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Abstract

Reasoning on large-scale knowledge graphs has been long dominated by embedding
methods. While path-based methods possess the inductive capacity that embed-
dings lack, their scalability is limited by the exponential number of paths. Here
we present A*Net, a scalable path-based method for knowledge graph reasoning.
Inspired by the A* algorithm for shortest path problems, our A*Net learns a priority
function to select important nodes and edges at each iteration, to reduce time and
memory footprint for both training and inference. The ratio of selected nodes and
edges can be specified to trade off between performance and efficiency. Experi-
ments on both transductive and inductive knowledge graph reasoning benchmarks
show that A*Net achieves competitive performance with existing state-of-the-art
path-based methods, while merely visiting 10% nodes and 10% edges at each
iteration. On a million-scale dataset ogbl-wikikg2, A*Net not only achieves a new
state-of-the-art result, but also converges faster than embedding methods. A*Net is
the first path-based method for knowledge graph reasoning at such scale.

1 Introduction

Figure 1: Validation MRR w.r.t. train-
ing time on ogbl-wikikg2 (1 A100 GPU).
A*Net achieves state-of-the-art perfor-
mance and the fastest convergence.

Reasoning, the ability to apply logic to draw new con-
clusions from existing facts, has been long pursued as a
goal of artificial intelligence [32, 20]. Knowledge graphs
encapsulate facts in relational edges between entities,
and serve as a foundation for reasoning. Reasoning over
knowledge graphs is usually studied in the form of knowl-
edge graph completion, where a model is asked to predict
missing triplets based on observed triplets in the knowl-
edge graph. Such a task can be used to not only populate
existing knowledge graphs, but also improve downstream
applications like multi-hop logical reasoning [34], ques-
tion answering [5] and recommender systems [53].

One challenge central to knowledge graph reasoning is
the scalability of reasoning methods, as many real-world
knowledge graphs [2, 44] contain millions of entities and
triplets. Typically, large-scale knowledge graph reasoning is solved by embedding methods [6, 42, 38],
which learn an embedding for each entity and relation to reconstruct the structure of the knowledge
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Figure 2: (a) Given a query (a,Mother, ?), only a few important paths (showed in red) are necessary
for reasoning. Note that paths can go in the reverse direction of relations. (b) Exhaustive search
algorithm (e.g., Path-RNN, PathCon) enumerates all paths in exponential time. (c) Bellman-Ford
algorithm (e.g., NeuralLP, DRUM, NBFNet, RED-GNN) computes all paths in polynomial time,
but needs to propagate through all nodes and edges. (d) A*Net learns a priority function to select a
subset of nodes and edges at each iteration, and avoids exploring all nodes and edges.

graph. Due to its simplicity, embedding methods have become the de facto standard for knowledge
graphs with millions of entities and triplets. With the help of multi-GPU embedding systems [57, 56],
they can further scale to knowledge graphs with billions of triplets.

Another stream of works, path-based methods [28, 31, 11, 58], predicts the relation between a pair
of entities based on the paths between them. Take the knowledge graph in Fig. 2(a) as an example,

we can prove that Mother(a, f) holds, because there are two paths a Father−−−→ b
Wife−−→ f and a Brother←−−−− c

Mother−−−−→ f. As the semantics of paths are purely determined by relations rather than entities, path-based
methods naturally generalize to unseen entities (i.e., inductive setting), which cannot be handled by
embedding methods. However, the number of paths grows exponentially w.r.t. the path length, which
hinders the application of path-based methods on large-scale knowledge graphs.

Here we propose A*Net to tackle the scalability issue of path-based methods. The key idea of our
method is to search for important paths rather than use all possible paths for reasoning, thereby
reducing time and memory in training and inference. Inspired by the A* algorithm [22] for shortest
path problems, given a head entity u and a query relation q, we compute a priority score for each
entity to guide the search towards more important paths. At each iteration, we select K nodes and L
edges according to their priority, and use message passing to update nodes in their neighborhood.
Due to the complex semantics of knowledge graphs, it is hard to use a handcrafted priority function
like the A* algorithm without a significant performance drop (Tab. 6a). Instead, we design a neural
priority function based on the node representations at the current iteration, which can be end-to-end
trained by the objective function of the reasoning task without any additional supervision.

We verify our method on 4 transductive and 2 inductive knowledge graph reasoning datasets. Ex-
periments show that A*Net achieves competitive performance against state-of-the-art path-based
methods on FB15k-237, WN18RR and YAGO3-10, even with only 10% of nodes and 10% edges
at each iteration (Sec. 4.2). To verify the scalability of our method, we also evaluate A*Net on
ogbl-wikikg2, a million-scale knowledge graph that is 2 magnitudes larger than datasets solved by
previous path-based methods. Surprisingly, with only 0.2% nodes and 0.2% edges, our method
outperforms existing embedding methods and establishes new state-of-the-art results (Sec. 4.2) as the
first non-embedding method on ogbl-wikikg2. By adjusting the ratios of selected nodes and edges,
one can trade off between performance and efficiency (Sec. 4.3). A*Net also converges significantly
faster than embedding methods (Fig. 1), which makes it a promising model for deployment on
large-scale knowledge graphs. Additionally, A*Net offers interpretability that embeddings do not
possess. Visualization shows that A*Net captures important paths for reasoning (Sec. 4.4).

2 Preliminary

Knowledge Graph Reasoning A knowledge graph G = (V, E ,R) consists of sets of entities
(nodes) V , facts (edges) E and relation typesR. Each fact is a triplet (x, r, y) ∈ V ×R× V , which
indicates a relation r from entity x to entity y. The task of knowledge graph reasoning aims at
answering queries like (u, q, ?) or (?, q, u). Without loss of generality, we assume the query is
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(u, q, ?), since (?, q, u) equals to (u, q−1, ?) with q−1 being the inverse of q. Given a query (u, q, ?),
we need to predict the answer set V(u,q,?), such that ∀v ∈ V(u,q,?) the triplet (u, q, v) should be true.

Path-based Methods Path-based methods [28, 31, 11, 58] solve knowledge graph reasoning by
looking at the paths between a pair of entities in a knowledge graph. For example, a path a Father−−−→ b
Wife−−→ f may be used to predict Mother(a, f) in Fig. 2(a). From a representation learning perspective,

path-based methods aim to learn a representation hq(u, v) to predict the triplet (u, q, v) based on all
paths Pu⇝v from entity u to entity v. Following the notation in [58]3, hq(u, v) is defined as

hq(u, v) =
⊕

P∈Pu⇝v

hq(P ) =
⊕

P∈Pu⇝v

⊗
(x,r,y)∈P

wq(x, r, y) (1)

where
⊕

is a permutation-invariant aggregation function over paths (e.g., sum or max),
⊗

is an
aggregation function over edges that may be permutation-sensitive (e.g., matrix multiplication)
and wq(x, r, y) is the representation of triplet (x, r, y) conditioned on the query relation q.

⊗
is

computed before
⊕

. Typically, wq(x, r, y) is designed to be independent of the entities x and y,
which enables path-based methods to generalize to the inductive setting. However, it is intractable to
compute Eqn. 1, since the number of paths usually grows exponentially w.r.t. the path length.

Path-based Reasoning with Bellman-Ford algorithm To reduce the time complexity of path-
based methods, recent works [50, 35, 58, 54] borrow the Bellman-Ford algorithm [4] from shortest
path problems to solve path-based methods. Instead of enumerating each possible path, the Bellman-
Ford algorithm iteratively propagates the representations of t− 1 hops to compute the representations
of t hops, which achieves a polynomial time complexity. Formally, let h(t)

q (u, v) be the representation
of t hops. The Bellman-Ford algorithm can be written as

h(0)
q (u, v)← 1q(u = v) (2)

h(t)
q (u, v)← h(0)

q (u, v)⊕
⊕

(x,r,v)∈E(v)

h(t−1)
q (u, x)⊗wq(x, r, v) (3)

where 1q is a learnable indicator function that defines the representations of 0 hops h(0)
q (u, v), also

known as the boundary condition of the Bellman-Ford algorithm. E(v) is the neighborhood of node v.
Despite the polynomial time complexity achieved by the Bellman-Ford algorithm, Eqn. 3 still needs
to visit |V| nodes and |E| edges to compute h

(t)
q (u, v) for all v ∈ V in each iteration, which is not

feasible for large-scale knowledge graphs.

A* Algorithm A* algorithm [22] is an extension of the Bellman-Ford algorithm for shortest path
problems. Unlike the Bellman-Ford algorithm that propagates through every node uniformly, the A*
algorithm prioritizes propagation through nodes with higher priority according to a heuristic function
specified by the user. With an appropriate heuristic function, A* algorithm can reduce the search
space of paths. Formally, with the notation from Eqn. 1, the priority function for node x is

s(x) = d(u, x)⊗ g(x, v) (4)

where d(u, x) is the length of current shortest path from u to x, and g(x, v) is a heuristic function
estimating the cost from x to the target node v. For instance, for a grid-world shortest path problem
(Fig. 4(a)), g(x, v) is usually defined as the L1 distance from x to v, ⊗ is the addition operator, and
s(x) is a lower bound for the shortest path length from u to v through x. During each iteration, the
A* algorithm prioritizes propagation through nodes with smaller s(x).

3 Proposed Method

We propose A*Net to scale up path-based methods with the A* algorithm. We show that the A*
algorithm can be derived from the observation that only a small set of paths are important for reasoning
(Sec. 3.1). Since it is hard to handcraft a good priority function for knowledge graph reasoning
(Tab. 6a), we design a neural priority function, and train it end-to-end for reasoning (Sec. 3.2).

3⊕ and ⊗ are binary operations (akin to +, ×), while
⊕

and
⊗

are n-ary operations (akin to
∑

,
∏

).

3



3.1 Path-based Reasoning with A* Algorithm

As discussed in Sec. 2, the Bellman-Ford algorithm visits all |V| nodes and |E| edges. However, in
real-world knowledge graphs, only a small portion of paths is related to the query. Based on this
observation, we introduce the concept of important paths. We then show that the representations of
important paths can be iteratively computed with the A* algorithm under mild assumptions.

Important Paths for Reasoning Given a query relation and a pair of entities, only some of the
paths between the entities are important for answering the query. Consider the example in Fig. 2(a),
the path a Friend−−−→ d Mother−−−−→ e Friend−−−→ f cannot determine whether f is an answer to Mother(a, ?) due to

the use of the Friend relation in the path. On the other hand, kinship paths like a Father−−−→ b
Wife−−→ f or a

Brother←−−−− c Mother−−−−→ f are able to predict that Mother(a, f) is true. Formally, we define Pu⇝v|q ⊆ Pu⇝v

to be the set of paths from u to v that is important to the query relation q. Mathematically, we have

hq(u, v) =
⊕

P∈Pu⇝v

hq(P ) ≈
⊕

P∈Pu⇝v|q

hq(P ) (5)

In other words, any path P ∈ Pu⇝v \ Pu⇝v|q has negligible contribution to hq(u, v). In real-world
knowledge graphs, the number of important paths |Pu⇝v|q| may be several orders of magnitudes
smaller than the number of paths |Pu⇝v| [11]. If we compute the representation hq(u, v) using only
the important paths, we can scale up path-based reasoning to large-scale knowledge graphs.

d fcb d cb d cb d
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Figure 3: The colored paths are important
paths Pu⇝v|q, while the solid paths are the
superset P̂u⇝v|q used in Eqn. 7.

Iterative Computation of Important Paths Given
a query (u, q, ?), we need to discover the set of im-
portant paths Pu⇝v|q for all v ∈ V . However, it is
challenging to extract important paths from Pu⇝v,
since the size of Pu⇝v is exponentially large. Our
solution is to explore the structure of important paths
and compute them iteratively. We first show that we
can cover important paths with iterative path selec-
tion (Eqn. 6 and 7). Then we approximate iterative
path selection with iterative node selection (Eqn. 8).

Notice that paths in Pu⇝v form a tree structure
(Fig. 3). On the tree, a path is not important if any
prefix of this path is not important for the query. For example, in Fig. 2(a), a Friend−−−→ d Mother−−−−→ e
Friend−−−→ f is not important, as its prefix a Friend−−−→ d is not important for the query Mother. Therefore,

we assume there exists a path selection function mq : 2P 7→ 2P that selects important paths from a
set of paths given the query relation q. 2P is the set of all subsets of P . With mq, we construct the
following set of paths P̂(t)

u⇝v|q iteratively

P̂(0)
u⇝v|q ← {(u, self loop, v)} if u = v else ∅ (6)

P̂(t)
u⇝v|q ←

⋃
x∈V

(x,r,v)∈E(v)

{
P + {(x, r, v)}

∣∣∣P ∈ mq(P̂(t−1)
u⇝x|q)

}
(7)

where P + {(x, r, v)} concatenates the path P and the edge (x, r, v). The paths P̂(t)
u⇝v|q computed by

the above iteration is a superset of the important paths P(t)
u⇝v|q of length t (see Thm. A.1 in App. A).

Due to the tree structure of paths, the above iterative path selection still requires exponential time.
Hence we further approximate iterative path selection with iterative node selection, by assuming
paths with the same length and the same stop node can be merged. The iterative node selection
replacing Eqn. 7 is (see Prop. A.3 in App. A)

P̂(t)
u⇝v|q ←

⋃
x∈n(t−1)

uq (V)

(x,r,v)∈E(v)

{
P + {(x, r, v)}

∣∣∣P ∈ P̂(t−1)
u⇝x|q

}
(8)

where n
(t)
uq : 2V 7→ 2V selects ending nodes of important paths of length t from a set of nodes.

4



Reasoning with A* Algorithm Eqn. 8 iteratively computes the set of important paths P̂u⇝v|q . In
order to perform reasoning, we need to compute the representation hq(u, v) based on the important
paths, which can be achieved by an iterative process similar to Eqn. 8 (see Thm. A.4 in App. A)

h(t)
q (u, v)←h(0)

q (u, v)⊕
⊕

x∈n(t−1)
uq (V)

(x,r,v)∈E(v)

h(t−1)
q (u, x)⊗wq(x, r, v) (9)

Eqn. 9 is the A* iteration (Fig. 2(d)) for path-based reasoning. Note the A* iteration uses the same
boundary condition as Eqn. 2. Inspired by the classical A* algorithm, we parameterize n

(t)
uq (V) with

a node priority function s
(t)
uq : V 7→ [0, 1] and select top-K nodes based on their priority. However,

there does not exist an oracle for the priority function s
(t)
uq (x). We will discuss how to learn the

priority function s
(t)
uq (x) in the following sections.

3.2 Path-based Reasoning with A*Net

Mother?

a

b c

d

e

f

6+4

6+6

(a) A* algorithm
in a grid world

(b) A*Net on a
knowledge graph

Figure 4: (a) A* algorithm computes the current
distance d(u, x) (blue), estimates the remaining
distance g(x, v) (orange), and prioritizes shorter
paths. (b) A*Net computes the current represen-
tations h(t)

q (u, x) (blue), estimates the remain-
ing representations g([h(t)

q (u, x), q]) (orange)
based on the query q (green), and prioritizes
paths more relevant to the query.

Both the performance and the efficiency of the A*
algorithm heavily rely on the heuristic function.
While it is straightforward to use L1 distance as
the heuristic function for grid-world shortest path
problems, it is not clear what a good priority func-
tion for knowledge graph reasoning is due to the
complex relation semantics in knowledge graphs.
Indeed, our experiments suggest that handcrafted
priority functions largely hurt the performance of
path-based methods (Tab. 6a). In this section, we
discuss a neural priority function, which can be
end-to-end trained by the reasoning task.

Neural Priority Function To design the neural
priority function suq(x), we draw inspiration from
the priority function in the A* algorithm for short-
est path problems (Eqn. 4). The priority function
has two terms d(u, x) and g(x, v), where d(u, x) is
the current distance from node u to x, and g(x, v)
estimates the remaining distance from node x to v.

From a representation learning perspective, we need to learn a representation suq(x) to predict the
priority score suq(x) for each node x. Inspired by Eqn. 4, we use the current representation h

(t)
q (u, x)

to represent d(t)(u, x). However, it is challenging to find a representation for g(t)(x, v), since we do
not know the answer entity v beforehand. Noticing that in the A* algorithm, the target node v can be
expressed by the source node plus a displacement (Fig. 4(a)), we reparameterize the answer entity
v with the head entity u and the query relation q in A*Net. By replacing g(t)(x, v) with another
function g(t)(u, x, q), the representation suq(x) is parameterized as

s(t)uq (x) = h(t)
q (u, x)⊗ g([h(t)

q (u, x), q]) (10)

where g(·) is a feed-forward network that outputs a vector representation and [·, ·] concatenates two
representations. Intuitively, the learned representation q captures the semantic of query relation q,
which serves the goal for answering query (u, q, ?). The function g([h

(t)
q (u, x), q]) compares the

current representation h
(t)
q (u, x) with the goal q to estimate the remaining representation (Fig. 4(b)).

If h(t)
q (u, x) is close to q, the remaining representation will be close to 0, and x is likely to be close

to the correct answer. The final priority score is predicted by

s(t)uq (x) = σ(f(s(t)uq (x))) (11)

where f(·) is a feed-forward network and σ is the sigmoid function that maps the output to [0, 1].
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Learning To learn the neural priority function, we incorporate it as a weight for each message in
the A* iteration. For simplicity, let X (t) = n

(t−1)
uq (V) be the nodes we try to propagate through at

t-th iteration. We modify Eqn. 9 to be

h(t)
q (u, v)← h(0)

q (u, v)⊕
⊕

x∈X (t)

(x,r,v)∈E(v)

s(t−1)
uq (x)

(
h(t−1)
q (u, x)⊗wq(x, r, v)

)
(12)

Eqn. 12 encourages the model to learn larger weights s
(t)
uq (x) for nodes that are important for

reasoning. In practice, as some nodes may have very large degrees, we further select top-L edges
from the neighborhood of n(t−1)

uq (V) (see App. B). A pseudo code of A*Net is illustrated in Alg. 1.
Note the top-K and top-L functions are not differentiable.

Nevertheless, it is still too challenging to train the neural priority function, since we do not know the
ground truth for important paths, and there is no direct supervision for the priority function. Our
solution is to share the weights between the priority function and the predictor for the reasoning task.
The intuition is that the reasoning task can be viewed as a weak supervision for the priority function.
Recall that the goal of s(t)uq (x) is to determine whether there exists an important path from u to x
(Eqn. 8). In the reasoning task, any positive answer entity must be present on at least one important
path, while negative answer entities are less likely to be on important paths. Our ablation experiment
demonstrates that sharing weights improve the performance of neural priority function (Tab. 6b).
Following [38], A*Net is trained to minimize the binary cross entropy loss over triplets

L = − log p(u, q, v)−
n∑

i=1

1

n
log(1− p(u′

i, q, v
′
i)) (13)

where (u, q, v) is a positive sample and {(u′
i, q, v

′
i)}ni=1 are negative samples. Each negative sample

(ui, q, vi) is generated by corrupting the head or the tail in a positive sample.

Algorithm 1 A*Net
Input: head entity u, query relation q, #iterations T
Output: p(v|u, q) for all v ∈ V
1: for v ∈ V do
2: h

(0)
q (u, v)← 1q(u = v)

3: end for
4: for t← 1 to T do
5: X (t) ← TopK(s

(t−1)
uq (x)|x ∈ V)

6: E(t) ←
⋃

x∈X (t) E(x)
7: E(t) ← TopL(s(t−1)

uq (v)|(x, r, v) ∈ E(t))
8: V(t) ←

⋃
(x,r,v)∈E(t){v}

9: for v ∈ V(t) do
10: Compute h

(t)
q (u, v) with Eqn. 12

11: Compute priority s
(t)
uq (v) with Eqn. 10, 11

12: end for
13: end for
14: ▷ Share weights between suq(v) and the predictor
15: return s

(T )
uq (v) as p(v|u, q) for all v ∈ V

Efficient Implementation with Padding-Free
Operations Modern neural networks heavily
rely on batched execution to unleash the parallel
capacity of GPUs. While Alg. 1 is easy to imple-
ment for a single sample (u, q, ?), it is not trivial to
batch A*Net for multiple samples. The challenge
is that different samples may have very different
sizes for nodes V(t) and edges E(t). A common
approach is to pad the set of nodes or edges to a
predefined constant, which would severely coun-
teract the acceleration brought by A*Net.

Here we introduce padding-free topk operation to
avoid the overhead in batched execution. The key
idea is to convert batched execution of different
small samples into execution of a single large sam-
ple, which can be paralleled by existing operations
in deep learning frameworks. For example, the
batched execution of topk([[1, 3], [2, 1, 0]]) can
be converted into a multi-key sort problem over
[[0, 1], [0, 3], [1, 2], [1, 1], [1, 0]], where the first key is the index of the sample in the batch and the
second key is the original input. The multi-key sort is then implemented by composing stable
single-key sort operations in deep learning frameworks. See App. C for details.

4 Experiments

We evaluate A*Net on standard transductive and inductive knowledge graph reasoning datasets,
including a million-scale one ogbl-wikikg2. We conduct ablation studies to verify our design choices
and visualize the important paths learned by the priority function in A*Net.
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4.1 Experiment Setup

Datasets & Evaluation We evaluate A*Net on 4 standard knowledge graphs, FB15k-237 [40],
WN18RR [16], YAGO3-10 [30] and ogbl-wikikg2 [25]. For the transductive setting, we use the
standard splits from their original works [40, 16]. For the inductive setting, we use the splits provided
by [39], which contains 4 different versions for each dataset. As for evaluation, we use the standard
filtered ranking protocol [6] for knowledge graph reasoning. Each triplet (u, q, v) is ranked against
all negative triplets (u, q, v′) or (u′, q, v) that are not present in the knowledge graph. We measure
the performance with mean reciprocal rank (MRR) and HITS at K (H@K). Efficiency is measured by
the average number of messages (#message) per step, wall time per epoch and memory cost. To plot
the convergence curves for each model, we dump checkpoints during training with a high frequency,
and evaluate the checkpoints later on the validation set. See more details in App. D.

Implementation Details Our work is developed based on the open-source codebase of path-based
reasoning with Bellman-Ford algorithm4. For a fair comparison with existing path-based methods,
we follow the implementation of NBFNet [58] and parameterize

⊕
with principal neighborhood

aggregation (PNA) [13] or sum aggregation, and parameterize
⊗

with the relation operation from
DistMult [49], i.e., vector multiplication. The indicator function (Eqn. 2) 1q(u = v) = 1(u = v)q is
parameterized with a query embedding q for all datasets except ogbl-wikikg2, where we augment
the indicator function with learnable embeddings based on a soft distance from u to v (see App. E
for more details). The edge representation (Eqn. 12) wq(x, r, v) = Wrq + br is parameterized as
a linear function over the query relation q for all datasets except WN18RR, where we use a simple
embedding wq(x, r, v) = r. We use the same preprocessing steps as in [58], including augmenting
each triplet with a flipped triplet, and dropping out query edges during training.

For the neural priority function, we have two hyperparameters: K for the maximum number of
nodes and L for the maximum number of edges. To make hyperparameter tuning easier, we define
maximum node ratio α = K/|V| and maximum average degree ratio β = L|V|/K|E|, and tune the
ratios for each dataset. The maximum edge ratio is determined by αβ. The other hyperparameters
are kept the same as the values in [58]. We train A*Net with 4 Tesla A100 GPUs (40 GB), and select
the best model based on validation performance. See App. E for more details.

Baselines We compare A*Net against embedding methods, GNNs and path-based methods. The
embedding methods are TransE [6], ComplEx [42], RotatE [38], HAKE [55], RotH [7], PairRE [8],
ComplEx+Relation Prediction [12] and ConE [3]. The GNNs are RGCN [36], CompGCN [43] and
GraIL [39]. The path-based methods are MINERVA [14], Multi-Hop [29], CURL [52], NeuralLP [50],
DRUM [35], NBFNet [58] and RED-GNN [54]. Note that path-finding methods [14, 29, 52] that use
reinforcement learning and assume sparse answers can only be evaluated on tail prediction. Training
time of all baselines are measured based on their official open-source implementations, except that
we use a more recent implementation5 of TransE and ComplEx.

4.2 Main Results

Tab. 1 shows that A*Net outperforms all embedding methods and GNNs, and is on par with NBFNet
on transductive knowledge graph reasoning. We also observe a similar trend of A*Net and NBFNet
over path-finding methods on tail prediction (Tab. 2). Since path-finding methods select only one
path with reinforcement learning, such results imply the advantage of aggregating multiple paths in
A*Net. A*Net also converges faster than all the other methods (Fig. 5). Notably, unlike NBFNet
that propagates through all nodes and edges, A*Net only propagates through 10% nodes and 10%
edges on both datasets, which suggests that most nodes and edges are not important for path-based
reasoning. Tab. 3 shows that A*Net reduces the number of messages by 14.1× and 42.9× compared
to NBFNet on two datasets respectively. Note that the reduction in time and memory is less than the
reduction in the number of messages, since A*Net operates on subgraphs with dynamic sizes and is
harder to parallel than NBFNet on GPUs. We leave better parallel implementation as future work.

Tab. 4 shows the performance on ogbl-wikikg2, which has 2.5 million entities and 16 million triplets.
While NBFNet faces out-of-memory (OOM) problem even for a batch size of 1, A*Net can perform
reasoning by propagating through 0.2% nodes and 0.2% edges at each step. Surprisingly, even with

4https://github.com/DeepGraphLearning/NBFNet. MIT license.
5https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding. MIT license.
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Table 1: Performance on transductive knowledge graph reason-
ing. Results of embedding methods are from [3]. Results of
GNNs and path-based methods are from [58]. Performance and
efficiency on YAGO3-10 are in App. F.

Method FB15k-237 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.294 - - 0.465 0.226 - 0.403 0.532
RotatE 0.338 0.241 0.375 0.533 0.476 0.428 0.492 0.571
HAKE 0.341 0.243 0.378 0.535 0.496 0.451 0.513 0.582
RotH 0.344 0.246 0.380 0.535 0.495 0.449 0.514 0.586
ComplEx+RP 0.388 0.298 0.425 0.568 0.488 0.443 0.505 0.578
ConE 0.345 0.247 0.381 0.540 0.496 0.453 0.515 0.579

RGCN 0.273 0.182 0.303 0.456 0.402 0.345 0.437 0.494
CompGCN 0.355 0.264 0.390 0.535 0.479 0.443 0.494 0.546

NeuralLP 0.240 - - 0.362 0.435 0.371 0.434 0.566
DRUM 0.343 0.255 0.378 0.516 0.486 0.425 0.513 0.586
NBFNet 0.415 0.321 0.454 0.599 0.551 0.497 0.573 0.666
RED-GNN 0.374 0.283 - 0.558 0.533 0.485 - 0.624
A*Net 0.411 0.321 0.453 0.586 0.549 0.495 0.573 0.659

Table 2: Tail prediction performance on transductive knowledge
graphs. Results of compared methods are from [14, 29, 52].

Method FB15k-237 WN18RR
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

MINERVA 0.293 0.217 0.329 0.456 0.448 0.413 0.456 0.513
Multi-Hop 0.393 0.329 - 0.544 0.472 0.437 - 0.542
CURL 0.306 0.224 0.341 0.470 0.460 0.429 0.471 0.523
NBFNet 0.509 0.411 0.562 0.697 0.557 0.503 0.579 0.669
A*Net 0.505 0.410 0.556 0.687 0.557 0.504 0.580 0.666

Table 3: Efficiency on transductive knowledge graph reasoning.

Method FB15k-237 WN18RR
#message time memory #message time memory

NBFNet 544,230 16.8 min 19.1 GiB 173,670 9.42 min 26.4 GiB
A*Net 38,610 8.07 min 11.1 GiB 4,049 1.39 min 5.04 GiB

Improvement 14.1× 2.1× 1.7× 42.9× 6.8× 5.2×

Figure 5: Validation MRR w.r.t.
training time (1 A100 GPU).

Table 4: Performance on ogbl-
wikikg2 (MRR). Results of com-
pared methods are from [8, 12].

Method ogbl-wikikg2
Test Valid #Params

TransE 0.4256 0.4272 1,251 M
ComplEx 0.4027 0.3759 1,251 M
RotatE 0.4332 0.4353 1,251 M
PairRE 0.5208 0.5423 500 M
ComplEx+RP 0.6392 0.6561 250 M

NBFNet OOM OOM OOM
A*Net 0.6767 0.6851 6.83 M

such sparse propagation, A*Net outperforms embedding methods and achieves a new state-of-the-art
result. Moreover, the validation curve in Fig. 1 shows that A*Net converges significantly faster than
embedding methods. Since A*Net only learns parameters for relations but not entities, it only uses
6.83 million parameters, which is 36.6× less than the best embedding method ComplEx+RP.

Tab. 5 shows the performance on inductive knowledge graph reasoning. A*Net is on par with NBFNet
and significantly outperforms all the other methods. Note that embedding methods cannot deal with
the inductive setting. Other metrics (H@1, H@10) and efficiency results are in App. F.

4.3 Ablation Studies

Priority Function To verify the effectiveness of neural priority function, we compare it against
three handcrafted priority functions: personalized PageRank (PPR), Degree and Random. PPR selects
nodes with higher PPR scores w.r.t. the query head entity u. Degree selects nodes with larger degrees,
while Random selects nodes uniformly. Tab. 6 shows that the neural priority function outperforms all
three handcrafted priority functions, suggesting the necessity of learning a neural priority function.

Sharing Weights As discussed in Sec. 3.2, we share the weights between the neural priority
function and the reasoning predictor to help train the neural priority function. Tab. 6 compares A*Net
trained with and without sharing weights. It can be observed that sharing weights is essential to
training a good neural priority function in A*Net.

Trade-off between Performance and Efficiency While A*Net matches the performance of
NBFNet in less training time, one may further trade off performance and efficiency in A*Net
by adjusting the ratios α and β. Fig. 6 plots curves of performance and speedup ratio w.r.t. different
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Table 5: Performance on inductive knowledge graph reasoning
(MRR). V1-v4 are 4 standard inductive splits. Results of com-
pared methods are taken from [54]. α = 50% and β = 100%
for FB15k237. α = 5% and β = 100% for WN18RR. More
metrics and efficiency results are in App. F.

Method FB15k-237 WN18RR
v1 v2 v3 v4 v1 v2 v3 v4

GraIL 0.279 0.276 0.251 0.227 0.627 0.625 0.323 0.553

NeuralLP 0.325 0.389 0.400 0.396 0.649 0.635 0.361 0.628
DRUM 0.333 0.395 0.402 0.410 0.666 0.646 0.380 0.627
NBFNet 0.422 0.514 0.476 0.453 0.741 0.704 0.452 0.641
RED-GNN 0.369 0.469 0.445 0.442 0.701 0.690 0.427 0.651
A*Net 0.457 0.510 0.476 0.466 0.727 0.704 0.441 0.661

Table 6: Ablation studies of A*Net
on transductive FB15k-237.

(a) Choices of priority function.
Priority FB15k-237
Function MRR H@1 H@3 H@10

PPR 0.266 0.212 0.296 0.371
Degree 0.347 0.268 0.383 0.501
Random 0.378 0.288 0.413 0.556
Neural 0.411 0.321 0.453 0.586

(b) W/ or w/o sharing weights.
Sharing FB15k-237
Weights MRR H@1 H@3 H@10

No 0.374 0.282 0.413 0.557
Yes 0.411 0.321 0.453 0.586

Figure 6: Performance and efficiency trade-off
w.r.t. node ratio α and degree ratio β. Speedup
ratio is relative to NBFNet.

Bandai

Bandai Namco

video game

media Pony Canyon
industry

(Bandai, industry, ?)

Figure 7: Visualization of important paths
learned by the neural priority function in A*Net.

α and β. If we can accept a performance similar to embedding methods (e.g., ConE [3]), we can set
either α to 1% or β to 10%, resulting in 8.7× speedup compared to NBFNet.

4.4 Visualization of Learned Important Paths

We can extract the important paths from the neural priority function in A*Net for interpretation. For
a given query (u, q, ?) and a predicted entity v, we can use the node priority s

(t)
uq (x) at each step to

estimate the importance of a path. Empirically, the importance of a path sq(P ) is estimated by

sq(P ) =
1

|P |

|P |∑
t=1,P (t)=(x,r,y)

s
(t−1)
uq (x)

S
(t−1)
uq

(14)

where S
(t−1)
uq = maxx∈V(t−1) s

(t−1)
uq (x) is a normalizer to normalize the priority score for each step

t. To extract the important paths with large sq(P ), we perform beam search over the priority function
s
(t−1)
uq (x) of each step. Fig. 7 shows the important paths learned by A*Net for a test sample in

FB15k-237. Given the query (Bandai, industry, ?), we can see both paths Bandai
subsidiary←−−−−− Bandai

Namco
industry−−−−→ video game and Bandai

industry−−−−→ media
industry←−−−− Pony Canyon

industry−−−−→ video game are
consistent with human cognition. More visualization results can be found in App. G.

5 Related Work

Path-based Reasoning Path-based methods use paths between entities for knowledge graph rea-
soning. Early methods like Path Ranking [28, 19] collect relational paths as symbolic features for
classification. Path-RNN [31, 15] and PathCon [45] improve Path Ranking by learning the represen-
tations of paths with recurrent neural networks (RNN). However, these works operate on the full
set of paths between two entities, which grows exponentially w.r.t. the path length. Typically, these
methods can only be applied to paths with at most 3 edges.

To avoid the exhaustive search of paths, many methods learn to sample important paths for reasoning.
DeepPath [47] and MINERVA [14] learn an agent to collect meaningful paths on the knowledge graph
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through reinforcement learning. These methods are hard to train due to the extremely sparse rewards.
Later works improve them by engineering the reward function [29] or the search strategy [37], using
multiple agents for positive and negative paths [24] or for coarse- and fine-grained paths [52]. [11]
and [33] use a variational formulation to learn a sparse prior for path sampling. Another category
of methods utilizes the dynamic programming to search paths in a polynomial time. NeuralLP [50]
and DRUM [35] use dynamic programming to learn linear combination of logic rules. All-Paths [41]
adopts a Floyd-Warshall-like algorithm to learn path representations between all pairs of entities.
Recently, NBFNet [58] and RED-GNN [54] leverage a Bellman-Ford-like algorithm to learn path
representations from a single-source entity to all entities. While dynamic programming methods
achieve state-of-the-art results among path-based methods, they need to perform message passing on
the full knowledge graph. By comparison, our A*Net learns a priority function and only explores a
subset of paths, which is more scalable than existing dynamic programming methods.

Efficient Graph Neural Networks Our work is also related to efficient graph neural networks, since
both try to improve the scalability of graph neural networks (GNNs). Sampling methods [21, 9, 26, 51]
reduce the cost of message passing by computing GNNs with a sampled subset of nodes and edges.
Non-parametric GNNs [27, 46, 18, 10] decouple feature propagation from feature transformation, and
reduce time complexity by preprocessing feature propagation. However, both sampling methods and
non-parametric GNNs are designed for homogeneous graphs, and it is not straightforward to adapt
them to knowledge graphs. On knowledge graphs, RS-GCN [17] learns to sample neighborhood
with reinforcement learning. DPMPN [48] learns an attention to iteratively select nodes for message
passing. SQALER [1] first predicts important path types based on the query, and then applies GNNs
on the subgraph extracted by the predicted paths. Our A*Net shares the same goal with these methods,
but learns a neural priority function to iteratively select important paths.

6 Discussion and Conclusion

Limitation and Future Work One limitation for A*Net is that we focus on algorithm design rather
than system design. As a result, the improvement in time and memory cost is much less than the
improvement in the number of messages (Tab. 3 and App. F). In the future, we will co-design the
algorithm and the system to further improve the efficiency.

Societal Impact This work proposes a scalable model for path-based reasoning. On the positive
side, it reduces the training and test time of reasoning models, which helps control carbon emission.
On the negative side, reasoning models might be used in malicious activities, such as discovering
sensitive relationship in anonymized data, which could be augmented by a more scalable model.

Conclusion We propose A*Net, a scalable path-based method, to solve knowledge graph reasoning
by searching for important paths, which is guided by a neural priority function. Experiments on
both transductive and inductive knowledge graphs verify the performance and efficiency of A*Net.
Meanwhile, A*Net is the first path-based method that scales to million-scale knowledge graphs.

Acknowledgement

This project is supported by Intel-MILA partnership program, the Natural Sciences and Engineering
Research Council (NSERC) Discovery Grant, the Canada CIFAR AI Chair Program, collaboration
grants between Microsoft Research and Mila, Samsung Electronics Co., Ltd., Amazon Faculty
Research Award, Tencent AI Lab Rhino-Bird Gift Fund and a NRC Collaborative R&D Project
(AI4D-CORE-06). This project was also partially funded by IVADO Fundamental Research Project
grant PRF-2019-3583139727. The computation resource of this project is supported by Mila6, Calcul
Québec7 and the Digital Research Alliance of Canada8.

We would like to thank Zuobai Zhang, Jiarui Lu and Minghao Xu for helpful discussions and
comments. We also appreciate all anonymous reviewers for their constructive suggestions.

6https://mila.quebec/
7https://www.calculquebec.ca/
8https://alliancecan.ca/

10

https://mila.quebec/
https://www.calculquebec.ca/
https://alliancecan.ca/


References
[1] Mattia Atzeni, Jasmina Bogojeska, and Andreas Loukas. Sqaler: Scaling question answering

by decoupling multi-hop and logical reasoning. Advances in Neural Information Processing
Systems, 34, 2021.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary
Ives. Dbpedia: A nucleus for a web of open data. In The semantic web, pages 722–735. Springer,
2007.

[3] Yushi Bai, Zhitao Ying, Hongyu Ren, and Jure Leskovec. Modeling heterogeneous hierarchies
with relation-specific hyperbolic cones. Advances in Neural Information Processing Systems,
34, 2021.

[4] Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.

[5] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In Proceedings of the 2013 conference on empirical methods in
natural language processing, pages 1533–1544, 2013.

[6] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

[7] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-
dimensional hyperbolic knowledge graph embeddings. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 6901–6914, 2020.

[8] Linlin Chao, Jianshan He, Taifeng Wang, and Wei Chu. Pairre: Knowledge graph embeddings
via paired relation vectors. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4360–4369, 2021.

[9] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks
via importance sampling. In International Conference on Learning Representations, 2018.

[10] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-Rong Wen.
Scalable graph neural networks via bidirectional propagation. Advances in neural information
processing systems, 33:14556–14566, 2020.

[11] Wenhu Chen, Wenhan Xiong, Xifeng Yan, and William Yang Wang. Variational knowledge
graph reasoning. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 1823–1832, 2018.

[12] Yihong Chen, Pasquale Minervini, Sebastian Riedel, and Pontus Stenetorp. Relation prediction
as an auxiliary training objective for improving multi-relational graph representations. In 3rd
Conference on Automated Knowledge Base Construction, 2021.

[13] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
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