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S1 Solving variational problems: From objective functional to E-L equations

S1.1 Step-by-step derivation of min-max optimization in Section 2.2.1

By substituting Eq. 2 into Eq. 1 in the main manuscript, we can obtain the objective function of
subscript z (we temporarily drop i for clarity):

J (z) = max
|z|≤1

∥∥∥∥λ2 z∇Gx

∥∥∥∥2
2

+ λz∇G(x
0 − λ

2
z∇Gx) (S1)

= max
|z|≤1

−λ2

4
z∇Gxz∇Gx+ λz∇Gx

0 (S2)

Next, we convert Eq. S2 into a minimization problem as follows:

z = argmin
|z|≤1

z∇Gxz∇Gx− 4
λz∇Gx

0
(S3)

By letting the derivative with respect to zi to zero, we have the following equation

∇Gxz∇Gx =
4

λ
∇Gx

0 (S4)

Since z might be in high dimensional space, solving such a large system of linear equations under
the constraint |z| ≤ 1 is oftentimes computationally challenging. In order to find a practical solution
for z that satisfies the constrained minimization problem in Eq. S3, we resort to the majorization-
minimization (MM) method [3]. First, we define:

M(z) = z∇Gxz∇Gx− 4

λ
z∇Gx

0 (S5)

By setting zl as point of coincidence, we can find a separable majorizer of M(z) by adding the
non-negative function

(z − zl)⊺(βI −∇Gx∇Gx
⊺)(z − zl) (S6)
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to M(z), where β is greater than or equal to the maximum eigenvalue of ∇Gx∇Gx
⊺. Note, to unify

the format, we use the matrix transpose property in Eq. S6. Therefore, a majorizer of M(z) is given
by:

M(z) + (z − zl)⊺(βI −∇Gx∇Gx
⊺)(z − zl) (S7)

And, using the MM approach, we can obtain the update equation for z as follows:

zl+1 = argmin
|z|≤1

(M(z) + (z − zl)
⊺
(βI −∇Gx∇Gx⊺)(z − zl))

= argmin
|z|≤1

(βz⊺z − 2(∇G(
2

λ
x0 −∇Gxzl) + βzl)

⊺

z)

= argmin
|z|≤1

(z⊺z − 2(
1

β
∇G(

2

λ
x0 −∇Gxzl) + zl)

⊺

z)

= argmin
|z|≤1

(z⊺z − 2b⊺z)

(S8)

where b = zl + 1
β∇G(

2
λx

0 −∇Gxz
l).

Then, the next step is to find z ∈ RN that minimizes z⊺z − 2bz subject to the constraint |z| ≤ 1.
Let’s first consider the simplest case where z is a scalar:

argmin
|z|≤1

z2 − 2bz (S9)

The minimum of z2 − 2bz is at z = b. If b ≤ 1, then the solution is z = b. If |b| ≥ 1, then the
solution is z = sign(b). We can define the gathering function g(·) as:

g(b, 1) :=

{
b |b| ≤ 1

sign(b) |b| ≥ 1
(S10)

as illustrated in the middle of Fig. 3 in the main text, then we can write the solution to Eq. S9 as
z = g(b, 1).

Note that the vector case Eq. S8 is separable - the elements of z are uncoupled so the constrained
minimization can be performed element-wise. Therefore, an update equation for z is given by:

zl+1 = g(zl +
1

β
∇G(

2

λ
x0 −∇Gxz

l), 1) (S11)

where l denotes the index of the network layer, the representation of (l + 1)th is given by Eq. (1) in
the main manuscript. Because the optimization problem is convex, the iteration will converge from
any initialization. We may choose, say z0 = 0. We call this the iterative diffusion-gathering (DG)
algorithm.

This algorithm can also be written as

xl+1 = x0 − λ

2
∇G

⊺zl

zl+1 = g

(
zl +

2

βλ
∇Gx

l+1, 1

)
.

(S12)

By scaling z with a factor of λ/2, we have the following equivalent formulations:

xl+1 = x0 −∇G
⊺zl

zl+1 = g

(
z(i) +

1

β
∇Gx

l+1,
λ

2

) (S13)

We summarize the process of the diffusion-gathering (DG) layer in Algorithm 1 (it is similar to the
iterative shrinkage threshold algorithm [1]):
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Algorithm 1 DG layer process
The objective function:

J (x) = min
x

(
∥∥x− x(0)

∥∥2
2
+ JTV (x))

can be minimized by alternating the following two steps:

xl = x0 −∇Gx
⊺zl−1

zl = g
(
zl−1 + 1

β∇Gx
l, λ

2

)
= g

(
zl−1 + 2

βλ∇Gx
l, 1

)
for l ≥ 1 with z0 = 0 and β ≥ maxeig(∇Gx

⊺∇Gx)

S1.2 The step-by-step derivation of min-max optimization schema in Section 2.2.2

According to the introduction of Secction 2.2.2 (Eq. 4 and Eq. 5) in the main manuscript, we
summarize the following equations,


dx
dt + div(q) = 0
ui = ϕ(xi)
q = α⊗∇u

∆u = div(∇u)

derive−−−−−−−−→


dx
dt = −div(q)

du
dt = −ϕ−1div(q)

du
dt = −ϕ−1div(α⊗ q)
du
dt = −ϕ−1(α⊗∆u)

(S14)

Since the PDE in Eq. 5 in the main manuscript is equivalent to the E-L equation of the quadratic
functional J (u) = min

u

∫
G α⊗ |∇Gu|2du (after taking ϕ away), we propose to replace the ℓ2-norm

integral functional J (u) with TV-based counterpart

JTV (u) = min
u

∫
G
α⊗ |∇Gu|du (S15)

We then introduce an auxiliary matrix f to lift the undifferentiable barrier, and reformulate the
TV-based functional as a dual min-max functional

JTV (u, f) = min
u

max
f

∫
G
α⊗ f(∇Gu)du (S16)

where we maximize f such that JTV (u, f) is close enough to JTV (u). Using Gâteaux variations,
we assume u → u+ εa, f → f + εb, and the directional derivatives in the directions a and b defined
as dJ

dε (u+ εa)
∣∣
ε→0

and dJ
dε (f + εb)

∣∣
ε→0

. Given a functional JTV (u, f), its Gâteaux variations is
formulated by:

JTV (u+ εa, f + εb) =

∫
α⊗ [(f + εb) · (∇u+ ε∇a)]du

⇒ ∂J
∂ε

∣∣∣∣
ε→0

=

∫
α⊗ [(f · ∇a) + (∇ub)] du

⇒ ∂J
∂ε

∣∣∣∣
ε→0

= α⊗ f · a−
∫

α⊗ (a · ∇f)du+

∫
α⊗ (b∇u)du

(S17)

Since we assume either u is given at the boundary (Dirichlet boundary condition), the boundary term
α⊗ f · a can be dropped. After that, the derivative of JTV (u, f) becomes:

∂J
∂ε

∣∣∣∣
ε→0

= −
∫

α⊗ (∇f · a+∇u · b) (S18)
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Since the dummy functional a and b are related to u and f respectively, the E-L equation from the
Gâteaux variations in Eq. S18 leads to two coupled PDEs: max

f

df
dt = α⊗∇Gu

min
u

du
dt = α⊗ div(f)

(S19)

Note, we use the adjoint operator div(f) = −∇f to approximate the discretization of ∇f [5], which
allows us to link the minimization of u to the classic graph diffusion process.

S2 Experimental details

S2.1 Implementation details

S2.1.1 Hyperparameters & training details

Table S1 lists the detailed parameter setting for several GNN-based models, including X-FlowNet,
PDENet, GCN, GAT, ResGCN, DenseGCN and GCNII.

In the node classification experiments, we set the output dimension to be the number of classes. We
adopt the public fixed split [9] to separate these datasets into training, validation, and test sets. We
use the accuracy, precision and F1-score of node classification as the evaluation metrics.

For the ADNI dataset prediction experiment, we set the input and output dimensions to be the
same as the number of brain nodes cannot be altered. We use 5-fold cross-validation to evaluate
the performance of different methods and measure their prediction accuracy using mean absolute
error (MAE). We also conduct an ablation study using a two-step approach. First, we train a model
(MLP+GNN) shown in the left panel of Fig. 4 (b) in the main manuscript to predict the potential
energy filed (PEF) based on the transport equation, then compute the flows using Eq. S19, followed
by a GCN-based model to predict the further concentration level of AD-related pathological burdens.
Since the deep model in this two-step approach is also formalized from the PDE, we refer to this
degraded version as PDENet.

In addition, we conduct a prediction of the risk of developing AD using the baseline scan, which can
be regarded as a graph classification experiment. This experiment only uses 2 GCN layers with a
hidden dimension as 64 for all methods, while the remaining parameters follow the node classification
experiment (Table S1 top).

In this work, all experiments are conducted on a server: Intel(R) Xeon(R) Gold 5220R CPU @
2.20GHz, NVIDIA RTX A5000. The code is available at https://github.com/Dandy5721/GNN-PDE-
COV.

S2.1.2 Data pre-processing on ADNI dataset.

In total, 1,291 subjects are selected from ADNI [7] dataset, each having diffusion-weighted imaging
(DWI) scans and longitudinal amyloid, FDG, cortical thickness(CoTh) and tau PET scans (2-5 time
points). The neuroimage processing consists of the following major steps:

• We segment the T1-weighted image into white matter, gray matter, and cerebral spinal fluid
using FSL software [6]. On top of the tissue probability map, we parcellate the cortical
surface into 148 cortical regions (frontal lobe, insula lobe, temporal lobe, occipital lobe,
parietal lobe, and limbic lobe) and 12 sub-cortical regions (left and right hippocampus,
caudate, thalamus, amygdala, globus pallidum, and putamen), using the Destrieux atlas [2]
(yellow arrows in Fig. S1). Second, we convert each DWI scan to diffusion tensor images
(DTI) [8].

• We apply surface seed-based probabilistic fiber tractography [4] using the DTI data, thus
producing a 160× 160 anatomical connectivity matrix (white arrows in Fig. S1). Note, the
weight of the anatomical connectivity is defined by the number of fibers linking two brain
regions normalized by the total number of fibers in the whole brain (∆ for graph diffusion
in X-FlowNet).
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• Following the region parcellations, we calculate the regional concentration level (the Cerebel-
lum as the reference) of the amyloid, FDG, CoTh and tau pathologies for each brain region
(red arrows in Fig. S1), yielding the input x ∈ R160 for training X-FlowNet, respectively.

Following the clinical outcomes, we partition the subjects into the cognitive normal (CN), early-stage
mild cognitive impairment (EMCI), late-stage mild cognitive impairment (LMCI), and AD groups.
To facilitate population counts, we regard CN and EMCI as "CN-like" group, while LMCI and AD as
"AD-like" groups. Table S2 summarizes the statistics of the two datasets.

Table S1: Parameters setting on Citation network (top) and ADNI data (bottom). M denotes the
feature dimension and C denotes the number of classes. For Cora dataset, we set i = 4 when network
layer L = 2, i = 8 if L = 4, i = 10 if L = 8, 16, 32, 64, 128. For Citeseer dataset, we set i = 4
when network layer L = 2, i = 8 if L = 4, i = 11 if L = 8, 16, 32, 64, 128. For Pubmed dataset, we
set i = 4 when network layer L = 2, i = 8 if L = 4, 8, 16, 32, 64, 128. The hidden dimension of lth
is twice that of layer (l− 1)th. Take Cora as an example (8 layers), the dimension of the hidden layer
is: 1433 → 1024 →512 → 256→128→64→32→16→7. After exceeding 8 layers, the number of
hidden layers is doubled according to the total network layer.

Algorithm Optimizer Learning rate Weight decay Hidden layer Dropout Epoch

GCN Adam 0.01 5× 10−4 M → 2i → ... → 24 → C 0.5 1500
GAT Adam 0.001 5× 10−4 head=8, M → 2i... → C 0.6 2000
RGCN Adam 0.005 5× 10−4 hidden dimension=64 0.1 2500
DGCN Adam 0.001 5× 10−4 hidden dimension=64 0.1 2500
GRAND Adam 0.01 5× 10−4 hidden dimension=16 0.5 200
GCNII Adam 0.005 5× 10−4 hidden dimension=128 0.6 2000

GCN Adam 0.001 5× 10−4 hidden dimension=16 0.2 500
GAT Adam 0.001 5× 10−4 head=8, hidden dimension=4 0.5 800
RGCN Adam 0.001 5× 10−4 hidden dimension=16 0.1 500
DGCN Adam 0.01 5× 10−4 hidden dimension=8 0.1 500
GCNII Adam 0.005 5× 10−4 hidden dimension=16 0.6 1500
GRAND Adam 0.01 5× 10−4 hidden dimension=16 0.5 500
X-FlowNet Adam 1e-4/3e-3 1× 10−5 hidden dimension=16 0.5 500
PDENet Adam 0.01 1× 10−5 hidden dimension=16 0.5 500

Table S2: Dataset statistics.
Node classification (Citation) Application on flow prediction (ADNI)

Dataset Description Features # of subjects (CN/AD)
Classes Nodes Edges Features Amyloid (160) 304/83

Cora 7 2708 5429 1433 Tau (160) 124/37
Citeseer 6 3327 4732 3703 FDG (160) 211/63
Pubmed 3 19717 44338 500 Cortical thickness (160) 359/110

S2.2 Experiments on node classification

Fig S2 presents the performance of different evaluation criteria (accuracy, precision, and F1-score)
across different network layers for node classification by benchmark GNN model (patterned in dash
lines) and the counterpart novel GNN model from our GNN-PDE-COV framework (patterned by
solid lines), where each row is associated with a specific instance of GNN model. It is evident that
our proposed GNN-PDE-COV consistently outperforms other methods across different layers, with
significantly enhanced degrees in accuracy, precision, and F1-score. Moreover, the GNN model
yielded from our GNN-PDE-COV framework consistently achieves the highest accuracy on all three
datasets. Overall, these results demonstrate the state-of-the-art performance by our GNN-PDE-COV
framework in graph node classification.

The effect of anti-smoothing by gathering operation is shown in Fig. S3. To set up the stage, we put
the spotlight on the links that connect two nodes with different categorical labels. In this context,
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Fiber	tractography	
Tissue	segmentation	results	
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Tau-PET Amyloid-PET
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Figure S1: General workflows for processing T1-weighted image (yellow arrows), diffusion-weighted
image (white arrows), and PET images (red arrows). The output is shown at the bottom right,
including the brain network, and regional concentration level of amyloid, FDG, CoTh and tau
aggregates.

2,006 links from Cora, 2,408 links from Citeseer, and 17,518 links from Pubmed datasets are selected,
called inter-class links. For each inter-class link, we calculate node-to-node similarity in terms of
Pearson’s correlation between two associated graph embedding vectors 1 by benchmark methods
(in red) and the counterpart GNN models derived from GNN-PDE-COV framework (in green). We
find that (1) more than 70% nodes are actually associated with inter-class links which confirms the
hypothesis of over-smoothing in Fig. 1 of our manuscript; (2) Our novel GNN models have the ability
to learn feature representations that better preserve the discriminative power for node classification (as
indicated by the distribution of node-to-node similarity shifting towards the sign of anti-correlation).

S2.3 Application on uncovering the propagation mechanism of pathological events in AD

Firstly, we examine the prediction accuracy for each modality of concentration (tau, amyloid, FDG,
CoTh) level at different noise levels. Specifically, to evaluate the robustness of our X-FlowNet model
to noise, we conducted an experiment by adding uncorrelated additive Gaussian noise levels with
standard deviation ranging from 0.02 to 1 to the observed concentration levels of tau, amyloid, FDG,
and CoTh. We then evaluated the prediction accuracy (MAE) using 5-fold cross-validation. The
prediction results, as shown in Fig. S4, indicate that our X-FlowNet model is less sensitive to noise
added to the imaging features than all other counterpart GNN methods.

Secondly, we conduct an ablation study to compare our X-FlowNet model with PDENet (marked as
#7 in Fig. S4). Our model, which is in a GAN architecture and incorporates a TV constraint to avoid
over-smoothing, integrates the two steps of estimating the PEF and uncovering the spreading flows
into a unified neural network, resulting in significantly improved prediction accuracy compared to
PDENet.

1the learned feature representations for node classification
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S2.4 Discussion and limitations

Discussion. In our experiments, we found adding DG layer right after every FC layer usually does
not yield best performance. Instead, we empirically set to add DG layer from the first several FC
layers. For example, we add DG layer after the 3rd FC layer in an 8-layer GNN model, after the 5th

FC layer in a 16-layer GNN model, and after 8th FC layer in a GNN model with more than 16 layers.
One possible explanation is that the gathering operation in DG layer depends on a good estimation
of cap b in Eq. 3 (in the main manuscript). Given that the estimation of b may lack stability during
the initial stages of graph learning, it can be advantageous to postpone the clip operation from an
engineering perspective. However, delaying the addition of the DG layer too much can result in
missed opportunities to address the problem of over-smoothing.

Regarding the computational time, we record the additional computational time of training our
DG layer on different datasets. Specifically, the extra training time is 2.2 ms/epoch in Cora, 9.8
ms/epoch in Citeseer, 7.8 ms/epoch in Pubmed, and 0.3 ms/epoch in ADNI, respectively, where
the data descriptions are listed in Table S2. It is apparent that the TV-based constraint effectively
addresses the over-smoothing issue in GNN without imposing a significant computational burden.

Limitations. Our current graph learning experiments are limited to citation networks. In the future,
we will evaluate our GNN-PDE-COV framework on other graph datasets such as drug medicine,
protein networks and heterophilic graphs.

Societal impact. Our major contribution to the machine learning field is a novel research framework
which allows us to develop new GNN models with a system-level understanding. We have provided a
new approach to address the common issue of over-smoothing in GNN with a mathematical guarantee.
From the application perspective, the new deep model for uncovering the in-vivo propagation flows has
great potential to establish new underpinning of disease progression and disentangle the heterogeneity
of diverse neurodegeneration trajectories.
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Figure S2: The performance of node classification with respect to various GNN layers (horizontal
axis) on six models. Note: dotted line: baseline, solid line: GNN-PDE-COV, blue: Cora, purple:
Citeseer, red: Pubmed.
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Figure S3: The distribution of the node-to-node similarities (measured by Pearson’s correlation
between embedding vectors) by Benchmark methods (in red) and our GNN-PDE-COV (in green) in
Cora (left), Citeseer (middle), and Pubmed (right).
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Figure S4: The performance of 5-fold cross-validation for predicting the future concentration (top to
bottom: Tau, Amyloid, FDG and CoTh) level by (1) GCN, (2) GAT, (3) GCNII, (4) ResGCN, (5)
DenseGCN, (6) GRAND, (7) PDENet (used in ablation study), and (8) our X-FlowNet.
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