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Abstract

The adaptive leaky integrate-and-fire (ALIF) model is fundamental within computa-
tional neuroscience and has been instrumental in studying our brains in silico. Due
to the sequential nature of simulating these neural models, a commonly faced issue
is the speed-accuracy trade-off: either accurately simulate a neuron using a small
discretisation time-step (DT), which is slow, or more quickly simulate a neuron us-
ing a larger DT and incur a loss in simulation accuracy. Here we provide a solution
to this dilemma, by algorithmically reinterpreting the ALIF model, reducing the
sequential simulation complexity and permitting a more efficient parallelisation
on GPUs. We computationally validate our implementation to obtain over a 50×
training speedup using small DTs on synthetic benchmarks. We also obtained a
comparable performance to the standard ALIF implementation on different su-
pervised classification tasks - yet in a fraction of the training time. Lastly, we
showcase how our model makes it possible to quickly and accurately fit real elec-
trophysiological recordings of cortical neurons, where very fine sub-millisecond
DTs are crucial for capturing exact spike timing.

1 Introduction

The surge of progress in artificial neural networks (ANNs) over the last decade has advanced
our understanding of the potential computational principles underlying the processing of sensory
information [1–9]. Although these networks architecturally bear a resemblance to the brain [10], they
tend to omit a key physiological constraint: the spike. With their increased biological realism, spiking
neural networks (SNNs) have shown great promise in bridging the gap between experimental data
and computational models. SNNs can be fitted to real neural data [11–15], or used to simulate the
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brain, offering a new level of understanding of the complex workings of the nervous system [16–19].
They also have engineering applications in energy-efficient machine learning [20].

An established class of spiking models in computational neuroscience is the leaky integrate-and-fire
(LIF) neuron, with origins dating back to 1907 [21]. Just like in real neurons, input current (resulting
from presynaptic input) charges the membrane potential of the model neurons, which then output
binary signals (i.e. spikes) as a form of communication (Figure 1a). The adaptive leaky integrate-
and-fire (ALIF) model [22] is a modern extension of the LIF. It more closely mimics the biology,
capturing a key property of neurons, which is their adaptive firing threshold (i.e. spikes become less
frequent in response to a steady input current [23]). ALIF neurons have been shown to accurately fit
real neural recordings [11, 22, 24, 25] and to outperform the simpler LIF neurons on various machine
learning benchmarks [26–29].

Despite these modelling advances, a major shortcoming of LIF and ALIF neurons is their slow
inference and training times. Unlike real neurons, modelling neuron dynamics involves sequential
computation over discretised time. This leads to a problematic trade-off between speed and accuracy
when simulating SNNs. A small DT enables accurate modelling of dynamics, but is slow to stimulate
and train on computer systems such as GPUs. A large DT obtains less accurate dynamics, but at
the benefit of being faster to simulate and train [30] (Figure 1b). This raises the important question
of capturing the best of both worlds: is there a way to accelerate the inference and training of
spiking LIF and ALIF neurons without sacrificing simulation accuracy?

In this work, we address the speed-accuracy trade-off when simulating and training LIF and ALIF
SNNs, and present a solution that is both fast and accurate. We take advantage of a fundamental
property of neurons that is sometimes not modelled - the absolute refractory period (ARP). This is a
short period of time following spike initiation, during which a neuron cannot fire again. As a result,
a neuron can spike at most once within such a period (Figure 1c). We leverage this observation to
develop a novel algorithmic reformulation of the ALIF model which reduces the sequential simulation
complexity of the standard ALIF algorithm. Specifically, we outline how ALIF recurrent networks
can be simulated with a constant sequential complexity O(1) over the ARP simulation length TR,
and how this approach can be extended to longer simulation lengths to obtain identical dynamics to
the standard ALIF network algorithm. Faster simulation and training are theoretically obtained for
growing length TR, by either employing physiologically plausible ARPs of∼ 2ms and decreasing the
DT to a very fine value ∼ 0.1ms (for realistic neural modelling), or setting the DT to a coarser value
and adopting larger non-physiological ARPs (for machine learning tasks). Our main contributions
are the following:

• We develop a novel algorithmic reformulation of the ALIF model with an O(T/TR) - rather
than O(T ) - sequential complexity, for simulation length T and ARP length TR.1

• We find that our model achieves substantial inference (up to 40×) and training speedup (up
to 53×) over the standard ALIF SNN for increasing ARP time steps, and find this to hold
over different numbers of simulation lengths, batch sizes, number of neurons and layers.

• We demonstrate the feasibility of our model to be trained using surrogate gradient descent,
with our accelerated ALIF SNN achieving comparable accuracies to the standard ALIF SNN
on temporal spiking classification datasets - yet in a fraction of the training time.

• Finally, we showcase how our ALIF implementation makes it possible to quickly fit real
electrophysiological recordings of cortical neurons, where very fine sub-millisecond dis-
cretisation steps are important for accurately capturing exact spike timing.

1To avoid ambiguity, simulation length T and ARP length TR are number of time steps (dimensionless) and
not unit time.
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Figure 1: Problem overview. a. Schematic of an ALIF neuron: input current I charges membrane
potential V and outputs spikes S if firing threshold is reached (with the neuron’s internal state
evolving over time). b. An example of the simulation trade-off problem when simulating a single
ALIF neuron with fixed synaptic weights receiving Poisson spike input. The simulation error and the
speed grow for increasing discretisation time (DT). c. Observation for our solution: a neuron emits at
most a single spike during a simulation span TR equal in length to the neuron’s absolute refractory
period (ARP).

2 Background and related work

Standard ALIF model We introduce the recurrent SNN of ALIF neurons with fixed ARP and
latency of recurrent transmission, defined by the following set of equations [26, 31].
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At time t, neuron iwithin layer l (consisting ofN (l) neurons) receives input current I(l)i [t] and outputs
a binary value S(l)

i [t] ∈ {1, 0} (i.e. spike or no spike) if a neuron’s membrane potential V (l)
i [t] reaches

firing threshold θ(l)i (Equation 1).2 The evolution of the membrane potential is described by the
normalised discretised LIF equation (Equation 2), in which the membrane potential dissipates by
a learnable factor 0 ≤ β

(l)
i ≤ 1 at every time step and resets to zero if a spike occurred at the

previous time step. The input current is comprised of a constant bias source b(l)i and from incoming
spikes reflecting feedforward W (l) ∈ RN

(l)×N(l−1)

and recurrent connectivity W rec (l) ∈ RN
(l)×N(l)

(Equation 3).

Here, we assume the recurrent transmission latencies D to be of fixed length and equal in length to
the ARP, that is TR = D. With a simple modification however, our methods can work for longer D,
or different D on each connection, so long as D ≥ TR. The ARP is enforced by only allowing input
current to enter the neuron if the number of time steps C(l)

i following the last spike equals or exceeds
the ARP length (Equation 4). Lastly, adaptation is implemented by raising the firing threshold θ(l)i [t]

2Here notation 1condition denotes the indicator function, which is equal to one if the condition is true and
zero otherwise.
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following each spike S(l)
i [t− 1] (Equation 5), which decays exponentially to baseline θ(l)i = 1 in the

absence of any spikes (using learnt decay factor 0 ≤ p(l)i ≤ 1 and adaptation scalar d(l)i ).

The ARP in biological neurons is typically about ∼ 1− 2ms [32–34]. Our method takes advantage
of the fact that the monosynaptic connection latency between neurons in local circuits is typically
also often around ∼ 1− 2ms [35]. LIF and ALIF neuronal models are typically run with a DT of
about ∼ 0.1ms in the computational neuroscience literature and ∼ 1ms in machine learning literature
[30]. Furthermore, the firing rate of neurons is often less than the reciprocal of the ARP, suggesting
that a higher TR than the ARP may still provide a reasonable approximation of neural behaviour for
some purposes.

SNN training The main problem with training SNNs is the non-differentiable nature of their
activation function in Equation 1 (whose derivative is undefined at V (l)

i [t] = θ
(l)
i [t] and zero oth-

erwise). This precludes the direct use of the backprop algorithm [36], which has underpinned the
successful training of ANNs. A popular solution is to replace the undefined spike derivative with
a well-behaved function, referred to as a surrogate gradient [37–40], and training the network with
backprop-through-time [41]. This method also supports the training of neural parameters other
than synaptic connectivity, such as membrane time constants [42, 28] and adaptive firing thresholds
[26–28], both of which we include in our work, as they have been shown to improve performance
(and increase biological realism). It is worth mentioning that other SNN training methods exist such
as mapping trained ANNs to SNNs by transforming ANN neuron activations to SNN neuron firing
rates [43–46]. These methods are, however, of less interest to computational neuroscientists as they
discard all temporal spike precision.

Related work Recent work has provided new theoretical insights for increasing the simulation
accuracy when employing a larger DT ≥ 1ms [30]. We are not aware of any work that accelerates
the simulation and training times on GPUs when employing a smaller DT ≤ 1ms (although see
the NEST simulation library for simulating SNNs on CPUs [47–49]). There are, however, different
methods for speeding up the backward pass (i.e. how gradients are computed within the SNN),
which consequentially speeds up training times. Rather than being viewed as competing approaches,
these methods could further augment the speed of our solution. In sparse gradient descent, gradients
are only passed through neurons whose membrane potential is close to firing threshold, which can
significantly accelerate the backward pass when neurons are mostly silent [50]. Inspired by work
on training non-spiking networks [51, 52], other methods completely bypass the backward pass and
adjust weights online [53, 27, 29]. Another approach is to propagate gradient information through
spikes [54–60], which - similar to the idea of sparse gradient descent - is fast when neurons are mostly
silent. This method, however, enforces neurons to spike at most once and can suffer from training
instabilities (although see [61, 62]).

3 Theoretical results

We outline a novel reformulation of the ALIF model, which theoretically reduces the sequential
simulation complexity from O(T ) to O(T/TR) (for simulation length T and ARP length TR). Using
the observation that a neuron can spike at most once over simulation length TR (equal to the ARP;
Figure 1c), we propose simulating network dynamics sequentially in blocks of length TR - as opposed
to simulating every time step individually (Figure 2a) - as we show that these blocks can be simulated
with a constant sequential complexity O(1). Our reformulated ALIF model is mathematically the
same as the standard ALIF model, but substantially faster to simulate and train. All the proofs for the
propositions can be found in the Supplementary material.

3.1 Block: simulating single-spike ALIF dynamics with a constant sequential complexity

A SNN exhibits a sequential dependence due to the spike reset mechanism, where a neuron’s
membrane potential Vi[t] can be reset based on its previous output Si[t − 1]. Consequently, the
simulation of a SNN necessitates a sequential approach. This restriction can, however, be alleviated
if we assume a neuron to spike at most once over a particular simulation length (such as the ARP).
The following steps - grouped together into a module referred to as a Block (Figure 2b) - compute
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Figure 2: Solution overview. a. Our proposed solution: instead of simulating network dynamics
one time step after another (top), we sequentially simulate blocks of time equal in length to the
neuron ARP (bottom), in which a neuron can spike at most once. b. A schematic of a Block: our
proposed solution for emulating ALIF dynamics with a constant sequential complexity O(1) over a
short duration in which a neuron spikes at most once.

ALIF dynamics (assuming at most one spike) without any sequential operations.

Ṽi[t] =
(
Ii ∗ β̃i

)
[t] (No-reset membrane potential) (6)

S̃i[t] = f(Ṽi[t]) (Faulty output spikes) (7)

zi[t] = φ(S̃i)[t] (Latent timing of spikes) (8)
Si[t] = 1zi[t] = 1 (Correct output spikes) (9)

1. Calculate membrane potentials without reset The first step in the Block (Equation 6) converts
input current Ii[t] to membrane potentials Ṽi[t] without spike reset (i.e. excluding the reset mechanism
in Equation 2). This transformation is achieved using a convolution (Proposition 1), thus avoiding
any sequential operations.

Proposition 1. Membrane potentials without spike reset are computed as a convolution Ṽi[t] =(
Ii ∗ β̃i

)
[t] between input current Ii[t] and kernel β̃i[t] = (1 − βi)βti with the initial membrane

potential encoded as Ii[0] =
Vi[0]
1−βi

.

2. Faulty output spikes No-reset membrane potentials Ṽi[t] are mapped to erroneous output spikes
S̃i[t] = f(Ṽi[t]) (Equation 7) using spike function f (Equation 1). This output can contain more than
one spike, but only the first spike complies with the standard model dynamics, due to the omission of
the reset mechanism and ARP constraint. Thus, to ensure that the Block only emits a single spike, all
spikes succeeding the first spike occurrence are removed using the following steps.

3. Latent timing of spikes Erroneous spike output S̃i[t] is mapped to a latent representation
zi[t] = φ(S̃i)[t] (Equation 8), encoding the timing of spikes. Function φ(·) (taking vector S̃i as input;
Proposition 2) is constructed to map all erroneous spikes S̃i[t], besides the first spike occurrence, to
a value other than one (i.e. zi[t] 6= 1 for all t except for the smallest t satisfying S̃i[t] = 1 if such t
exists).
Proposition 2. Function φ(S̃i)[t] =

∑t
k=1 S̃i[k](t−k+1) acting on S̃i ∈ {0, 1}T contains at most

one element equal to one φ(S̃i)[t] = 1 for the smallest t satisfying S̃i[t] = 1 (if such t exists).

4. Correct output spikes Lastly, the correct spike output Si[t] = 1zi[t] = 1 is obtained by setting
every value in zi[t], besides the value one (i.e. the first spike), to zero (Equation 9).
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3.2 Blocks: simulating ALIF SNN dynamics with a O(T/TR) sequential complexity

The standard ALIF SNN model can be reformulated using a chaining of Blocks, which reduces the
sequential simulation complexity (as each Block is simulated in O(1)). For a given ARP of length
TR, we observed that a neuron spikes at most once over simulation length TR (Figure 1c). Thus, a
simulation length T can be simulated using N = T

TR
Blocks, each of length TR. 3 Next, we outline

how to simulate ALIF dynamics across Blocks to emulate the dynamics of the standard ALIF SNN.
We introduce new notation to index Block 1 ≤ n ≤ N using subscript n (e.g. input current to neuron
i simulated in Block n is expressed as Ii,n[t]) with time steps indexed between [1, TR] (as opposed to
[1, T ]) within a Block.

Input current and the ARP of a Block The input current in the standard model (Equation 3 and 4)
is modified for the Block model (Proposition 3). The feedforward and recurrent current to Block n+1
are derived from the presynaptic and postsynaptic spikes from Block n+ 1 and Block n respectively.
In addition, the ARP is enforced by applying a mask derived from the latent timing of spikes zi,n[t]
(Equation 8).

Proposition 3. The input current Ii,n+1[t] of neuron i simulated in Block n + 1 (of length TR) is
defined as follows, and enforces an absolute refractory period of length TR and a monosynaptic
transmission latency of D = TR.

Ii,n+1[t] =
(
bi +

N in∑
j=1

WijSj,n+1[t]︸ ︷︷ ︸
Feedforward current

+

N out∑
j=1

W rec
ij Sj,n[t]︸ ︷︷ ︸

Recurrent current

)
1zi,n[t] ≥ max

t
Si,n[t]︸ ︷︷ ︸

ARP mask

Evolving membrane potentials between Blocks Two cases are distinguished to correctly emulate
the evolution of the membrane potentials between Blocks (Proposition 4): 1) if neuron i did not spike
in Block n (i.e. maxt Si,n[t] = 0), then its initial membrane potential Vi,n+1[0] in Block n+ 1 is set
to its final membrane potential Vi,n[TR] in Block n. Otherwise 2), the initial membrane potential is
set to zero to emulate a spike reset (and no state needs to be transferred between Blocks as the neuron
is in a refractory state).

Proposition 4. The initial membrane potential Vi,n+1[0] of neuron i simulated in Block n+ 1 (of
length TR) is equal to the last membrane potential in Block n if no spike occurred and zero otherwise.

Vi,n+1[0] =

{
Vi,n[TR] if maxt Si,n[t] = 0

0 otherwise

Evolving adaptive firing thresholds between Blocks The adaptive firing threshold θi,n+1[t] of
neuron i in Block n+ 1 is derived from the initial adaptive parameter ai,n+1[0] (Proposition 5). Two
cases are distinguished for deriving this parameter: 1) if the neuron did not spike during the previous
Block n, this parameter is set to its last value, ai,n[TR], in the prior Block; otherwise 2), the effect
of the spike needs to be taken into account, for which the initial adaptive parameter is expressed as
pmi (as + p−1

i ). Here, m is the number of time steps remaining in Block n following the spike and as
is the adaptive parameter value at the time of spiking.

Proposition 5. The adaptive firing threshold θi,n+1[t] of neuron i simulated in Block n+1 (of length
TR) is constructed from the initial adaptive parameter ai,n+1[0], which is equal to its last value in
the previous Block if no spike occurred, and otherwise equal to an expression which accounts for the
effect of the spike on the adaptive threshold.

θi,n+1[t] = 1 + dip
t
iai,n+1[0]

ai,n+1[0] =

{
ai,n[TR] if maxt Si,n[t] = 0

pmi (as + p−1
i ) otherwise

m =

TR∑
k

1zi,n[k] > 1, as =

TR∑
k

ai,n[k]Si,n[k]

3With appropriate zero padding to the simulation length if it is not divisible by TR.
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3.3 Theoretical speedup for simulating ALIF SNNs using Blocks

Method Computational Complexity Sequential Operations

Standard O(N inN outT ) O(T )

Blocks O(N inN outT 2
RN) O(T/TR)

Table 1: Computational and sequential complexity of simulating a layer of N out neurons with N in

input neurons for T time steps using the standard method and our method (with N Blocks each of
length TR).

Simulating an ALIF SNN using our Blocks, rather than the conventional approach, requires fewer
sequential operations (Table 1). Although the computational complexity of our Blocks approach is
larger than the standard approach, the number of sequential operations is less. If we assume that the
sequential steps in both methods are executed in an equal amount of time (as all the non-sequential
operations can be run in parallel on a GPU), we obtain a theoretical speedup equal to the length of
the ARP T

N = TR.

4 Experiments

We evaluated the training speedup of our accelerated ALIF SNN relative to the standard ALIF SNN
and explored the capacity of our model to be fitted using different spiking classification datasets and
real electrophysiological recordings of cortical neurons. Implementation details can be found in the
Supplementary material and the code at https://github.com/webstorms/Blocks.

4.1 Training speedup scales with an increasing ARP
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Figure 3: Training speedup of our model. a. Training speedup of our accelerated ALIF model
compared to the standard ALIF model for different simulation lengths T , ARP time steps and batch
sizes. b. Training speedup over different number of layers and hidden units (with an ARP of TR = 40
time steps, T = 1024 time steps and batch size = 64; bars plot the mean and standard error over ten
runs). Assuming DT= 0.1ms, then 10 time steps = 1ms.

To determine how much faster our model is, we benchmarked the required training duration (forward
and backward pass) of our accelerated ALIF SNN to the standard ALIF SNN for varying ARP
and simulation lengths using a synthetic spike dataset, with the task of minimizing the number
of final-layer output spikes (see Supplementary material). We found the training speedup of our
model to increase for a growing ARP (Figure 3a). This speedup was more pronounced for longer
simulation durations (53× speedup for T = 2048) than shorter simulation durations (36× speedup
for T = 512). These speedups were also present when just running the forward pass (i.e. inference
using the network; see Supplementary material). Furthermore, we found the speedup of our model to
be robust over varying numbers of neurons and layers (Figure 3b). Lastly, we also found our method
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to perform the forward pass more than an order of magnitude faster than other publicly available
SNN implementations [63, 64] (see Supplementary material).

4.2 Accelerated training on spiking classification tasks
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Figure 4: Performance of our model on spiking datasets. a. Classification accuracy of our model
and the standard ALIF SNN on the N-MNIST and SHD datasets over different (non-biological) ARPs
(N-MNIST 1ms=1 time step; SHD 2ms=1 time step). b. Training durations of our model and the
standard ALIF SNN on the N-MNIST and SHD datasets. Horizontal gray lines plot the standard
model’s performance (using no ARP) and bars plot the mean and standard error over three runs.

To establish whether our model can learn using backprop with surrogate gradients, and perform on a
par with the standard model, we trained our accelerated ALIF SNN and the standard ALIF SNN on
the Neuromophic-MNIST (N-MNIST) (using DT= 1ms) [65] and Spiking Heidelberg Digits (SHD)
(using DT= 2ms) [66] spiking classification datasets (both commonly used for benchmarking SNN
performance [40, 67, 29, 42, 50]). The task of the N-MNIST dataset is to classify spike representations
of handwritten digits, and the task of the SHD dataset is to classify spike representations of spoken
digits. In all experiments we employed identical model architectures consisting of two hidden
layers (of 256 neurons each) and an additional integrator readout layer, with predictions taken from
the readout neurons with maximal summated membrane potential over time (as commonly done
[66, 68, 29, 42, 50]; see Supplementary material). We adopted the multi-Gaussian surrogate-gradient
function [29] to overcome the non-differentiable discontinuity of the spike function (although we
found that other surrogate-gradient functions also work, see Supplementary material). Furthermore (as
suggested by [68] for conventional SNNs), we only permitted surrogate gradients to flow through the
non-recurrent connectivity (which significantly improved performance; see Supplementary material).

We trained our model with different non-biological ARPs on each dataset and contrasted the accuracy
and training duration to the standard model (with no ARP). We found a favourable trade-off between
classification accuracy and training time for our model. Compared to the standard ALIF SNN model,
our model achieved a very similar, albeit slightly lower, accuracy on the N-MNIST (96.97% for
ARP=10ms vs standard 97.71%) and SHD dataset (86.07% for ARP=20ms vs standard 87.48%),
with the accuracy declining only for the largest ARPs tested (Figure 4a). However, our model
only required a fraction of the training time, with an average training epoch of 181s and 20s for
the N-MNIST and SHD datasets, respectively, when using the largest tested ARP, compared to the
respective standard model training times of 2034s and 268s (Figure 4b).

4.3 Quickly fitting real neural recordings on sub-millisecond timescales

We explored the ability of our model to fit in vitro electrophysiological recordings from 146 inhibitory
and excitatory neurons in mouse primary visual cortex (V1) (provided by the Allen Institute [69, 70]).
In these recordings, a variable input current was repeatedly injected at various amplitudes into each
real neuron, and the resulting alteration in the membrane potential was recorded (Figure 5a). For
each neuron, we used half of the recordings for fitting and the other half for testing, and report all the
qualitative and quantitative results on the held-out test dataset. Fitting was achieved by minimising
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Figure 5: Fitting cortical electrophysiological recordings. a. An illustration of a cortical neuron
in mouse V1 being recorded whilst stimulated with a noisy current injection. b. For held-out data not
used for fitting, an example current injection (bottom) and recorded membrane potential (middle)
with corresponding fitted model predictions (top). c. Comparison of neuron fit accuracy of our model
for DT= 0.1ms (y-axis) against DT= 4ms (x-axis). Explained temporal variance (ETV) measures
the goodness-of-fit (one is a perfect fit and zero is a chance-level fit). d. Comparison of the fit
accuracy (left) and duration (right) of our model and the standard model (both using DT= 0.1ms and
ARP= 2ms). e. Our model’s fit accuracy for increasing ARP (with DT= 0.1ms). f. Our model’s fit
accuracy for increasing DT (with ARP=max(2,DT)ms). d. to f. plots the median and standard error
over neurons, except that d. (right) plots the mean fit time.

the van Rossum distance between the model and real spike trains [71]. To quantitatively compare the
fits of our model using different DTs and ARPs, we employed the explained temporal variance (ETV)
measure (used on the Allen Institute website; see Supplementary material). This metric quantifies
how well the temporal dynamics of the neurons are captured by the model and takes into account
trial-to-trial variability due to intrinsic neural noise. It has a value of one for a perfect fit and a value
of zero if the model predicts at chance.

We found that our accelerated ALIF model captured the spike timing of the neurons. Pertinent to
the speed-accuracy trade-off, this fit strongly depended on the chosen DT, and less so on the chosen
ARP. Qualitatively, using a DT= 0.1ms and an ARP= 2ms, we found our model captured the spike
timings of the neurons for current injections of varying amplitude. This still seemed to be the case
when we used a larger ARP= 8ms, but the model was worse at capturing spike timings when we
used a larger DT= 4ms (with ARP= 4ms; Figure 5b; see Supplementary material for zoomed-in
neural traces).

Quantitatively comparing the neuron fits one by one, we found that nearly all of the neuron fits were
better when using a DT= 0.1ms (ETV= 0.80) than a DT= 4ms (ETV= 0.66; Figure 5c; using an
ARP= 4ms). We examined how accurate and fast our fits were compared to the standard model using
an ARP= 2ms and a DT= 0.1ms. Both models achieved a similar ETV of ∼ 0.8, yet our model only
required 15.5s on average per neuron fit time compared to the 108.4s of the standard model (Figure
5d). We further investigated whether a larger ARP could still reasonably fit the data for DT= 0.1ms
(to benefit from a faster fit). Consistent with our qualitative observations, we found a less marked
reduction in fit accuracy when using larger ARPs (Figure 5e) compared to the drop in performance
when using larger DTs (Figure 5f; using an ARP of max(2,DT)ms).

5 Discussion
ALIF neurons are a popular model for studying the brain in silico. Training these neurons is, however,
slow due to their sequential nature [41, 72]. We overcome this by algorithmically reinterpreting
the ALIF model. We found that our method permits faster simulation of SNNs, which will likely
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play an important role in future research into neural dynamics through simulation [17, 16]. We also
confirmed the validity of this approach for modelling neural data. Firstly - of interest to computational
neuroscientists - we fitted a multilayered network of neurons using two common spike classification
datasets. We found that our model achieved a similar classification accuracy to that of the standard
model, even if we increased the ARP to large non-physiological values, which drastically reduced the
training duration required for both datasets. Secondly - of interest to computational and experimental
neuroscientists - we explored the applicability of our method to fit real electrophysiological recordings
of neurons in mouse V1 using sub-millisecond DTs.

We found that our method accurately captured the spike timing of real neurons, fitting their activity
patterns in a fraction of the time required by the standard model (although we note that other, more
recent spiking-models, might improve fit accuracies [73]). This is particularly important as datasets
become larger with advances in recording techniques, requiring faster fitting solutions to characterise
computational properties of neurons. As an example of the potential insights provided by our
model, we found the fitted V1 neurons to have a heterogenous membrane time constant distribution,
suggesting that V1 processes visual information on multiple timescales [42] (see Supplementary
material).

Our work will likely also be of interest to neuromorphic engineers and researchers, developing energy-
efficient hardware to emulate SNNs [20]. These systems - like real neurons - run in continuous
time and thus require training on extremely fine DTs off-chip [74, 75]. Our method could help to
accelerate off-chip training times. Furthermore, the ARP hyperparameter in our model can limit high
spike rates and thus reduce energy consumption on neuromorphic systems, as this consumption scales
approximately proportionally with the number of emitted spikes [76].

A limitation of our method is that the training speedup scales sublinearly - as opposed to linearly -
with an increasing ARP simulation length (see Section 3 and 4.1). This is likely due to GPU overheads
and employed cudnn routines [77], which further improvements to our code implementation could
overcome. An additional limitation is the requirement to define the ARP hyperparameter, whose
value influences the training speed and test accuracy in our method and relates to biological realism.
However, we found a beneficial trade-off - by using large non-biological ARPs on the artificial spiking
classification dataset and small physiological ARPs for the neural fits (although we found larger
values to also perform reasonably well) the model achieved comparable accuracy to the standard
ALIF model in both cases, while also having greatly increased speed of training and simulation. In
particular, the capacity of our model to accurately and quickly fit the data from real neurons is crucial
in terms of the biological applicability of this approach.

Acknowledgments and Disclosure of Funding

We thank Rob Pratt and anonymous reviewers for helpful discussions; and Lorenzo Mazzaschi for
feedback on the manuscript. Luke Taylor was supported by the Clarendon Fund. Andrew King and
Nicol Harper were supported by the Wellcome Trust (WT108369/Z/2015/Z). Figure 5 was created
with BioRender.com.

References
[1] Nicol S Harper, Oliver Schoppe, Ben DB Willmore, Zhanfeng Cui, Jan WH Schnupp, and

Andrew J King. Network receptive field modeling reveals extensive integration and multi-feature
selectivity in auditory cortical neurons. PLoS Computational Biology, 12(11):e1005113, 2016.

[2] Yosef Singer, Luke Taylor, Ben DB Willmore, Andrew J King, and Nicol S Harper. Hierarchical
temporal prediction captures motion processing along the visual pathway. eLife, 12:e52599,
2023.

[3] Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S Tolias,
Matthias Bethge, and Alexander S Ecker. Deep convolutional models improve predictions of
macaque v1 responses to natural images. PLoS Computational Biology, 15(4):e1006897, 2019.

[4] Andrew Francl and Josh H McDermott. Deep neural network models of sound localization
reveal how perception is adapted to real-world environments. Nature Human Behaviour, 6(1):
111–133, 2022.

10



[5] Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models to understand
sensory cortex. Nature Neuroscience, 19(3):356–365, 2016.

[6] Shahab Bakhtiari, Patrick Mineault, Timothy Lillicrap, Christopher Pack, and Blake Richards.
The functional specialization of visual cortex emerges from training parallel pathways with
self-supervised predictive learning. Advances in Neural Information Processing Systems, 34:
25164–25178, 2021.

[7] Patrick Mineault, Shahab Bakhtiari, Blake Richards, and Christopher Pack. Your head is there
to move you around: Goal-driven models of the primate dorsal pathway. Advances in Neural
Information Processing Systems, 34:28757–28771, 2021.

[8] Samuel Ocko, Jack Lindsey, Surya Ganguli, and Stephane Deny. The emergence of multiple
retinal cell types through efficient coding of natural movies. Advances in Neural Information
Processing Systems, 31, 2018.

[9] Colin Conwell, David Mayo, Andrei Barbu, Michael Buice, George Alvarez, and Boris Katz.
Neural regression, representational similarity, model zoology & neural taskonomy at scale in
rodent visual cortex. Advances in Neural Information Processing Systems, 34:5590–5607, 2021.

[10] Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz,
Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, et al.
A deep learning framework for neuroscience. Nature Neuroscience, 22(11):1761–1770, 2019.

[11] Renaud Jolivet, Felix Schürmann, Thomas K Berger, Richard Naud, Wulfram Gerstner, and
Arnd Roth. The quantitative single-neuron modeling competition. Biological Cybernetics, 99:
417–426, 2008.

[12] Ryota Kobayashi, Yasuhiro Tsubo, and Shigeru Shinomoto. Made-to-order spiking neuron
model equipped with a multi-timescale adaptive threshold. Frontiers in Computational Neuro-
science, page 9, 2009.

[13] Cyrille Rossant, Dan FM Goodman, Bertrand Fontaine, Jonathan Platkiewicz, Anna K Magnus-
son, and Romain Brette. Fitting neuron models to spike trains. Frontiers in Neuroscience, 5:9,
2011.

[14] Skander Mensi, Richard Naud, Christian Pozzorini, Michael Avermann, Carl CH Petersen, and
Wulfram Gerstner. Parameter extraction and classification of three cortical neuron types reveals
two distinct adaptation mechanisms. Journal of Neurophysiology, 107(6):1756–1775, 2012.

[15] Christian Pozzorini, Richard Naud, Skander Mensi, and Wulfram Gerstner. Temporal whitening
by power-law adaptation in neocortical neurons. Nature Neuroscience, 16(7):942–948, 2013.

[16] Sophie Denève and Christian K Machens. Efficient codes and balanced networks. Nature
Neuroscience, 19(3):375–382, 2016.

[17] Tim P Vogels, Henning Sprekeler, Friedemann Zenke, Claudia Clopath, and Wulfram Gerst-
ner. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory
networks. Science, 334(6062):1569–1573, 2011.

[18] Basile Confavreux, Friedemann Zenke, Everton Agnes, Timothy Lillicrap, and Tim Vogels.
A meta-learning approach to (re) discover plasticity rules that carve a desired function into a
neural network. Advances in Neural Information Processing Systems, 33:16398–16408, 2020.

[19] Lukas Braun and Tim Vogels. Online learning of neural computations from sparse temporal
feedback. Advances in Neural Information Processing Systems, 34:16437–16450, 2021.

[20] Timo Wunderlich, Akos F Kungl, Eric Müller, Andreas Hartel, Yannik Stradmann, Syed Ahmed
Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber, David Stöckel, et al. Demon-
strating advantages of neuromorphic computation: a pilot study. Frontiers in Neuroscience, 13:
260, 2019.

[21] Louis Lapicque. Recherches quantitatives sur l’excitation electrique des nerfs traitee comme
une polarization. Journal de physiologie et de pathologie générale, 9:620–635, 1907.

11



[22] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge University Press, 2014.

[23] Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, A James Hudspeth,
Sarah Mack, et al. Principles of neural science, Fourth edition. Elsevier, 2000.

[24] Marie Levakova, Lubomir Kostal, Christelle Monsempès, Philippe Lucas, and Ryota Kobayashi.
Adaptive integrate-and-fire model reproduces the dynamics of olfactory receptor neuron re-
sponses in a moth. Journal of the Royal Society Interface, 16(157):20190246, 2019.

[25] Yuan Zeng, Terrence C Stewart, Zubayer Ibne Ferdous, Yevgeny Berdichevsky, and Xiaochen
Guo. Temporal learning with biologically fitted snn models. In International Conference on
Neuromorphic Systems 2021, pages 1–8, 2021.

[26] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass.
Long short-term memory and learning-to-learn in networks of spiking neurons. Advances in
neural information processing systems, 31, 2018.

[27] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Leg-
enstein, and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of
spiking neurons. Nature Communications, 11(1):1–15, 2020.

[28] Bojian Yin, Federico Corradi, and Sander M Bohté. Effective and efficient computation
with multiple-timescale spiking recurrent neural networks. In International Conference on
Neuromorphic Systems 2020, pages 1–8, 2020.

[29] Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate online training of dynamical
spiking neural networks through forward propagation through time. Nature Machine Intelligence,
pages 1–10, 2023.

[30] Nicolas Perez-Nieves and Dan FM Goodman. Spiking network initialisation and firing rate
collapse. arXiv:2305.08879, 2023.

[31] Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks. Nature Machine Intelligence, 3
(10):905–913, 2021.

[32] P Andersen, H Silfvenius, SH Sundberg, On Sveen, H Wigstro, et al. Functional characteristics
of unmyelinated fibres in the hippocampal cortex. Brain research, 144(1):11–18, 1978.

[33] Michael Avissar, John H Wittig, James C Saunders, and Thomas D Parsons. Refractoriness
enhances temporal coding by auditory nerve fibers. Journal of Neuroscience, 33(18):7681–7690,
2013.

[34] Edmund T Rolls. Absolute refractory period of neurons involved in mfb self-stimulation.
Physiology & Behavior, 7(3):311–315, 1971.

[35] Jean-Sébastien Jouhanneau, Jens Kremkow, Anja L Dorrn, and James FA Poulet. In vivo
monosynaptic excitatory transmission between layer 2 cortical pyramidal neurons. Cell reports,
13(10):2098–2106, 2015.

[36] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, 1986.

[37] Steven K Esser, Paul A Merolla, John V Arthur, Andrew S Cassidy, Rathinakumar Appuswamy,
Alexander Andreopoulos, David J Berg, Jeffrey L McKinstry, Timothy Melano, Davis R Barch,
et al. Convolutional networks for fast, energy-efficient neuromorphic computing. Proceedings
of the National Academy of Sciences, 113(41):11441–11446, 2016.

[38] Eric Hunsberger and Chris Eliasmith. Spiking deep networks with lif neurons.
arXiv:1510.08829, 2015.

[39] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking
neural networks. Neural Computation, 30(6):1514–1541, 2018.

12



[40] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks
using backpropagation. Frontiers in Neuroscience, 10:508, 2016.

[41] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

[42] Nicolas Perez-Nieves, Vincent CH Leung, Pier Luigi Dragotti, and Dan FM Goodman. Neural
heterogeneity promotes robust learning. Nature communications, 12(1):1–9, 2021.

[43] Peter O’Connor, Daniel Neil, Shih-Chii Liu, Tobi Delbruck, and Michael Pfeiffer. Real-time
classification and sensor fusion with a spiking deep belief network. Frontiers in Neuroscience,
7:178, 2013.

[44] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and Dharmendra S
Modha. Backpropagation for energy-efficient neuromorphic computing. Advances in neural
information processing systems, 28, 2015.

[45] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer. Theory and tools
for the conversion of analog to spiking convolutional neural networks. arXiv:1612.04052, 2016.

[46] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
Conversion of continuous-valued deep networks to efficient event-driven networks for image
classification. Frontiers in Neuroscience, 11:682, 2017.

[47] Marc-Oliver Gewaltig and Markus Diesmann. Nest (neural simulation tool). Scholarpedia, 2
(4):1430, 2007.

[48] Abigail Morrison, Carsten Mehring, Theo Geisel, AD Aertsen, and Markus Diesmann. Advanc-
ing the boundaries of high-connectivity network simulation with distributed computing. Neural
computation, 17(8):1776–1801, 2005.

[49] Abigail Morrison, Sirko Straube, Hans Ekkehard Plesser, and Markus Diesmann. Exact
subthreshold integration with continuous spike times in discrete-time neural network simulations.
Neural Computation, 19(1):47–79, 2007.

[50] Nicolas Perez-Nieves and Dan Goodman. Sparse spiking gradient descent. Advances in Neural
Information Processing Systems, 34:11795–11808, 2021.

[51] Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1(2):270–280, 1989.

[52] Anil Kag and Venkatesh Saligrama. Training recurrent neural networks via forward propagation
through time. In International Conference on Machine Learning, pages 5189–5200. PMLR,
2021.

[53] James M Murray. Local online learning in recurrent networks with random feedback. Elife, 8:
e43299, 2019.

[54] Sander M Bohte, Joost N Kok, and Han La Poutre. Error-backpropagation in temporally
encoded networks of spiking neurons. Neurocomputing, 48(1-4):17–37, 2002.

[55] Hesham Mostafa. Supervised learning based on temporal coding in spiking neural networks.
IEEE transactions on neural networks and learning systems, 29(7):3227–3235, 2017.

[56] Iulia M Comsa, Krzysztof Potempa, Luca Versari, Thomas Fischbacher, Andrea Gesmundo, and
Jyrki Alakuijala. Temporal coding in spiking neural networks with alpha synaptic function. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 8529–8533. IEEE, 2020.

[57] Saeed Reza Kheradpisheh and Timothée Masquelier. Temporal backpropagation for spiking
neural networks with one spike per neuron. International Journal of Neural Systems, 30(06):
2050027, 2020.

13



[58] Malu Zhang, Jiadong Wang, Jibin Wu, Ammar Belatreche, Burin Amornpaisannon, Zhixuan
Zhang, Venkata Pavan Kumar Miriyala, Hong Qu, Yansong Chua, Trevor E Carlson, et al.
Rectified linear postsynaptic potential function for backpropagation in deep spiking neural
networks. IEEE Transactions on Neural Networks and Learning Systems, 33(5):1947–1958,
2021.

[59] Shibo Zhou and Xiaohua Li. Spiking neural networks with single-spike temporal-coded neurons
for network intrusion detection. In 2020 25th International Conference on Pattern Recognition
(ICPR), pages 8148–8155. IEEE, 2021.

[60] Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
coded deep spiking neural network with easy training and robust performance. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 11143–11151, 2021.

[61] Julian Göltz, Laura Kriener, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser,
Benjamin Cramer, Dominik Dold, Akos Ferenc Kungl, Walter Senn, Johannes Schemmel, et al.
Fast and energy-efficient neuromorphic deep learning with first-spike times. Nature Machine
Intelligence, 3(9):823–835, 2021.

[62] Yaoyu Zhu, Zhaofei Yu, Wei Fang, Xiaodong Xie, Tiejun Huang, and Timothée Masquelier.
Training spiking neural networks with event-driven backpropagation. In 36th Conference on
Neural Information Processing Systems (NeurIPS 2022), 2022.

[63] Christian Pehle and Jens Egholm Pedersen. Norse - A deep learning library for spiking neural
networks, January 2021. URL https://doi.org/10.5281/zenodo.4422025. Documenta-
tion: https://norse.ai/docs/.

[64] Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei
Huang, Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine
learning infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480,
2023.

[65] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static
image datasets to spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9:
437, 2015.

[66] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friedemann Zenke. The
heidelberg spiking data sets for the systematic evaluation of spiking neural networks. IEEE
Transactions on Neural Networks and Learning Systems, 2020.

[67] Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. Advances
in Neural Information Processing Systems, 31, 2018.

[68] Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning
for instilling complex function in spiking neural networks. Neural Computation, 33(4):899–925,
2021.

[69] Ed S Lein, Michael J Hawrylycz, Nancy Ao, Mikael Ayres, Amy Bensinger, Amy Bernard,
Andrew F Boe, Mark S Boguski, Kevin S Brockway, Emi J Byrnes, et al. Genome-wide atlas of
gene expression in the adult mouse brain. Nature, 445(7124):168–176, 2007.

[70] Michael J Hawrylycz, Ed S Lein, Angela L Guillozet-Bongaarts, Elaine H Shen, Lydia Ng,
Jeremy A Miller, Louie N Van De Lagemaat, Kimberly A Smith, Amanda Ebbert, Zackery L
Riley, et al. An anatomically comprehensive atlas of the adult human brain transcriptome.
Nature, 489(7416):391–399, 2012.

[71] Mark CW van Rossum. A novel spike distance. Neural Computation, 13(4):751–763, 2001.

[72] Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks
using lessons from deep learning. Proceedings of the IEEE, 2023.

14

https://doi.org/10.5281/zenodo.4422025


[73] Christian Pozzorini, Skander Mensi, Olivier Hagens, Richard Naud, Christof Koch, and Wulfram
Gerstner. Automated high-throughput characterization of single neurons by means of simplified
spiking models. PLoS Computational Biology, 11(6):e1004275, 2015.

[74] Jan Stuijt, Manolis Sifalakis, Amirreza Yousefzadeh, and Federico Corradi. µbrain: An
event-driven and fully synthesizable architecture for spiking neural networks. Frontiers in
Neuroscience, page 538, 2021.

[75] Yuming He, Federico Corradi, Chengyao Shi, Ming Ding, Martijn Timmermans, Jan Stuijt,
Pieter Harpe, Ilja Ocket, and Yao-Hong Liu. A 28.2 µc neuromorphic sensing system featuring
snn-based near-sensor computation and event-driven body-channel communication for insertable
cardiac monitoring. In 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC), pages 1–3.
IEEE, 2021.

[76] Priyadarshini Panda, Sai Aparna Aketi, and Kaushik Roy. Toward scalable, efficient, and
accurate deep spiking neural networks with backward residual connections, stochastic softmax,
and hybridization. Frontiers in Neuroscience, 14:653, 2020.

[77] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv:1410.0759,
2014.

15


	Introduction
	Background and related work
	Theoretical results
	Block: simulating single-spike ALIF dynamics with a constant sequential complexity
	Blocks: simulating ALIF SNN dynamics with a O(T/TR) sequential complexity
	Theoretical speedup for simulating ALIF SNNs using Blocks

	Experiments
	Training speedup scales with an increasing ARP
	Accelerated training on spiking classification tasks
	Quickly fitting real neural recordings on sub-millisecond timescales

	Discussion

