
RH-BrainFS: Regional Heterogeneous Multimodal
Brain Networks Fusion Strategy

Hongting Ye 1, Yalu Zheng 1, Yueying Li 1, Ke Zhang 1, Youyong Kong 1,2∗, Yonggui Yuan 3

1Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing
School of Computer Science and Engineering, Southeast University

2Key Laboratory of New Generation Artificial Intelligence Technology and Its
Interdisciplinary Applications (Southeast University), Ministry of Education, China

3Department of Psychosomatics and Psychiatry, Zhongda Hospital
School of Medicine, Southeast University

{yehongting, 220212084, 230228504, kylenz, kongyouyong}@seu.edu.cn
yygylh2000@sina.com

Abstract

Multimodal fusion has become an important research technique in neuroscience
that completes downstream tasks by extracting complementary information from
multiple modalities. Existing multimodal research on brain networks mainly
focuses on two modalities, structural connectivity (SC) and functional connectivity
(FC). Recently, extensive literature has shown that the relationship between SC and
FC is complex and not a simple one-to-one mapping. The coupling of structure and
function at the regional level is heterogeneous. However, all previous studies have
neglected the modal regional heterogeneity between SC and FC and fused their
representations via "simple patterns", which are inefficient ways of multimodal
fusion and affect the overall performance of the model. In this paper, to alleviate
the issue of regional heterogeneity of multimodal brain networks, we propose a
novel Regional Heterogeneous multimodal Brain networks Fusion Strategy (RH-
BrainFS).2 Briefly, we introduce a brain subgraph networks module to extract
regional characteristics of brain networks, and further use a new transformer-based
fusion bottleneck module to alleviate the issue of regional heterogeneity between
SC and FC. To the best of our knowledge, this is the first paper to explicitly state
the issue of structural-functional modal regional heterogeneity and to propose a
solution. Extensive experiments demonstrate that the proposed method outperforms
several state-of-the-art methods in a variety of neuroscience tasks.

1 Introduction

Currently, a large number of neuroscience studies are based on unimodal imaging [2, 30, 47, 56,
61]. However, different brain imaging techniques, such as functional magnetic resonance imaging
(fMRI) [54] and diffusion magnetic resonance imaging (dMRI) [44], reflect different aspects of the
brain’s internal characteristics. Therefore, it is often insufficient to use a single modality of data
for neuroscience research and it is necessary to integrate multiple modalities of imaging data to
achieve good performance in neuroscience tasks such as depression classification [3, 33] and gender
classification [15, 53].

In multimodal brain networks fusion, existing researchs are mainly focused on fusing structural
and functional modalities (structural modality is constructed from dMRI and functional modality is
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37th Conference on Neural Information Processing Systems (NeurIPS 2023).



constructed from fMRI) [6, 29, 32, 57, 58]. Most methods directly fuse the two modal representations
via "simple patterns" (we define this as direct interaction, where two modal features/embeddings
are directly combined to perform some computation, e.g. concatenation [32], weighted summation
[57], or self-attention [58] techniques.) without considering the issue of regional heterogeneity [37]
between this two modalities. However, extensive literature [22, 37] has shown that the relationship
between structural connectivity (SC) and functional connectivity (FC) is complex and not a simple
one-to-one mapping. Specifically, the coupling of structure and function at the regional level is
heterogeneous and follows the molecular, cellular and functional hierarchical structure. In other
words, structure may be more tightly coupled to function in some regions than in others. This shows
that regional heterogeneity is a key factor in linking different modal brain networks.

Based on the above research gap, in this paper we propose a novel regional heterogeneous multimodal
brain networks fusion strategy that aims to fully account for the regional heterogeneity among brain
networks and achieve better multimodal brain networks fusion performance.

First, the brain network itself has strong regional characteristics [36, 41], and the combination
of neighbouring brain regions can serve as an important criterion for neuroscience tasks [16, 24].
Specifically, regional characteristics behave as subnetwork (also called subgraph) features in the
whole brain network [11, 28], yet other multimodal studies do not take this into account. In this paper,
we focus on the characteristics of brain regions from the subgraph pattern. The subgraph pattern have
become a relatively hot area of graph representation learning research in recent years [25, 39, 55].
Subgraph convolutional networks can obtain potential representations of each subgraph in the graph,
that reflect the regional characteristics of the graph [7, 10]. Therefore, to effectively extract the
regional characteristics of each brain region in the brain network, we introduce a Brain Subgraph
Networks (BrainSubGNN) module in Sec. 3.2. Our BrainSubGNN is divided into two steps, subgraph
sampling and subgraph embedding. The former is used to obtain the subgraph partition of the brain
network, the latter to aggregate the subgraph characteristics of the brain network.

Next, since several previous studies have shown that the characteristics of different individual regions
in the brain network have widely different influences on neuroscience tasks [1, 31, 40, 42], we need to
pay attention to the influence of these brain region characteristics on neuroscience tasks and quantify
them into accurate values. In this paper, we focus on the Transformer [45] to learn the accurate
influence values of these brain region characteristics. Although originally proposed for NLP tasks,
there has been recent interest in Transformers [45] as universal perceptual models [14]. Through the
attention mechanism, Transformer can learn the accurate influence values of different tokens well for
the classification result, which happens to meet our needs.

However, as mentioned above, there is the issue of modal regional heterogeneity between SC
and FC, which is a key factor in linking these two modal brain networks [37]. Many previous
multimodal fusion methods, via "direct interaction", have not considered this issue between SC
and FC, which are inefficient ways of modality fusion and affect the overall performance of the
model. Based on that, avoiding direct interaction between two modalities within the Transformer
is the aim of our study. Inspired by MBT [26], we present a transformer-based fusion bottleneck
(Trans-Bottleneck) module for fusing regional heterogeneous brain networks in Sec. 3.3. Specifically,
the Trans-Bottleneck module contains two standard transformers [45] and a certain number of fusion
bottlenecks. The standard transformers are used to learn the accurate influence values of each brain
region on neuroscience tasks through the attention mechanism. The fusion bottlenecks, as intermediate
media for modality fusion, establish connections between regional heterogeneous modalities and
learn the key information of each modality in the latent space (we define this as indirect interaction,
where two modal features/embeddings are not directly combined for the computation.).

The main contributions of this paper are summarized as follows:

• To alleviate the issue of regional heterogeneity of multimodal brain networks, we propose a
novel Regional Heterogeneous multimodal Brain networks Fusion Strategy (RH-BrainFS),
using BrainSubGNN module and Trans-Bottleneck module to fuse regional heterogeneous
multimodal brain networks for neuroscience tasks.

• To the best of our knowledge, this is the first paper to explicitly state the issue of structural-
functional modal regional heterogeneity and to propose a solution.

• Extensive experiments demonstrate the effectiveness of RH-BrainFS in multimodal brain
networks fusion tasks on depression classification and gender classification datasets.

2



Preprocessed Subgraph PartitionModality FC

fMRI

ROI#1

ROI#2

ROI#90

. . .

. . .

Pearson 
Correlation

thresholding

Modality SC

dMRI

Initial Bottlenecks

Final Bottlenecks

𝑸
𝑲

𝑽

M
atM

u
l (S

cale)

L
in

ear S
oftm

ax

M
atM

u
l

L
in

ear

N
od

e E
m

b
ed

d
in

gs L
in

ear
L

in
ear

F
F

N+

𝑸
𝑲

𝑽

M
atM

u
l (S

cale)

L
in

ear S
oftm

ax

M
atM

u
l

L
in

ear

N
od

e E
m

b
ed

d
in

gs L
in

ear
L

in
ear

F
F

N+

Avg

𝑸
𝑲

𝑽

M
atM

u
l (S

cale)

L
in

ear S
oftm

ax

M
atM

u
l

L
in

ear

N
od

e E
m

b
ed

d
in

gs L
in

ear
L

in
ear

F
F

N+

𝑸
𝑲

𝑽

M
atM

u
l (S

cale)

L
in

ear S
oftm

ax

M
atM

u
l

L
in

ear

N
od

e E
m

b
ed

d
in

gs L
in

ear
L

in
ear

F
F

N+

Avg

𝑸
𝑲

𝑽

M
atM

u
l (S

cale)

L
in

ear S
oftm

ax

M
atM

u
l

L
in

ear

N
od

e E
m

b
ed

d
in

gs L
in

ear
L

in
ear

F
F

N+

𝑸
𝑲

𝑽

M
atM

u
l (S

cale)

L
in

ear S
oftm

ax

M
atM

u
l

L
in

ear

N
od

e E
m

b
ed

d
in

gs L
in

ear
L

in
ear

F
F

N+

Avg

thresholding

RH-BrainFS Layer

MLP

GMP

Gender Classification

+
Avg

GMP

Matrix Concatenation

Matrix Average

Global Mean Pooling

Major Depressive
Disorder

Downstream Task

. . .

Figure 1: The overall framework of our proposed RH-BrainFS Model. The structural connectivity
(SC) and functional connectivity (FC) are constructed from fMRI and dMRI respectively, the initial
bottlenecks Zb are a set of learnable tokens randomly sampled from standard normal distribution,
and the subgraph partition (SPi) are obtained in the preprocessing stage. Function g(·) denotes the
BrainSubGNN module.

2 Related Work

Brain Subgraph Networks: In recent years, subgraph techniques have gained popularity in brain
network analysis due to their ability to accurately model certain aspects of brain organization with
high consistency to established brain functional systems [27]. This has led to a focus on identifying
informative and signaling subgraphs from the entire brain connectome that may be relevant to brain
diseases [46]. Various subgraph-based methods have been proposed for brain network research,
such as the adaptive dense subgraph discovery (ADSD) model [51] which uses a likelihood-based
approach to extract disease-associated subgraphs from group-level whole-brain connectome data.
Other methods, such as an earlier approach from [4], balance topological information of local and
global graphs using subgraphs, while approach [5] utilizes subgraphs to represent local features
in large-scale brain network. Recent research [19] has also classified brain network by extracting
contrastive subgraphs, and the SBLR model [49] suggests that subgraphs have attractive neurological
interpretations and may correspond to outcome-related anatomical circuits. In this paper, our model
builds upon these approaches and employs a BrainSubGNN module to efficiently aggregate regional
characteristics of brain network.

MultiModal Brain Networks Fusion: Over the past few years, several methods have been developed
for multimodal fusion in neuroscience research [12, 8, 38, 23, 60]. One traditional approach, SNF
[48], creates an initial similarity network for each feature and iteratively combines them with a
non-linear graph fusion formula to generate a final fusion network. However, recent advancements in
deep learning have led to the development of more sophisticated multimodal fusion techniques. For
instance, the GBDM [57] model employs both structural and functional information from diffusion
and functional magnetic resonance imaging (MRI), respectively, to effectively differentiate individuals
with mild cognitive impairment (MCI) from age-matched controls. The MGCN [29] model uses
manifold-based regularization terms to account for inter-modality and intra-modality relationships.
One approach [13] involves deep collaborative learning to capture cross-modal associations and
trait-related features. Another approach [32] combines representations to fuse multimodal data.
Moreover, a method [62] applies a multimodal non-Euclidean brain network analysis technique based
on community detection and convolutional autoencoder for epilepsy classification. Additionally,
a new adversarial learning-based node-edge graph attention network (AL-NEGAT [6]) has been
proposed for autism spectrum disorder (ASD) recognition based on multi-modal MRI data. However,
none of these methods have addressed the issue of modal regional heterogeneity [37] in multimodal
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brain networks. To fill this gap, we propose a new multimodal brain networks fusion strategy aimed
at alleviating the modal regional heterogeneity issue and achieving better fusion performance.

3 Method

In this section, we present our proposed regional heterogeneous multimodal brain networks fusion
strategy RH-BrainFS (as shown in Fig. 1). We begin by discussing the definition of the multimodal
brain networks fusion task in Sec. 3.1. We then explain how the BrainSubGNN module captures the
regional characteristics of brain networks in Sec. 3.2. Finally, we describe how the Trans-Bottleneck
module used in the RH-BrainFS model alleviate the issue of regional heterogeneity in multimodal
brain networks in Sec. 3.3.

3.1 Perliminaries

Multimodal Brain Networks Fusion Task: Given a multimodal brain networks dataset D =
{Sample0, Sample1, ..., SampleL−1}, where each sample represents a person, and L is the size of
this dataset. Each Samplei = (Gsc,Gfc, y) contains a structural connectivity graph (each brain region
is viewed as a node in the graph), a functional connectivity graph (ditto) and a class label y ∈ {0, 1}
(0, 1 represent different meanings on different tasks). Each kind of input graph G = (A,X, V ) is
composed of a node set V , an adjacency matrix A ∈ RN×N and node features X ∈ RN×d, where
N = |V | denotes the number of nodes and d denotes the input dimensional of node features. In the
brain network graph, node set V denotes the collection of brain regions, adjacency matrix A denotes
the connectivity between various brain regions and node features X denotes the original features
of each brain region. In the multimodal brain networks classification task, the purpose is to find a
mapping function g : (Gsc,Gfc) → y.

3.2 Brain Subgraph Networks

We now explain how BrainSubGNN module captures the regional characteristics of brain networks.
As shown in Fig. 2, the BrainSubGNN contains subgraph sampling step and subgraph embedding
step.

3.2.1 Subgraph sampling

The purpose of subgraph sampling is to construct a receptive field for each brain region (also named
node in graph), it represent the regional characteristics of this brain region. In our RH-BrainFS, rooted
subgraph [59] is utilized to construct receptive field, as the rooted subgraph can exhibit even greater
discriminative power than the first-order Weisfeiler-Leman (1-WL) test due to interconnectivity
among neighboring nodes [50, 59].

. . .

. . .

Subgraph Sampling
(Preprocess Stage)

Subgraph Embedding
(Training Stage)

. . .

Figure 2: Brain Subgraph Networks (BrainSubGNN). Including subgrah sampling process (1-hop)
and subgraph embedding process.
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Specifically, we define central subgraph for each node in the whole brain network. The central
subgraph describes the surrounding region of the central node. For a input graph G and the central
node vi, the central subgraph is denoted as G̃k

i = (Ãi, X̃i, Ṽi) ⊂ G where Ṽi = N k(i) contains
k-hop neighbor nodes of vi and Ãi, X̃i equal to the corresponding part in the original A and X . The
central subgraph G̃k

i constructed above includes brain region i and its k-hops adjacent brain regions.
Such a subgraph contains the characteristics of this local brain network, which is of great significance
to the brain network. In this work, the subgraph sampling is a preprocessing process before network
training, node and edge indice are saved as a binary file. In the training stage, the indice are loaded
directly without additional cost on training.

3.2.2 Subgraph embedding

The subgraph partitions of the brain network are obtained in the previous step, each subgraph contains
a central brain region and several adjacent brain regions, so we expect to be able to use a method
that integrates the characteristics of all the brain regions in the subgraph and extract an embedding
to represent the entire subgraph. Inspired by the graph isomorphism network [52], we consider
the subgraph representation task as a multi-set problem and use multi-layer perceptrons to learn an
injective function for aggregating regional characteristics the brain subgraph network effectively and
learn subgraph representation as:

z
(l)
i = MLP(l)

W
(l)
1 h̃

(l)
i +

∑
j∈Ṽi\i

W
(l)
2 h̃

(l)
j

 (1)

where h̃i denote the hidden representation of node i, and W
(l)
1 , W (l)

2 ∈ Rd(l)×d(l+1)

are learnable
weight matrices for the central node and other nodes in subgraph, respectively. By default, we set the
MLP as a two-layer fully connected module. The obtained zi represents the local characteristics of
brain region i.

3.3 Transformer-Based Fusion Bottleneck

Through the BrainSubGNN described earlier, we obtain the regional representations of each modality
of the brain network Zi ∈ RN×dhid . Next, our goal is to apply an efficient fusion strategy to fuse
critical and complementary information from Zsc and Zfc, extract a distinguishing embedding to
represent the features of the whole brain, and serve as a criterion for downstream tasks. We now
describe how Trans-Bottleneck module alleviate the issue of regional heterogeneity in multimodal
brain networks.

3.3.1 Fusion Bottlenecks

Due to the issue of regional heterogeneity between SC and FC, we are committed to avoiding the
direct interaction of two modalities, and we prefer to find an intermediate element as a bridge for the
interaction between two modalities (means indirect interaction). Inspired by MBT [26], we introduce
the fusion bottlenecks into neuroscience research.

Indirect Interaction

Direct Interaction

Indirect Interaction

Figure 3: Interaction between three main tokens.

Specifically, fusion bottlenecks are simply a set
of learnable tokens Zb ∈ RNb×dhid , where Nb is
a hyperparameter denoting the number of fusion
bottlenecks. In this work, we utilize the fusion
bottlenecks as intermediate medium to bridge
contact of this two modalities (SC and FC). As
shown in Fig. 3, the fusion bottlenecks allow in-
formation to flow between modalities and fusion
bottlenecks (indirect interaction), but limit the
flow of information between modalities (direct
interaction). This procedure avoid direct interac-
tion between regional heterogeneous modality
data, effectively improving the model’s perfor-
mance. The initial bottlenecks are a set of learn-
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able tokens that are randomly sampled from standard normal distribution N (0, 1) and then passed to
the first RH-BrainFS layer. Finally, the fusion bottlenecks output by the last RH-BrainFS layer are
used as the classification basis for downstream tasks (gender classification, major depressive disorder
diagnosis, etc.).

3.3.2 Transformer-Based Fusion

Although originally proposed for NLP tasks, there has been recent interest in Transformers as universal
perceptual models due to their ability to model dense correlations between tokens. Meanwhile, it
turns out that individual regional characteristics of brain networks have different influence values for
neuroscience tasks [1, 31, 40, 42]. Based on these, our RH-BrainFS method utilizes the Transformer
[45] as a baseline for the fusion strategy to capture key subgraph characteristics in brain networks.

Specifically, as shown in Fig. 1, we first concatenate the fusion bottlenecks Zb and each modality
representation Zi, and then feed the concatenated tokens to the standard Transformer [45] model
of the corresponding modality. In the Transformer model, the fusion bottlenecks learn important
regional characteristics of the brain network for each modality through attention mechanism. The
tokens output by the Transformer are re-split according to the previous splicing scheme to obtain new
potential features Zl+1

i of the brain network and temporary fusion bottlenecks Ẑl+1
bi

corresponding to
each modality. After that, the temporary fusion bottlenecks Ẑl+1

bi
of all modalities are matrix-averaged

(also named average pooling) to obtain the fusion bottleneck latent representation Zl+1
b .

This procedure can be formulated as:[
Zl+1
i || Ẑl+1

bi

]
= Transformer(

[
Zl
i ||Zl

b

]
; θi) (2)

Zl+1
b = AVERAGE(Ẑl+1

bi
) (3)

where i ∈ {SC,FC}, θi denotes the modality specific Transformer, [· || ·] denotes the concatenate
operation, Zl

b denotes the fusion bottlenecks in lth layer, and Ẑl+1
bi

denotes the temporary fusion
bottlenecks in ith modality specific Transformer.

In this procedure, each modality transfers importance regional brain network characteristics within its
modality to the fusion bottlenecks, and the fusion bottlenecks utilize shared characteristics between
modalities to guide the learning of each modality’s brain network in the next layer.

3.3.3 Downstream Tasks

In the final stage, we complete classification basis for downstream tasks through the output Zl
b in the

last layer. Specifically, we first use global mean pooling as the readout function, and then input the
result into a MLP to complete classification basis.

Logits = Softmax(MLP(
1

Nb

i∑
Nb

Zi,b)) (4)

where Zi,b denotes the i-th row of Zb, and Logits ∈ {0, 1}. In this paper, on the depression
classification task, 0 represents major depressive disorder, 1 represents normal control. And on the
gender classification task, 0 represents male, 1 represents female.

4 Experiments

In this section, we perform a series of experiments to evaluate the effectiveness of the proposed
RH-BrainFS method. First, we provide the detailed experimental settings in Sec. 4.1. Then, we
perform comparison experiments on all datasets to compare the performance of different methods in
Sec. 4.2. Finally, we perform some ablation studies of the main modules and hyperparameters in the
proposed RH-BrainFS method in Sec. 4.3.
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4.1 Experimental Settings

Datasets. We evaluate our RH-BrainFS method on two different classification tasks investigating
structure-function fusion. 1) The gender classification task on Human Connectome Project (HCP)
dataset [43], which contains 560 female samples and 479 male samples. 2) The Major Depressive
Disorder (MDD) diagnosis task on the hospital datasets [17, 18], including the Affiliated Zhongda
Hospital of Southeast University (Zhongda hospital) and the Second Affiliated Hospital of Xinxiang
Medical University (Xinxiang hospital). This study included 48 controls and 62 MDD patients from
the Zhongda hospital and 46 controls and 31 MDD patients from the Xinxiang hospital. We also
combine Zhongda and Xinxiang as Two-site dataset to construct more difficult and more realistic
tasks.

Preprocessing. Here, we would briefly introduce how to construct the brain network of SC from
dMRI and FC from fMRI.

• SC. The dMRI data is preprocessed using the brain’s diffusion toolbox of FMRIB Software
Library [34]. Next we construct Gsc = (Asc, Xsc, Vsc) from preprocessed dMRI data.
First, we obtain the brain regions (Vsc) of the individual space by mapping the anatomical
automatic labeling (AAL) template in the standard space to the individual space. Then,
we using DSI Studio software [9] to implement Fiber tracking. Finally, we obtain the
feature Xsc ∈ R|Vsc|×|Vsc| by counting the number of structural connective fibres between
the different regions of the AAL, and the adjacency matrix Asc of the structural graph is
obtained by thresholding Xsc with a threshold.

• FC. The fMRI data is preprocessed using the Data Processing Assistant for Resting-State
Function (DPARSF) [35] MRI toolkit. Next we construct Gfc = (Afc, Xfc, Vfc) from
preprocessed fMRI data. First, averaged time series are first computed for each brain region
with a predefined atlas. Then, the Pearson correlation is utilized to calculate the functional
matrix. Finally, the functional matrix is thresholded by proportional quantization to obtain
the adjacency matrix Afc. The features Xfc are functional connectivity matrix obtained
earlier.

Metrics. In this study, we evaluate all the methods using 10-fold cross-validation with the same
partition of training and testing splits. Our evaluation metrics include classification accuracy (ACC),
sensitivity (SEN), specificity (SPE), f1 score (F1) and ROC-AUC (AUC). Higher values for all
metrics indicate better performance. We record the mean and standard deviation on 10 random runs
with 10-fold cross-validation.

Implementation Details. For all experiments, we adopt Adam as the optimizer and StepLR
(step_size=50, gamma=0.8) as the scheduler. The initial learning rate is set to 5e-4 and the dropout
rate is set to 0.3. Also we utilize a early stop mechanism that 300 epochs patience in total 500 epochs.
In the RH-BrainFS model, we set the k-hop in the subgraph sampling to 1, the number of bottlenecks
Nb to 4, the number of attention heads in the Transformer to 4, and the total number of network
layers to 2. All our experiments are implemented in PyTorch and trained on one NVIDIA 3090.

4.2 Comparison Experiments

In this section, we verify the performance of our RH-BrainFS against existing baselines on several
datasets.

Baselines. We choose two categories of methods as comparison methods, both of which are methods
for the direct study of SC and FC. The first category is unimodal methods, including FGDN [20] and
BrainGNN [21], where FGDN uses a spectral graph convolution method to extract brain networks
features, and BrainGNN proposes a ROI-aware graph convolution layer and uses pooling to extract
brain networks features. In our experiments, SC and FC are used as inputs to the unimodal method,
respectively. The second category is multimodal methods, including SVM, Random Forest, MGCN
[29], GBDM [57], MMGNN [32] and AL-NEGAT [6], where SVM and Random Forest concatenate
SC and FC as input, MGCN uses manifold-based regularization terms to consider inter-modality
and intra-modality relationships, GBDM adopts weighted summation pattern to fuse multimodal
brain networks, MMGNN utilises the concatenation method in multimodal tasks and AL-NEGAT
combines multimodal information to construct edge feature maps and node feature maps. Code
implementations of all baseline methods are taken from their respective original papers.
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Table 1: Comparison experiments results (in percentage) on the all chosen datasets (only the accuracy
is shown, the full results can be referred to the Appendix A). The best results are marked in bold. The
suboptimal results are marked underlined.

Method Modality Datasets

HCP Zhongda Xinxiang Two-site

FGDN FC 67.56±3.02 65.67±3.26 67.91±3.27 59.34±2.78
FGDN SC 63.42±4.79 64.02±3.49 65.89±5.15 68.91±2.53

BrainGNN FC 66.41±6.44 69.18±3.39 73.46±4.33 69.55±3.23
BrainGNN SC 67.37±5.89 70.73±2.07 73.66±3.60 69.51±2.58

SVM SC,FC 74.49±2.97 63.21±2.09 71.73±1.99 66.06±1.56
Random Forest SC,FC 68.24±2.94 61.45±2.80 62.78±1.63 62.43±2.19

MGCN SC,FC 67.94±5.41 75.18±2.34 82.24±3.71 72.98±2.17
GBDM SC,FC 71.02±4.39 74.81±2.44 80.71±2.83 72.48±1.91

MMGNN SC,FC 73.33±2.82 60.69±3.61 68.21±4.44 59.72±3.18
AL-NEGAT SC,FC 75.12±3.66 73.95±3.45 75.75±3.81 71.86±2.49

RH-BrainFS (ours) SC,FC 78.63±4.36 80.64±1.58 90.27±2.00 78.48±1.43

Results. As shown in Tab. 1, our model significantly outperforms the other comparison methods
on the all selected datasets. The results show that multimodal methods generally have better perfor-
mance than unimodal methods because they capture more complementary information. Among the
multimodal methods, our RH-BrainFS method achieves the best performance on the all the selected
datasets (improvement of 3.51% on HCP, 5.46% on Zhongda hospital dataset, 8.03% on Xinxiang
hospital dataset and 5.50% on two-site dataset). The reason for the performance improvement is that
our RH-BrainFS method fully considers the issue of regional heterogeneity between SC and FC and
proposes an appropriate solution strategy for this issue.

MGCN GBDM MMGNN AL-NEGAT Ours

female male

Figure 4: t-SNE visualisation of multimodal method on HCP dataset. Each dot denotes a test sample.

Visualization. In order to intuitively display the performance of each multimodal method, we conduct
visualization experiments on the HCP dataset. Specifically, we take the graph-level embedding output
from the last layer of each multimodal method for t-SNE visualisation. As shown in Fig. 4, although
the MGCN and GBDM all form two clusters, these two clusters do not distinguish the two types of
samples well and there is still a lot of confusion. The MMGNN is loosely distributed and does not
form good class boundary. It can be seen that the Al-NEGAT produces a similar distribution to our
method, but there’s still a lot of confusion at the class boundary. In contrast, our method eliminates
the confusion at the class boundary, achieves a good classification effect, most of the samples can be
accurately distinguished and only a small number of samples have errors.

4.3 Ablation Study

In this section, we further perform ablation studies on the main modules and hyperparameters in the
proposed RH-BrainFS method.3

3Full results of hyperparameter experiments refer to Appendix B.
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Table 2: Ablation study of the main modules in the RH-BrainFS method. The bold font indicates that
the evaluation metric achieves the best performance in the ablation study.

Modules ACC SEN SPE F1 AUC

w/o BrainSubGNN Trans-Bottleneck 76.23±3.78 71.40±11.94 80.36±7.70 73.00±6.27 75.88±4.12
w/o BrainSubGNN 77.22±3.89 68.44±12.16 82.86±8.61 72.16±6.34 75.65±4.19

w/o Trans-Bottleneck 76.80±2.93 71.14±10.50 81.61±7.10 73.50±5.13 76.38±3.27
RH-BrainFS (ours) 78.63±4.36 75.59±6.75 81.25±6.04 76.49±4.91 78.42±4.38
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Figure 5: The effect of varying hyperparameters. (a) and (c) are experiments on HCP datasets, (b)
and (d) are experiments on Two-site datasets.

Effectiveness of Main Modules. First, we perform an ablation study on HCP dataset to validate
effectiveness of the main modules, BrainSubGNN and Trans-Bottleneck. Specifically, we replace
BrainSubGNN with normal GIN [52] (process on the whole brain network), and replace Trans-
Bottleneck with a standard transformer (compute self-attention directly between two modalities,
equal to direct interaction), respectively. As shown in Tab. 2, we can find that both BrainSubGNN
and Trans-Bottleneck have a certain effect on the performance of the model (compare the first three
rows in the table). Furthermore, we find that the two modules are compatible and complementary,
as our RH-BrainFS method (combining the two modules) achieves the best performance among the
ablation study.

Impact of Bottlenecks Number. We then investigate the impact of varying bottlenecks number.
Specifically, we run experiments with # bottlenecks=2,4,6,8, respectively, with all other parameters
unchanged. In order to ensure the credibility of the experiment, we perform experiments on two
datasets (HCP dataset and Two-site dataset). As shown in Fig. 5, on both datasets, the performance
of any number of bottlenecks exceeds the baselines. The main reason for this results is that the
Trans-Bottleneck module takes into account the regional heterogeneity issue between SC and FC, and
avoids the direct interaction of heterogeneous information, thus achieving good fusion performance.
Such results demonstrate the importance of the regional heterogeneity issue in the modality fusion
process of SC and FC. At the same time, we find that when # bottlenecks=4, the model performance
reaches the best, which reflects that only a small number of bottlenecks is needed to achieve a good
multi-modal fusion expression capability.
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Figure 6: The effect of varying thresholding val-
ues.

Impact of Subgraph Sampling Hops. Next,
we investigate the impact of varying sampling
hops of subgraph. In this experiment, we set
the range of sampling hops of subgraph from
1 to 5. Likewise, we run experiments on HCP
dataset and Two-site dataset. As shown in Fig.
5, it can clearly be seen that as the number of
sampling hops increases, the performance of the
model generally shows a downward trend, and
when the sampling hops are too large, the model
actually performs worse than the baselines. The
reason for this results is that the brain network
itself has strong regional characteristics, and too
large sampling hops will cause the sampled sub-
graph to lose the local characteristics of the brain
network and tend towards global characteristics.

9



The results show that only 1 hop of subgraph sampling is needed to express the local characteristics
of the brain network well.

Impact of Thresholding Values. Finally, in this paper, thresholding is used to obtain the adjacency
matrix of the two modalities during data processing (thresholding Xsc and Xfc to obtain Asc and
Afc, respectively). Thresholding value has been an important ablation study in neuroscience, and
the same experiment was conducted in this paper. As shown in Fig. 6, we set the value range of
thresholding to [0.02, 0.30], with 0.02 as a step, for a total of 15 thresholding experiments. From the
experimental results, there is no clear trend between threshold values and model performance, but the
model performs poorly when the threshold value is too high or too low, so in this paper we chose a
threshold value of 0.12 as this is when the model performs best.

5 Discussions

Conclusion. In this paper, we introduce a brain subgraph networks and a transformer-based fusion
bottleneck to alleviate the issue of regional heterogeneity between SC and FC, and propose a novel
multimodal brain networks fusion strategy (RH-BrainFS). To the best of our knowledge, this is the
first paper to explicitly state the issue of structural-functional modal regional heterogeneity and to
propose a solution. We validate our method on a variety of downstream task datasets, achieving
state-of-the-art performance.

Limitations and Future Work. Due to the scarcity and difficulty of collecting and processing data
in neuroscience, the only datasets currently available are very limited, despite the fact that we have
spent a great deal of manual effort in this area, and thus the research in this paper suffers from a
number of possible data bias issues. In our future work, on the one hand, we will do more work on
data to mitigate the problem of data bias. On the other hand, although this paper proposes the use of
indirect rather than direct interaction, the two may not be mutually exclusive, and in the future we
will investigate how to combine the two to achieve better research results.

Ethical Issues. With regard to possible ethical issues in data collection, the Human Connectome
Project (HCP) dataset, as a publicly available dataset that has been used in numerous previous studies,
is undoubtedly not ethically questionable. It is true that the hospital dataset is held in collaboration
with our partner hospitals and is not yet publicly available, but the data is collected with the consent
of the subjects who are clearly informed of the purpose of the sample collection, and all identifying
information about the sample is hidden in the hospital dataset. Therefore, it does not adversely affect
any individual, so there are no ethical or moral issues.

Possible Negative Social Impacts. As the research in this paper deals with the diagnosis of
depression, it is necessary to elaborate here on the possible negative social impacts of this work,
despite the fact that all the current work is at the stage of scientific research and has not been put to
practical use. Including but not limited to:

• Incorrect diagnosis. AI methods must have the possibility of error, which cannot be avoided,
but an incorrect diagnosis will have a significant impact on individuals and society. Therefore,
AI tools can only be used as a diagnostic aid, not as a decision maker, and the final decision
should still be made by the doctor.

• Leakage of privacy information. In depression dataset, the identity information of the
subjects is highly private, and the leakage of identity information will also have unpre-
dictable and significant impact on individuals and society. Therefore, in this work, we have
completely hidden the subjects’ identifying information (which is also not visible to the
staff in the study group) as a way of preventing the leakage of private information.
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Appendix A: Full Results of Comparison Experiments

Due to the layout of the text and page limitations, only the experimental results for the ACC metric
are presented in the main text. However, to ensure a comprehensive presentation of the results, the full
results of the comparison experiments involving all four datasets, HCP, Zhongda Hospital, Xinxiang
Hospital and Two-site, are presented in Tables 1 to 4. Four tables are presented detailing the mean
and standard deviation values for each evaluation metric. The most exceptional results are shown in
bold, while results below the optimal threshold are underlined for clarity and emphasis.

Analysis. Based on the results from the four tables, our RH-BrainFS method achieved excellent results
in all four datasets. Specifically, we achieved the best results on three metrics in the HCP dataset, four
metrics in both the Zhongda and Xinxiang Hospital datasets, and an impressive five metrics in the
Two-site dataset. This demonstrates the strong performance of RH-BrainFS in effectively completing
the fusion classification task for multimodal brain networks. Furthermore, we observe that on the
hospital dataset, our RH-BrainFS method significantly outperforms most other methods in terms of
bias in each metric, indicating higher stability. This improved stability contributes to the reliability
and robustness of RH-BrainFS in fusion classification tasks.

Table 3: Comparison experiments results on the HCP dataset.

Method Modality HCP Dataset

ACC SEN SPE F1 AUC

FGDN FC 67.56±3.02 52.37±12.55 80.54±8.24 59.09±6.98 66.45±3.49
FGDN SC 63.42±4.79 53.98±20.69 71.43±13.72 55.12±14.65 62.71±5.57

BrainGNN FC 66.41±6.44 68.92±6.92 63.66±12.30 65.41±5.15 66.29±6.04
BrainGNN SC 67.37±5.89 68.39±6.07 66.17±8.50 65.88±4.45 67.28±5.80

SVM SC,FC 74.49±2.97 71.18±4.95 77.32±3.30 71.96±3.49 74.25±3.05
Random Forest SC,FC 68.24±2.94 54.88±5.78 79.64±4.16 61.31±4.44 67.26±3.04

MGCN SC,FC 67.94±5.41 74.53±8.20 62.32±7.76 68.10±5.59 68.42±5.41
GBDM SC,FC 71.02±4.39 61.95±12.37 79.18±8.58 65.76±6.35 70.56±4.32

MMGNN SC,FC 73.33±2.82 71.17±4.52 75.17±5.67 71.10±2.88 73.17±2.72
AL-NEGAT SC,FC 75.12±3.66 72.86±7.74 84.46±5.05 76.13±4.70 78.66±3.81

RH-BrainFS (ours) SC,FC 78.63±4.36 75.59±6.75 81.25±6.04 76.49±4.91 78.42±4.38

Table 4: Comparison experiments results on the Zhongda hospital dataset.

Method Modality Zhongda Dataset

ACC SEN SPE F1 AUC

FGDN FC 65.67±3.26 78.31±8.26 49.25±12.11 70.10±4.21 63.78±3.86
FGDN SC 64.02±3.49 65.67±14.37 61.50±16.65 60.67±8.24 63.58±3.56

BrainGNN FC 69.18±3.39 73.10±5.23 64.05±5.00 72.05±3.61 68.57±3.46
BrainGNN SC 70.73±2.07 75.93±3.93 64.10±3.58 73.81±2.33 70.01±2.04

SVM SC,FC 63.21±2.09 74.17±2.06 49.00±3.22 68.87±2.07 61.58±2.20
Random Forest SC,FC 61.45±2.80 86.69±2.78 29.00±4.28 71.53±2.17 57.85±2.96

MGCN SC,FC 75.18±2.34 88.52±3.99 57.10±8.06 80.15±1.91 72.81±2.96
GBDM SC,FC 74.81±2.44 81.77±5.21 58.14±8.37 74.92±3.20 69.96±3.11

MMGNN SC,FC 60.69±3.61 70.35±9.19 47.90±9.32 64.45±6.48 59.12±3.50
AL-NEGAT SC,FC 73.95±3.45 90.71±7.24 52.05±7.69 79.00±4.79 71.38±3.54

RH-BrainFS (ours) SC,FC 80.64±1.58 90.05±5.58 68.45±9.32 83.96±1.13 79.25±2.24
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Table 5: Comparison experiments results on the Xinxiang hospital dataset.

Method Modality Xinxiang Dataset

ACC SEN SPE F1 AUC

FGDN FC 67.91±3.27 43.58±8.18 84.50±8.30 42.03±6.59 64.04±2.88
FGDN SC 65.89±5.15 61.83±14.81 68.85±15.06 53.03±8.16 65.34±3.82

BrainGNN FC 73.46±4.33 54.92±10.57 86.25±6.10 55.72±9.30 70.58±4.88
BrainGNN SC 73.66±3.60 56.83±10.76 85.35±8.26 57.39±8.58 71.09±3.76

SVM SC,FC 71.73±1.99 49.92±4.35 86.55±3.42 54.52±4.72 68.23±2.19
Random Forest SC,FC 62.78±1.63 12.08±4.81 97.20±1.96 17.03±6.61 54.64±2.11

MGCN SC,FC 82.24±3.71 74.16±6.62 87.45±3.45 76.15±5.88 80.80±4.15
GBDM SC,FC 80.71±2.83 60.20±10.03 88.43±5.86 63.46±9.11 73.31±5.83

MMGNN SC,FC 68.21±4.44 57.33±6.35 75.10±8.12 55.48±6.03 66.21±4.06
AL-NEGAT SC,FC 75.75±3.81 56.42±14.80 88.50±6.35 61.19±10.80 72.46±5.34

RH-BrainFS (ours) SC,FC 90.27±2.00 80.75±5.86 96.65±2.34 85.43±3.90 88.70±2.48

Table 6: Comparison experiments results on the Two-site dataset.

Method Modality Two-site Dataset

ACC SEN SPE F1 AUC

FGDN FC 59.34±2.78 54.70±10.82 63.79±8.83 49.96±8.04 59.24±2.85
FGDN SC 68.91±2.53 70.02±12.42 67.83±9.78 66.31±7.03 68.93±2.52

BrainGNN FC 69.55±3.23 69.62±5.23 68.36±6.67 67.54±3.34 68.99±3.22
BrainGNN SC 69.51±2.58 68.12±5.41 69.24±6.66 66.76±3.42 68.68±3.03

SVM SC,FC 66.06±1.56 58.01±2.49 74.04±1.77 62.03±2.27 66.03±1.56
Random Forest SC,FC 62.43±2.19 56.17±2.87 68.60±3.48 59.04±2.73 62.38±2.20

MGCN SC,FC 72.98±2.17 74.02±7.03 73.74±4.05 72.45±4.48 73.88±2.22
GBDM SC,FC 72.48±1.91 71.53±7.55 65.97±5.61 68.74±4.92 68.75±2.90

MMGNN SC,FC 59.72±3.18 65.10±4.83 54.42±4.42 59.96±4.02 59.76±3.15
AL-NEGAT SC,FC 71.86±2.49 75.26±3.62 68.12±6.19 72.16±2.24 71.69±2.56

RH-BrainFS (ours) SC,FC 78.48±1.43 76.20±4.06 80.72±3.60 77.35±1.97 78.46±1.43
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Appendix B: Full Results of Hyperparameter Experiments

In the main text, our hyperparameter experiments are performed on the HCP dataset and the Two-site
dataset. We explore two key hyperparameters in RH-BrainFS: the number of bottlenecks and the
number of subgraph sampling hops k. However, in the main text we have only presented visualisations
of the results of the hyperparameter experiments without giving specific numerical values. Hence, we
present here the complete experimental results in Tables 5 to 8.

Table 7: Hyperparameter experiments of varying bottlenecks number on HCP dataset.

# bottlenecks
HCP Dataset

ACC SEN SPE F1 AUC

2 76.26±3.58 69.70±11.51 80.00±5.46 71.74±6.13 74.85±4.06

4 78.63±4.36 75.59±6.75 81.25±6.04 76.49±4.91 78.42±4.38
6 76.85±3.41 69.72±8.32 80.54±7.38 72.29±4.26 75.13±3.46

8 76.51±3.05 71.16±9.82 81.25±8.11 73.45±4.42 76.20±3.18

Table 8: Hyperparameter experiments of varying bottlenecks number on Two-site dataset.

# bottlenecks
Two-site Dataset

ACC SEN SPE F1 AUC

2 76.21±1.17 68.88±4.98 83.61±4.56 73.21±2.33 76.24±1.15

4 78.48±1.43 76.20±4.06 80.72±3.60 77.35±1.97 78.46±1.43
6 76.35±1.43 70.39±3.82 82.10±4.18 73.80±2.06 76.24±1.48

8 76.71±1.32 73.68±5.34 79.71±4.83 74.97±2.28 76.69±1.31

Table 9: Hyperparameter experiments of varying subgraph sampling hops on HCP dataset.

k
HCP Dataset

ACC SEN SPE F1 AUC

1 78.63±4.36 75.59±6.75 81.25±6.04 76.49±4.91 78.42±4.38
2 77.09±3.53 71.35±12.30 81.96±9.40 73.72±5.73 76.66±3.81

3 77.47±3.31 74.73±6.83 79.82±5.36 75.27±4.00 77.28±3.39

4 76.61±4.00 69.07±11.44 83.04±4.01 72.63±6.79 76.05±4.50

5 73.92±2.94 64.50±6.03 81.96±6.41 69.44±3.56 73.23±2.88
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Table 10: Hyperparameter experiments of varying subgraph sampling hops on Two-site dataset.

k
Two-site Dataset

ACC SEN SPE F1 AUC

1 78.48±1.43 76.20±4.06 80.72±3.60 77.35±1.97 78.46±1.43
2 73.99±1.32 69.49±2.88 78.42±3.04 71.53±2.04 73.96±1.32

3 74.37±1.81 72.47±5.79 76.26±3.42 72.66±3.37 74.36±1.79

4 74.55±1.64 73.13±6.88 75.92±6.98 72.96±2.68 74.53±1.63

5 74.14±1.25 70.41±5.73 77.79±4.62 71.70±3.15 74.10±1.28
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