
1 Appendix1

Bayes-by-backprop The Bayesian posterior neural network distribution P (w|D) is approximated2

by a distribution Q(w|θ) whose parameters θ are trained using back-propagation, Bayes-by-3

backprop (BPP). The approximation is achieved by minimising the Kullback-Leibler (KL) divergence4

DKL[Q∥P ] between P and Q to find the optimal parameters θ∗. These parameters θ∗ instantiate the5

means µi and variances σ2
i of the PWFN.6

θ∗ = argmin
θ

KL[Q(w|θ)∥P (w|D)], where

KL[Q(w|θ)∥P (w|D)] = EQ(w|θ) log

(
Q(w|θ)
P (w|D)

)
= EQ(w|θ) log

(
Q(w|θ)P (D)

P (D|w)P (w)

)
.

(1)
The P (D) term does not contribute to the optimisation and is dropped, leaving7

θ∗ = argmin
θ

EQ(w|θ)[logQ(w|θ)− logP (D|w)− logP (w)],

≈ argmin
θ

∑
m

logQ(wm|θ)− logP (wm)︸ ︷︷ ︸
prior dependent

− logP (D|wm)︸ ︷︷ ︸
data dependent,

(2)

where the expectation value is approximated by samples wm ∼ Q(w|θ) drawn from Q(w|theta)8

each of which instantiates a neural network.9

L(Q)

= H(Q(w|θ)) +
∫

Q(w|θ) logP (D|w)dw

+

∫
Q(w|θ) logP (w)dw

=

∫
Q(w|θ) logP (D|w)dw −

∫
Q(w|θ) logQ(w|θ)dw

+

∫
Q(w|θ) logP (w)dw.

(3)

Gradient descent over each wm that instantiates a neural network is made possible by the re-10

parametrisation trick. The idea is to regard each sample wm = µ + ϵmσ where ϵm ∼ p(ϵ) is a11

random draw from some distribution that we take to be an isotropic Gaussian: p(ϵ) = N (0, I) with I12

the N -dimensional identity matrix for the N weights of network W . These weights wm are used in13

the forward pass through the network while parameters µ and σ are trainable. Then, for any function14

f(w) we have EQ(w|θ)[f(w)] = Ep(ϵ)[f(w)], so that15

∂

∂θ
EQ(w|θ)[f(w, θ)] =

∂

∂θ
Ep(ϵ)[f(w, θ)] = Ep(ϵ)[

∂f(w, θ)

∂w

∂w

∂θ
+

∂f(w, θ)

∂θ
].

16
∂

∂σ

∫
f(w)Q(w|θ)dw =

∫
p(ϵ)

[
∂f(w)

∂w

∂w

∂σ
+

∂f(w)

∂σ

]
dϵ. (4)

The terms are all calculable, allowing us to draw from a distribution for each weight wm and17

backpropagate to the underlying distribution parameters θ := (µ,σ). For wm = µ + ϵmσ, the18

derivatives are ∂wm

∂µ = I , and ∂wm

∂σ = ϵmI , making the respective gradients19

∇µ =
∂f(w,µ,σ)

∂w
+

∂f(w,µ,σ)

∂µ
and ∇σ =

∂f(w,µ,σ)

∂w
ϵm +

∂f(w,µ,σ)

∂σ
. (5)

where wi corresponds to the ith sample drawn from the variational posterior Q(wi|θ). We can define20

f(w,θ) = logQ(w|θ)− logP (w)− logP (D|w) and update using gradient descent.21

Using θ = (µ,σ) we have that:22

23

∆µ =
∂f(w,µ,σ)

∂w
+

∂f(w,µ,σ)

∂µ
, (6)
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and:24

25

∆σ =
∂f(w,µ,σ)

∂w
ϵ+

∂f(w,µ,σ)

∂σ
. (7)

PWFN Clustering Algorithm26

In Algorithm 1 we give the full clustering algorithm used for each of the T fixing iterations.27

while |W t+1
fixed| ≤ Npt do

ω ← 0
fixednew ← [ ]
while fixednew is empty do

Increase the order: ω ← ω + 1
cω ← {

∑
i∈r i | r ∈ P(R) ∧ |r| ≤ ω}

for each i = 1 . . . , |W t+1
free |

cω∗ (i)← minc∈Cω Dprob(wi, c)
for each cluster centre cωk ∈ Cω

nω
k ←

∑
i I[cωk = cω∗ (i)]

k∗ ← argmaxk n
ω
k

Sort: [w′
1, . . . , w

′
N ]← [w1, . . . , wN ], w′

i = wπ(i), π permutation
where Dprob(w

′
i, c

ω
k∗) < Dprob(w

′
i+1, c

ω
k∗)

i← 1, mean← Dprob(w
′
1, c

ω
k∗)

while mean ≤ δ do
fixednew ← w′

i

mean← i
i+1 ×mean + 1

i+1× Dprob(w
′
i+1, c

ω
k∗)

i← i+ 1
end
δ ← 2× δ

end
Assign all the weights means µi ∈ fixednew to cluster centre cω∗ (i) and set each of the
σi ∈ fixednew to be the variance of the weight means in fixednew. Finally, move them
from W t+1

free to W t+1
fixed

end
Algorithm 1: Clustering Npt weights at the tth iteration in PWFN.

1.1 Prior Initialisation28

In addition to the prior intialisation described in main paper, we added an reweighting determined by29

the size of the σ values in the network. Using the definition of v = Drel(µi, pow2u(µi)) we re-weight30

by the third quartile ṽ0.75 and re-write the initialisation as:31

f(µi) = 0.0025× Drel(µi, pow2u(µi))×Drel(µi, pow2d(µi))

ṽ0.75
, (8)

and clamp the values to be within the range [2−30, 0.05] giving us our initial variance values.32

σi = max(0.1,min(f(µi), 2
−30). (9)

In Figure 1 we show how the layers’ σ and µ values are initialised using the prior (left) and where33

they converge to (right) given a ResNet-18 model trained on the ImageNet dataset.34

2 Hyper Parameter Search35

We conduct an extensive hyperparameter search looking at combinations of α, the number of training36

epochs between rounds, and the γ threshold on the Cifar10 dataset and Resnet18 model.37
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Figure 1: Here we compare the µ vs σ values for all weights in a given layer at initialisation (left)
and after PWFN convergence and clustering (right).

3



0.0

0.0
00

24
41

41

0.0
00

48
82

81

0.0
01

95
31

25

0.0
07

81
25

0.0
31

25
0.1

25 0.5

0.4

0.5

0.6

0.7

0.8

0.9

To
p 

1%

Accuracy vs 

0.0

0.0
00

24
41

41

0.0
00

48
82

81

0.0
01

95
31

25

0.0
07

81
25

0.0
31

25
0.1

25 0.5

10

20

30

40

50

60

# 
Un

iq
ue

 P
ar

am
s

Num_params vs 

0.2
5 0.5 1.0 2.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

En
tro

py

Entropy vs 

Figure 2: Here we show how the α regulariser impacts accuracy and compressibility.
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Figure 3: Here we see that only a few epochs are needed to maintain accuracy between clustering
stages

In Figure 2 we show the impact of increasing the regularisation strength. In Figure 3 we see that only38

3 epochs is necessary to maintain accuracy and strong compressibility. Finally, in Figure 4 we see39

how the accuracy, number of unique parameters and weight-space entropy changes across all the40

hyperparameter combinations explored.41
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Figure 4: Here we see how the accuracy, number of unique parameters and weight space entropy
evolves over each weight fixing round
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