnv is specifically based on the VCC
framework used by Google’s approach to carbon-aware datacenters, it does not reflect efforts by other
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cloud computing providers such as Microsoft [34] that may incorporate carbon emission estimates
directly into the decision-making of their datacenter job schedulers.

Because Google only released datacenter job traces from May 2019, our ability to provide distribution
shifts in DatacenterEnv over time is limited. We have thus chosen to only test shifts in the marginal
carbon emissions rate, even though more realistic distribution shifts would also include changes in
the statistics of datacenter jobs and in the capacities of the datacenter machines.

B.4 CogenEnv

System Model and Motivation. In the single-agent cogeneration environment, the agent controls
a combined-cycle gas power plant with three gas turbines and one steam turbine. Gas power
plants, similar to other conventional dispatchable generation types, suffer from loss of efficiency and
degradation as a result of ramping energy generation up and down, thus necessitating the development
of dispatch algorithms that can balance the tradeoff between fuel efficiency and ramp magnitude
by anticipating future ramp needs while meeting demand in the highly constrained decision space.
Such algorithms are even more crucial during the ongoing energy transition, as large quantities of
variable and intermittent solar and wind resources are added to the grid. The variability of these
resources requires dispatchable generators to ramp more frequently to balance supply with demand,
and thus, dispatch algorithms that have been deployed historically may be suboptimal if they do
not consider these ramp needs. The problem of dispatchable power plant operation in the face of
uncertain renewable generation is thus an important problem, as better algorithms for generator
dispatch will ensure that the performance and fuel efficiency of thermal generators will not degrade
as renewables penetration increases.

The foundation of the system model in CogenEnv is a neural network that maps ambient conditions
and dispatch variables to plant fuel consumption and other variables related to plant operation and
constraints. This model was developed in partnership with Beyond Limits and Enexsa. A summary of
the plant model inputs and outputs is provided in Table 5. In the table, “GT” abbreviates “Gas Turbine”
and “HRSG” abbreviates “heat recovery steam generator”. In brief, a generator dispatch decision
includes generator outputs and steam flows for each of the three gas turbines, along with auxiliary
binary decisions concerning the state of an evaporative cooler and power augmentation mode for
the gas turbine. The dispatch decision also includes a generator output, condenser steam flow, and
cooling tower bay count for the steam turbine. This dispatch decision, when provided to the plant
model in conjunction with ambient temperature, pressure, and relative humidity (together comprising
entries 1 through 18 in Table 5), yield a number of outputs (entries 19 through 47) detailing the fuel
consumption of each turbine unit (entries 23-31) and of the plant as a whole (entry 22), the electric
power generation of the plant (entry 19), the plant steam production (entry 20), and a number of
dynamic operating limits on the dispatch variables (entries 32-47).

Action Space. The action space for the single-agent environment is a vector a(t) ∈ R15 specifying
a dispatch decision for the cogeneration plant, and specifically, specifying values for entries 4 through
18 of Tables 5.

Observation Space. As described in the main body of the paper, observations take the form

s(t) = (τ, a(t− 1), Tt:t+k, Pt:t+k, Ht:t+k, d
p
t:t+k, d

q
t:t+k, π

p
t:t+k, π

f
t:t+k).

where τ is a normalized time – we consider each episode to be a single day, broken into 15 minute inter-
vals, so τ = t/96 – and a(t− 1) is the previous action. Tt:t+k, Pt:t+k, Ht:t+k, d

p
t:t+k, d

q
t:t+k, π

p
t:t+k

and πf
t:t+k are vectors of the current and k steps of future forecasts of temperature, pressure, relative

humidity, electricity demand, steam demand, electricity price, and fuel price, respectively. The units
and limits of temperature, pressure, and relative humidity are as in entries 1 through 3 of Table 5, elec-
tricity demand has units MW, and steam demand is in klb/h. While we do not use electricity and fuel
prices in the reward for this environment, we include them in the observation to allow for modification
of the agent reward to incorporate financial incentives; gas price data was obtained from the Henry
Hub Natural Gas Spot Price dataset (https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm)
and electricity price data was obtained from historical day-ahead prices at the Houston zone
of the ERCOT grid (https://www.ercot.com/mp/data-products/data-product-details?
id=NP4-180-ER).

23

https://www.eia.gov/dnav/ng/hist/rngwhhdm.htm
https://www.ercot.com/mp/data-products/data-product-details?id=NP4-180-ER
https://www.ercot.com/mp/data-products/data-product-details?id=NP4-180-ER


Table 5: Summary of input and output variables for CogenEnv plant model
Num. Variable Description Variable Group Type Feasible Region Unit

1 Air Temperature Ambient Conditions Input [32, 115] °F
2 Air Pressure Ambient Conditions Input [14, 15] PSIA
3 Air Relative Humidity Ambient Conditions Input [0, 1] -
4 GT1 Generator Output Turbine Block 1 Input [41.64, 168.3] MW
5 GT1 Evaporative Cooler Switch Turbine Block 1 Input {0, 1} -
6 GT1 Power Augmentation Switch Turbine Block 1 Input {0, 1} -
7 GT1 Steam Flow Turbine Block 1 Input [403.2, 819.6] klb/h
8 GT2 Generator Output Turbine Block 2 Input [41.49, 168.4] MW
9 GT2 Evaporative Cooler Switch Turbine Block 2 Input {0, 1} -
10 GT2 Power Augmentation Switch Turbine Block 2 Input {0, 1} -
11 GT2 Steam Flow Turbine Block 2 Input [396.7, 817.4] klb/h
12 GT3 Generator Output Turbine Block 3 Input [46.46, 172.4] MW
13 GT3 Evaporative Cooler Switch Turbine Block 3 Input {0, 1} -
14 GT3 Power Augmentation Switch Turbine Block 3 Input {0, 1} -
15 GT3 Steam Flow Turbine Block 3 Input [439.0, 870.3] klb/h
16 Steam Generator Output Steam Turbine Input [25.65, 83.54] MW
17 Steam Flow through Condenser Steam Turbine Input [−1218,−318.1] klb/h
18 Number of Cooling Tower Bays Steam Turbine Input {1, . . . , 12} -
19 Net Electric Power Output Plant Output - MW
20 Net Steam Export Plant Output - klb/h
21 Auxiliary Power Consumption Plant Output - MW
22 Total Fuel Consumption Plant Output - klb/h
23 GT1 Fuel Flow Turbine Block 1 Output - klb/h
24 HRSG1 Fuel Flow Turbine Block 1 Output - klb/h
25 Block 1 Total Fuel Consumption Turbine Block 1 Output - klb/h
26 GT2 Fuel Flow Turbine Block 2 Output - klb/h
27 HRSG2 Fuel Flow Turbine Block 2 Output - klb/h
28 Block 2 Total Fuel Consumption Turbine Block 2 Output - klb/h
29 GT3 Fuel Flow Turbine Block 3 Output - klb/h
30 HRSG3 Fuel Flow Turbine Block 3 Output - klb/h
31 Block 3 Total Fuel Consumption Turbine Block 3 Output - klb/h
32 GT1 Min Power Turbine Block 1 Output - MW
33 GT1 Max Power Turbine Block 1 Output - MW
34 GT2 Min Power Turbine Block 2 Output - MW
35 GT2 Max Power Turbine Block 2 Output - MW
36 GT3 Min Power Turbine Block 3 Output - MW
37 GT3 Max Power Turbine Block 3 Output - MW
38 GT1 Min Steam Turbine Block 1 Output - klb/h
39 GT1 Max Steam Turbine Block 1 Output - klb/h
40 GT2 Min Steam Turbine Block 2 Output - klb/h
41 GT2 Max Steam Turbine Block 2 Output - klb/h
42 GT3 Min Steam Turbine Block 3 Output - klb/h
43 GT3 Max Steam Turbine Block 3 Output - klb/h
44 Steam Let-Down Flow Min Limit Steam Turbine Output - klb/h
45 Steam Let-Down Flow Max Limit Steam Turbine Output - klb/h
46 Steam Turbine Min Power Steam Turbine Output - MW
47 Steam Turbine Max Power Steam Turbine Output - MW

Reward Function The reward for the agent is defined as

r(t) = − (rf (a(t);Tt, Pt, Ht) + rr(a(t); a(t− 1)) + rc(a(t); d
p
t , d

q
t )) .

The term rf (a(t);Tt, Pt, Ht) is the generator fuel consumption in response to dispatch decision a(t);
this is exactly the total fuel consumption of the plant (entry 22 of Table 5) resulting from model
inputs (Tt, Pt, Ht, a(t)). The term rr(a(t); a(t− 1)) is the cost of ramping electricity generation up
or down. Defining aj(t) to be the jth entry of Table 5 (so j ranges from 4 to 18 to include all entries
comprising the action space), the ramp cost is defined as

rr(a(t); a(t− 1)) = β · (|a4(t)− a4(t− 1)|+ |a8(t)− a8(t− 1)|
+ |a12(t)− a12(t− 1)|+ |a16(t)− a16(t− 1)|).
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In our experiments, we set the penalty magnitude β = 2, following [35]. The third term,
rc(a(t); d

p
t , d

q
t ), penalizes two types of constraint violation: the first is supply-demand imbalance.

Let x(t) ∈ R47 be a vector containing plant model inputs and outputs as in Table 5; then x19(t) is
the total power output of the plant and x20(t) is the total steam output of the plant. The form of the
penalty on supply-demand imbalance is as follows:

rsdc (a(t); dpt , d
q
t ) = γ · (max{0, dpt − x19(t)}+max{0, dqt − x20(t)}) .

The second type of constraint violation penalized is that of the dynamic operating constraints. These
are determined by the plant outputs in entries 32 through 47 of Table 5, and constrain dispatch
variables to lie within certain intervals. This penalty takes the following form:

rdync (a(t); dpt , d
q
t ) = γ ·

(
max{0, x4(t)− x32(t)}+max{0, x33(t)− x4(t)}
+max{0, x8(t)− x34(t)}+max{0, x35(t)− x8(t)}
+max{0, x12(t)− x36(t) + max{0, x37(t)− x12(t)}
+max{0, x7(t)− x38(t)}+max{0, x39(t)− x7(t)}
+max{0, x11(t)− x40(t)}+max{0, x41(t)− x11(t)}
+max{0, x15(t)− x42(t)}+max{0, x43(t)− x15(t)}
+max{0, x17(t)− x44(t)}+max{0, x17(t)− x45(t)}
+max{0, x16(t)− x46(t)}+max{0, x47(t)− x16(t)}

)
.

In our experiments, we set the penalty magnitude parameter γ = 1000. The total constraint violation
penalty is simply the sum of the supply-demand violation penalty rsdc (a(t); dpt , d

q
t ) and the dynamic

operating constraint penalty rdync (a(t); dpt , d
q
t ).

Distribution Shift. In our distribution shift scenario, we consider the addition of 300 MW of wind
energy onto the grid, which increases variability of net energy demand and changes the shape of load
profiles. We obtain simulated wind speed profiles using the WIND Toolkit [36] at an altitude of 100m
at (39.970406,−128.77481) at 15 minute intervals, and transform these into electricity generation
profiles using the power curve for an IEC Class 2 turbine, scaling to obtain a maximum generation
level of 300 MW.

Multi-Agent Setting. In the multi-agent version of the environment, each of the four agents
represents one of the blocks of the cogeneration plant: the first three control the three gas turbine
blocks, and the fourth controls the steam generation block. Each agent observes the global observation,
but controls only the variables relevant for its block — thus, agent 1 controls variables 4 through 7
in Table 5, agent 2 controls variables 8 through 11, agent 3 controls variables 12 through 15, and
agent 4 controls variables 16 through 18. Each agent’s reward only includes the terms relevant for
its unit - thus, for instance, agent 1 pays fuel cost according to entry 25, ramp cost β · (|a4(t) −
a4(t−1)|), and dynamic operating constraint penalty γ ·

(
max{0, x4(t)−x32(t)}+max{0, x33(t)−

x4(t)}+max{0, x7(t)−x38(t)}+max{0, x39(t)−x7(t)}
)
. However, the supply-demand imbalance

constraint penalty is shared equally amongst all agents: each pays 1
4r

sd
c (a(t); dpt , d

q
t ).

Training. We train and test the performance of several algorithms on 250 days of data (ambient
conditions, demands, and prices) between May 2021 and January 2022. For the testing environment,
we use the scenario with 300 MW of wind generation. We performed two splits: 1) by algorithm (PPO
vs. random actions), and 2) training data with out-of-distribution data (300 MW wind generation) vs.
in-distribution data (no wind generation). We tested 3 learning rates for PPO and multi-agent PPO:
5e-6, 5e-5, 5e-4. For each learning rate, three different random seeds were tested, and the model with
the best training performance was selected.

Representativeness, Generalizability, and Limitations CogenEnv is based on an actual combined-
cycle power plant operated in the U.S.A. The general configuration has remained unchanged, but
certain parameters such as generation capacity of units have been changed to protect the original data.
More specifically, the general configuration of gas turbines, steam turbine, cooling tower, and binary
setpoints are the same. Temperature and pressure settings of intermediate pressure and high pressure
steams are also the same. However, some design parameters such as power and steam generation
capacities of each unit and units’ efficiencies has been scaled/shifted.
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According to our collaborator Mehdi Hosseini at Beyond Limits: “Gas and steam turbines are
generally modeled by simulating the Brayton and Rankine thermodynamic cycles. Besides the
considered setpoints, some gas turbines might include extra minor setpoints like switching the duct
burner on and off, which is considered always on in this model. The behavior of the steam turbine
is more complex and interrelated with the structure of the condenser and cooling tower. In this
simulation, a forced air cooling tower structure is employed, a typical method in combined cycle
power plants. It’s worth noting that using a different cooling system might influence the efficiency
and generation limits of the steam turbine. In summary, the model accurately represents single or
multi-gas turbine power plants, as well as combined-cycle power plants with a forced air cooling
tower.”

Finally, the distribution shift modeled in CogenEnv comes from changes in external renewable wind
energy penetration, which causes greater need for ramping of fuel-based generators, leading to higher
ramping costs. The is reflective of actual changes and challenges occurring in modern electricity
grids, often referred to as the “duck curve problem” [37]. However, CogenEnv currently does not
model other sources of distribution shift such as changing fuel prices.

B.5 BuildingEnv

Table 6: Definitions of BuildingEnv variables.
Variable Domain Unit Description
Ti(t) R ◦C temperature in zone i at time t
TG(t) R ◦C ground temperature at time t
TE(t) R ◦C outdoor/ambient temperature at time t
QGHI(t) R+ W/m2 heat gain from solar irradiance per square meter at time t

(“GHI” is an acronym for “global horizontal irradiance”)
Qs

i(t) R+ W heat acquisition from solar irradiance in zone i at time t
Qp

i (t) R+ W heat acquisition from occupants’ activities in zone i at time t
Qh

i (t) R W heat acquisition from HVAC in zone i at time t
Ni(t) N number of occupants in zone i at time t
Awin

i R+ m2 window area for zone i

Qh,max
i R+ W maximum heat acquisition from HVAC in zone i

ai(t) [−1, 1] action value, normalized heat acquisition from HVAC in zone
i at time t (+ for heating, − for cooling)

wi [0, 1] efficiency coefficient for HVAC in zone i

Observation space. BuildingEnv considers a building with M indoor zones. The observation
s(t) ∈ RM+4 is the concatenation of the zonal observations T (t) ∈ RM and the environmental
observations senv(t) ∈ R4:

s(t) = [T (t)⊤, senv(t)⊤]⊤

T (t) = [T1(t), . . . , TM (t)]⊤

senv(t) = [TE(t), TG(t), Q
GHI(t), Q̄p(t)]⊤.

We split the observation s(t) into the two components to emphasize that T (t) is affected by the
agent’s control actions, whereas senv(t) is the set of exogenous time-varying environmental variables
that are unaffected by the agent’s control actions. The descriptions for each of these variables can be
found in Table 6.

Action space. The action a(t) = [a1(t), . . . , aM (t)]⊤ ∈ [−1, 1]M is a set of controllable actions
for building heat control, where ai(t) is the controlled heating supplied to zone i. We normalize the
HVAC power consumption with respect to the maximum heating capacity, so that ai(t) is bounded in
[−1, 1]. The resulting heat supply from the HVAC system to zone i at time t is given by

Qh
i (t) = aiwiQ

h,max
i ,

where wi is the efficiency coefficient for the HVAC system in zone i and Qh,max
i is the maximum

heat supply from the HVAC in zone i.
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Given an action a(t), the BuildingEnv.step() method simulates the next state via the physics-
based state transition model described below.

System model. The building simulation builds upon the physics-principled environment in [38],
which includes a reduced linear Resistance-Capacitance (RC) model for heat transfer with nonlinear
residual modeling for occupants’ activities and solar irradiance. The zonal thermal dynamics are
given by

Ci
dTi

dt
=

∑
j∈N (i)

Tj − Ti

Ri,j
+Qh

i +Qs
i +Qp

i , (5)

where N (i) is the set of zones neighboring zone i. That is,
N (i) = {j ∈ {1, . . . ,M,G,E} | j ̸= i, zone j shares a wall with zone i}.

The set N (i) may include G and E, if zone i is on the ground floor or connected to the outside
environment, respectively. Ci is the thermal capacitance (in J/K), and Ri,j = Rj,i is the thermal
resistance (in K/W) between zones i, j. If zone i and j are not neighboring zones (i.e., j /∈ N (i)),
we set Ri,j = Rj,i = +∞. Qh

i is the controlled heating/cooling flow distributed to each zone as
described above. Qs

i and Qp
i adhere to models outlined in the EnergyPlus documentation [39], which

represent the heat accumulation in zone i from solar heat acquisition from windows and indoor human
activities, respectively.

To capture the solar heat acquisition from windows, let αGHI denote the coefficient determining the
solar heat gain for windows, Awin

i be the window area for zone i (in m2), and QGHI(t) be the heat
gain from global horizontal irradiance (in W/m2). Then the accumulated solar heat from windows at
time t can be calculated as

Qs
i(t) = αGHI ·Awin

i ·QGHI(t).

To calculate heat gain originating from human activities at time t, Qp
i (t), we consider Ni to symbolize

the population in zone i, and Q̄p(t) signifies the discernible heat contributed by a single individual’s
activities. We assume that the number of people in each zone does not change over the course of the
simulation, and we leave the task of modeling time-varying population for future work. Then,

Qp
i (t) = Q̄p(t) ·Ni.

The computation of sensible heat per individual denoted as Q̄p(t), is given by a polynomial function
from the EnergyPlus documentation [39, p.1299],
Q̄p(t) = c1+c2mt+c3m

2
t +c4T̄ (t)−c5mtT̄ (t)+c6m

2
t T̄ (t)−c7T̄

2(t)+c8mtT̄
2(t)−c9m

2
t T̄

2(t),

where mt signifies the population metabolic rate (in W) at time t, T̄ (t) = 1
M

∑M
i=1 Ti(t) is the

average zone temperature, and c1, . . . , c9 are constants that have been deduced by fitting sensible
heat data under a variety of conditions. Both Qs

i(t) and Qp
i (t) fluctuate over time and embody heat

emanations from the environment and occupants’ activities that are beyond control.

The state evolution in (5), together with the definitions of Qh
i , Q

s
i , Q

p
i can be written as

Ṫ (t) = AT (t) +Bu(t) +Df(T (t)), (6)

where u(t) = [TG(t), TE(t), a1(t), . . . , aM (t), QGHI(t)]⊤. Let the indicator variables 1G,i :=
1[G ∈ N (i)] and 1E,i := 1[E ∈ N (i)] encode zone i’s connectivity to the ground and the outside
environment, respectively. Then the A and B matrices are

A =



∑
j∈N (i)

−1
C1R1,j

+
cpN1

MC1

1
C1R1,2

+
cpN1

MC1
. . . 1

C1R1,M
+

cpN1

MC1

1
C2R2,1

+
cpN2

MC2

∑
j∈N (i)

−1
C2R2,j

+
cpN2

MC2

. . .
...

...
. . . 1

CM−1RM−1,M
+

cpNM−1

MCM−1
1

CMRM,1
+

cpNM

MCM
. . . . . .

∑
j∈N (i)

−1
CMRM,j

+
cpNM

MCM

,

B =



1G,1

C1RG,1

1E,1

C1RE,1

w1Q
h,max
1

C1
0 . . . 0

αGHIA
win
1

C1

1G,2

C2RG,2

1E,2

C2RE,2
0

w2Q
h,max
2

C2
. . . 0

αGHIA
win
2

C2

...
...

...
. . .

...
1G,M

CMRG,M

1E,M

CMRE,M
0 0 . . .

wMQh,max
M

CM

αGHIA
win
M

CM

 .
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The vector D in Eq (6) is defined as D =
[
N1

C1
, N2

C2
, · · · , NM

CM

]⊤
, and the nonlinear function for

sensible heat calculation is

f(T (t)) := Q̄p(t)− c4T̄ (t)

= c1 + c2mt + c3m
2
t − c5mtT̄ (t) + c6m

2
t T̄ (t)− c7T̄

2(t) + c8mtT̄
2(t)− c9m

2
t T̄

2(t).

We convert the continuous-time system model into a discrete-time model,

T [k + 1] = ĀT [k] + B̄u[k] +Df̄ [k] (7)

where the discrete-time system matrices Ā, B̄, f̄ are obtained from the continuous-time model
parameters A,B, f(T (t)) using zero-order hold method with discretization time ∆T . In particular,
Ā = eA∆T , B̄ = A−1(Ā− I)B, and f̄ [k] =

∫ (k+1)∆T

k∆T
f(T (τ)) dτ .

Reward function. The main objective of building control is to reduce energy consumption while
keeping the temperature within a given comfort range. Therefore, the reward function penalizes both
temperature deviations and HVAC energy consumption:

r(t) = −(1− β) ∥a(t)∥p − β∥T target(t)− T (t)∥p ,

where T target(t) = [T target
1 (t), . . . , T target

M (t)]⊤ are the target temperatures. The parameters β and
p are user-customizable scalars, where β trades off between the energy consumption and temperature
deviation penalties, and p determines the norm used. An important future direction is to incorporate
CO2 emissions into consideration in the default reward function for building control environment.

Building and weather types for simulation. The prototype buildings included in BuildingEnv are
derived from the Department of Energy (DOE) Commercial Reference Building Models. The models
include 16 commercial building types in 19 locations. Users can download all models at https:
//www.energycodes.gov/prototype-building-models. Since BuildingEnv is compatible
with EnergyPlus, users could also create their own model in the EnergyPlus editor and load the
generated table file into the BuildingEnv.

• Available building types: ApartmentHighRise, ApartmentMidRise, Hospital, HotelLarge,
HotelSmall, OfficeLarge, OfficeMedium, OfficeSmall, OutPatientHealthCare, Restau-
rantFastFood, RestaurantSitDown, RetailStandalone, RetailStripmall, SchoolPrimary,
SchoolSecondar, Warehouse.

• Available cities and weather types: Ho Chi Minh City (Extremely Hot Humid), Dubai
(Extremely Hot Dry), Honolulu (Very Hot Humid), New Delhi (Very Hot Dry), Tampa
(Hot Humid), Tucson (Hot Dry), Atlanta (Warm Humid), El Paso (Warm Dry), San Diego
(Warm Marine), New York (Mixed Humid), Albuquerque (Mixed Dry), Seattle (Mixed
Marine), Buffalo (Cool Humid), Denver (Cool Dry), Port Angeles (Cool Marine), Rochester
(Cold Humid), Great Falls (Cold Dry), International Falls (Very Cold), Fairbanks (Subarc-
tic/Arctic).

Example. A practical usage example is demonstrated in Figure 8. The intent of this code excerpt is
to imitate an “OfficeLarge” type structure in San Diego, with “Warm Marine” weather conditions,
employing arbitrarily selected actions. Upon the creation of a building model, comprehensive zone
information is then displayed as shown in Figure 8. At each control time step, the RL agent observes
the present state s(t) and produces a corresponding action a(t). The environment BuildingEnv,
in turn, incorporates this action and integrates it into the building state-space model to project the
subsequent state s(t+ 1) for the approaching time step. Each episode runs for 1 day, with 5-minute
time intervals (H = 288, τ = 5/60 hours). The agent controls the supplied heat flow to each zone
and is rewarded for maintaining the desired temperature at the minimum electricity usage. Figure
9 visualizes the indoor temperature in different zones of OfficeLarge for 1 day without control,
initialized at 13.2◦C.

Model predictive control (MPC). As a baseline non-RL algorithm, we consider a model predictive
control (MPC) controller similar to the EVChargingEnv environment. At every time step t, with a

28

https://www.energycodes.gov/prototype-building-models
https://www.energycodes.gov/prototype-building-models


>>> from sustaingym.envs.building import BuildingEnv, ParameterGenerator
>>> params = ParameterGenerator(building=’OfficeLarge’, weather=’Warm_Marine’, location=’SanDiego’)
>>> env = BuildingEnv(params)

###############All Zones from Ground############
BASEMENT [Zone index]: 0
DATACENTER_BASEMENT_ZN_6 [Zone index]: 1
CORE_BOTTOM [Zone index]: 2
PERIMETER_BOT_ZN_3 [Zone index]: 3
PERIMETER_BOT_ZN_2 [Zone index]: 4
PERIMETER_BOT_ZN_1 [Zone index]: 5
PERIMETER_BOT_ZN_4 [Zone index]: 6
DATACENTER_BOT_ZN_6 [Zone index]: 7
GROUNDFLOOR_PLENUM [Zone index]: 8
CORE_MID [Zone index]: 9
PERIMETER_MID_ZN_3 [Zone index]: 10
PERIMETER_MID_ZN_2 [Zone index]: 11
PERIMETER_MID_ZN_1 [Zone index]: 12
PERIMETER_MID_ZN_4 [Zone index]: 13
DATACENTER_MID_ZN_6 [Zone index]: 14
MIDFLOOR_PLENUM [Zone index]: 15
CORE_TOP [Zone index]: 16
PERIMETER_TOP_ZN_3 [Zone index]: 17
PERIMETER_TOP_ZN_2 [Zone index]: 18
PERIMETER_TOP_ZN_1 [Zone index]: 19
PERIMETER_TOP_ZN_4 [Zone index]: 20
DATACENTER_TOP_ZN_6 [Zone index]: 21
TOPFLOOR_PLENUM [Zone index]: 22
###################################################

Figure 8: Importing OfficeLarge in BuildingEnv.

Figure 9: Simulated indoor temperature in different zones of OfficeLarge for 1 day without control.

lookahead window w, the MPC controller solves the following optimization problem,

min
a(t),...,a(t+w−1)

t+w−1∑
k=t

(1− β) ∥a(k)∥2 + β∥T target(k)− T (k)∥2 (8a)

s.t. − 1 ⪯ ai(k) ⪯ 1 ,∀i ∈ {0, . . . ,M},∀k ∈ {t, . . . , t+ w − 1} (8b)
building dynamics in (7) , (8c)

and implements action a⋆(t). MPC method has complete model knowledge and perfect predic-
tions about building occupancy [N1, N2, . . . , NM ], the ground and environmental temperature
TG(k), TE(k), solar irradiance QGHI(k) for k = t, t + 1, . . . , t + w − 1. (8b) ensures that the
control signals are feasible, and (8c) follows the building physics model in (7) which uses a zero-
order hold discretization method to derive from the continuous-time model with discretization interval
as ∆T = 1/12 hour.

Multiagent Environment. The multiagent setting pairs each zone with one agent, so that each
agent i is only responsible for action ai(t). Currently, we let every agent observe the complete
building state space, and each agent receives the same global reward. For future directions, we plan
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on implementing a separate local state space for each agent and also imposing a total power constraint
(e.g., ∥a(t)∥1 must be bounded by some limit).

Training We trained Proximal Policy Optimization (PPO), Soft Actor-Critic (SAC), and Advantage
Actor Critic (A2C) [40] Reinforcement Learning algorithms on the BuildingEnv environment using
PyTorch and StableBaselines3. These algorithms were applied to an "OfficeSmall" type building
situated in a "Hot Dry" climate, specifically in Tucson. The training and testing periods were set in
the winter (January 2003) and summer (June 2004) sections, respectively. The models were trained
during both the winter and summer sections, but testing was conducted solely in the winter section to
assess the impact of distribution shifts. We experimented with two learning rates for each of PPO,
SAC, and A2C: 3e-4 and 3e-5 for PPO and SAC, and 7e-4 and 3e-4 for A2C. The training used a
time resolution of 300 seconds (or 5 minutes). The model demonstrating the best performance in
training was subsequently selected for further analysis.

Representativeness and Generalizability BuildingEnv is designed to ensure broad generaliz-
ability across diverse building scenarios. We have integrated an extensive collection of standard
prototype building models coupled with a variety of weather conditions, encompassing the major-
ity of Reference Building types. These models are based on the Department of Energy (DOE)’s
Commercial Reference Building Models, offering a robust foundation for simulation. Furthermore,
the environment is highly customizable. Users have the flexibility to adjust parameters such as the
wall material, the solar heat gain coefficient of windows, and the ground temperature specific to the
building’s location. For researchers and developers seeking even more specificity, there is also an
option to define custom building models using EnergyPlus. Users can then input the resulting output
input data file (IDF), along with the corresponding EPW weather file, into BuildingEnv, providing
a custom simulation experience.

Limitations Beyond the modeled weather variations, occupancy dynamics also introduce distribu-
tion shifts in building energy management. While BuildingEnv provides mechanisms to simulate
occupants in different zones with set activity schedules, truly replicating the unpredictability of human
behavior remains a complex endeavor. For instance, we can configure a room to have four individuals
engaged in seated work from 1pm to 4pm, followed by three individuals running from 4pm to 5pm,
with the room being vacant after 5pm. Despite these features, there are certain distribution shifts
that BuildingEnv does not currently address, such as equipment failures, external environmental
impacts like nearby construction or urban heat island effects, and the nuances of building aging.
However, it is worth noting that the modular design of BuildingEnv provides a foundation that
is conducive to future enhancements and adaptations, allowing for the incorporation of additional
sources of distribution shift as our understanding of building dynamics evolves.
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