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Abstract

As large-scale training regimes have gained popularity, the use of pretrained models
for downstream tasks has become common practice in machine learning. While
pretraining has been shown to enhance the performance of models in practice, the
transfer of robustness properties from pretraining to downstream tasks remains
poorly understood. In this study, we demonstrate that the robustness of a linear
predictor on downstream tasks can be constrained by the robustness of its under-
lying representation, regardless of the protocol used for pretraining. We prove (i)
a bound on the loss that holds independent of any downstream task, as well as
(ii) a criterion for robust classification in particular. We validate our theoretical
results in practical applications, show how our results can be used for calibrating
expectations of downstream robustness, and when our results are useful for optimal
transfer learning. Taken together, our results offer an initial step towards character-
izing the requirements of the representation function for reliable post-adaptation
performance.1

1 Introduction

Recently, there has been a rise of models (BERT [31], GPT-3 [7], and CLIP [43]) trained on
large-scale datasets which have found application to a variety of downstream tasks [6]. Such
pretrained representations enable training a predictor, e.g., a linear “head”, for substantially increased
performance in comparison to training from scratch [10, 11], particularly when training data is scarce.

Generalizing to circumstances unseen in the training distribution is significant for real-world appli-
cations [2, 60, 29], and is crucial for the larger goal of robustness [27], where the aim is to build
systems that can handle extreme, unusual, or adversarial situations. In this context, adversarial
attacks [51, 5], i.e., inducing model failure via minimal perturbations to the input, provide a stress test
for predictors, and have remained an evaluation framework where models trained on large-scale data
have consistently struggled [53, 21, 22], particularly when, in training, adversarials are not directly
accounted for [23, 40].

With that said, theoretical evidence [8] has been put forth that posits overparameterization is required
for adversarial robustness, which is notable given its ubiquity in training on large-scale datasets. Thus,
given the costs associated with large-scale deep learning, we are motivated to study how adversarial
robustness transfers from pretraining to downstream tasks.

1https://github.com/lf-tcho/robustness_transfer
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Figure 1: Overview. We distinguish between a robust (red) and non-robust (green) representation by
its sensitivity to adversarial attacks, and use both for linear separation of the representation space,
e.g., binary classification. This illustrates the dependence of the classifier on the representation’s
robustness, i.e., the predictor can only be robust if xadv and x can be linearly separated from x′ in
representation space.

For this, considering the representation function to be the penultimate layer of the downstream
predictor, we contribute theoretical results which bound the robustness of the downstream predictor
by the robustness of the representation function. Fig. 1 illustrates the intuition behind our theory,
and shows that a linear classifier’s robustness is dependent on the robustness of the pretrained
representation. Our theoretical results presented in Sec. 3 and Sec. 4 are empirically studied in Sec. 5,
where we validate the results in practice, and in Sec. 6 to show how the theory can be used for
calibrating expectations of the downstream robustness in a self-supervised manner [4]. In all, our
theoretical results show how the quality of the underlying representation function affects robustness
downstream, providing a lens on what can be expected upon deployment. We present the following
contributions:

• we theoretically study the relationship between the robustness of the representation function,
referred to as adversarial sensitivity (AS) score, and the prediction head. In Thm. 1, we
prove a bound on the difference between clean and adversarial loss in terms of the AS score.
In Thm. 2, we prove a sufficient condition for robust classification again conditioned on the
robustness of the representation function.

• we evaluate the applicability and consistency of our theory in applications in Sec. 5.1
and Sec. 5.2. Furthermore, in Sec. 6, we illustrate the utility of the AS score to predict
expected robustness transfer via linear probing.

• in Sec. 6.2, we study how linear probing compares to alternatives, like full finetuning, in
robustness transfer for robust performance downstream.

2 Related Work

Transfer Learning: While empirical analyses of pretraining abound [33, 12, 62, 42, 3, 48], a number
of theoretical analyses have also been contributed [56, 52, 19, 14, 49, 35, 38]. The majority of
the theoretical studies aim to understand the benefit of transfer learning with respect to improved
performance and data requirements compared to training from scratch. Therefore, the referenced
studies include results on sample complexity [52, 19, 14, 49] and generalization bounds [38] for fine-
tuning and linear probing in various scenarios. In this work, we primarily focus on the linear probing
approach and perform a theoretical analysis to investigate its efficiency in transferring adversarial
robustness.

Robustness: There is a direct connection between the mathematical formulation of adversarial
robustness and the definition of a local Lipschitz constant of the network [25], but computing this
quantity is intractable for general neural networks. However, there exists a line of work providing more
practical approaches in certifiable robustness [54, 44, 15, 37, 36, 46], which can provide guarantees on
the detection of adversarial examples. Relative to empirical approaches [23, 40, 18, 48, 55], certifiable
methods have comparatively struggled to scale to datasets such as ImageNet [17]. Furthermore, likely
due to computational expense, adversarial training has not yet been adopted by models trained on
large-scale datasets [31, 7, 43]. Still, a number of works have incorporated adversarial training into
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pretraining, in particular, self-supervised contrastive learning [32, 30, 9, 20]. With that said, our work
is focused on the analysis of robustness irrespective of the pretraining approach.

Regarding analysis, [59] studied the trade-off between accuracy and robustness, and showed that,
under a set of separation conditions on the data, a robust classifier is guaranteed to exist. Their
work focuses on proving the robustness of a network itself and therefore requires Lipschitzness of
the model. Further, [8] showed that overparameterization is needed for learning such smooth (i.e.
Lipschitz) functions, which is critical for robustness. On the other hand, we specifically study the
relationship between the robustness of the representation function and the prediction head, a scenario
consistent with the practice of pretraining for transfer learning.

Transfer Learning & Robustness: The question of how robustness is transferred from pretraining
to downstream task has been studied empirically in the prior literature [50, 58, 28, 63]. Notably,
while [50] observe that robust representations underly robust predictors, [63] also observe that non-
robust representations underly non-robust predictors. An empirical analysis of adversarial robustness
transfer for the special case of linear probing is included in ,e.g., [50]. Our work not only derives
theoretical results and concrete proof for the empirical phenomena reported in these studies but also
provides further empirical investigation.

3 Robustness Bound

Our first theoretical result concerns the discrepancy between the standard and adversarial loss of
a neural network f . The considered loss function ℓ is evaluated on a dataset of input samples
X = {x1, . . . , xn} ⊂ X ⊂ Rd and labels Y = {y1, . . . , yn}, where xi is sampled from X with
probability distribution P(X ).
For the network, we consider a model f : Rd → Rc with a final linear layer, i.e. f(x) = fW,θ(x) =
Wgθ(x). The function gθ : Rd → Rr can be considered as a representation function for the input
parameterized by θ, and W ∈ Rc×r is the weight matrix of the linear layer. Note that this composition
is both standard practice [10, 11], and has been extensively studied [56, 52, 19] in the literature.

For a given data pair (xi, yi), we are interested in the stability of the model’s prediction of yi with
respect to (w.r.t.) perturbations of the input xi as our robustness measure. Specifically, for δ ∈ Rd,
we find the maximum loss ℓ(f(xi + δ), y) under a specified constraint ∥δ∥ < ϵ based on some norm
∥ · ∥. Note that the defined measure is commonplace in the literature on adversarial attacks [51, 23].

We introduce the following notation for the standard loss L(fW,θ) and the adversarial loss Ladv(fW,θ),

L(fW,θ) := EP(X )[ℓ(fW,θ(x), y)],

Ladv(fW,θ) := EP(X )

[
max
∥δ∥<ϵ

ℓ(fW,θ(x+ δ), y)

]
.

We aim to bound the effect of adversarial attacks in terms of their impact on the representation
function, i.e. ∥gθ(xi) − gθ(xi + δ)∥2. To obtain such a result for a general loss function ℓ, the
variation in the loss must be bounded in relation to the proportional change in f(xi). This condition
is formalized by the concept of Lipschitzness,

Definition 1. A function ℓ : Rd → R is C-Lipschitz in the norm ∥ · ∥α on R ⊂ Rd, if

|ℓ(r)− ℓ(r′)| < C ∥r − r′∥α,

for any r, r′ ∈ R.

The following theorem is valid for any loss function ℓ that satisfies Defn. 1 w.r.t. L1, L2 or L∞ norm.

Theorem 1. We assume that the loss ℓ(r, y) is C1-Lipschitz in ∥·∥α, for α ∈ {1, 2,∞}, for r ∈ f(X )
with C1 > 0 and bounded by C2 > 0, i.e., 0 ≤ ℓ(r, y) ≤ C2 ∀r ∈ f(X ). Then, for a subset X
independently drawn from P(X ), the following holds with probability of at least 1− ρ,

Ladv(fW,θ)− L(fW,θ) ≤ Lα(W )C1
1

n

n∑
i=1

max
∥δ∥<ϵ

∥gθ(xi + δ)− gθ(xi)∥2 + C2

√
log(ρ/2)

−2n
,
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where

Lα(W ) :=


∥W∥2 , if ∥ · ∥α = ∥ · ∥2,∑

i ∥Wi∥2 , if ∥ · ∥α = ∥ · ∥1,
maxi∥Wi∥2 , if ∥ · ∥α = ∥ · ∥∞.

The proof of the theorem can be found in Appx. A.1. Note that the norm used to define the perturbation
δ is arbitrary and only needs to be consistent on both sides of the bound.

Proof sketch: First, we apply Hoeffding’s inequality, which requires a fixed function fW,θ, inde-
pendently drawn samples {x1, . . . , xn}, and an upper bound C2 on the loss function. Next, we
bound the average losses utilizing the C1-Lipschitzness in ∥ · ∥α of the loss function. Further, the
Cauchy-Schwarz inequality is used to seperate the norms of W and the representation function gθ.

Intuition: Thm. 1 shows that the effect an ϵ-perturbation has on the representation function gθ indeed
upper bounds the difference between the standard and adversarial loss. Thus, we characterize the
relationship between how vulnerable the linear predictor and the underlying representation is to
adversarial examples. Further, Thm. 1 formalizes the impact the weight matrix W has on robustness
transfer and thereby provides a theoretical argument for regularization in this context.

The statement of Thm. 1 is formulated in terms of the expectation of the losses over P(X ). In
particular, the second summand on the right hand-side (RHS) of the bound illustrates the finite-
sample approximation error between the expectation and the average over n samples in X. The
following lemma provides a version of the theorem for the average difference of the losses over a
fixed finite sample X, which can directly be concluded from the proof of Thm. 1 in Appx. A.1. We
use this lemma to study our theoretic result in the experiments in Sec. 5.1.

Lemma 1 (Finite-sample version of Thm. 1). We assume that the loss ℓ(r, y) is C-Lipschitz in ∥ · ∥α,
for α ∈ {1, 2,∞}, for r ∈ f(X ) with C > 0. Then, the following holds for any dataset (X,Y),

1
n

∑n
i=1 max

∥δ∥<ϵ
ℓ(fW,θ(xi + δ), yi)− ℓ(fW,θ(xi), yi)

Lα(W )C
≤ 1

n

n∑
i=1

max
∥δ∥<ϵ

∥gθ(xi + δ)− gθ(xi)∥2.

Lemma 1 shows that the normalized difference between average clean and adversarial loss can be
bound by the average robustness of the representation function on the RHS, which we denote as the
representation function’s adversarial sensitivity (AS) score on the dataset X.

3.1 Valid Loss Functions

To elaborate on the applicability of the result, we discuss exemplary scenarios in which the assump-
tions of our theory are fulfilled in practice. As a first example, we consider a classification task where
we use the softmax cross-entropy loss. While the cross-entropy loss itself is not Lipschitz continuous,
since the logarithm is not, the softmax cross-entropy loss is indeed Lipschitz. We define the softmax
cross-entropy loss as follows,

ℓCE(f(x), y) = − log (py(x)) = − log

(
exp{f(x)y}∑c
i=1 exp{f(x)i}

)
,

where py(x) denotes the y-th entry of the softmax function applied to the final layer, f(x)y is the
y-th entry of the model output with f(x)y = Wyg(x) and Wy being the y-th row of the matrix W .
In Lemma 3 (in Appx. A), we prove that ℓCE is 2-Lipschitz in ∥ · ∥∞.

Further, the theory is also valid for regression tasks, where the mean square error (MSE)

ℓMSE(f(x), y) = ∥f(x)− y∥2

is used to measure the loss. This loss function is 1-Lipschitz in ∥ · ∥2, since, by the reverse triangle
property, it holds that

|∥f(x1)− y∥2 − ∥f(x2)− y∥2| ≤ ∥f(x1)− f(x2)∥2.

Additional losses which satisfy Defn. 1 include the logistic, hinge, Huber and quantile loss [13].
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Figure 2: The graphic shows two classes of datapoints and a linear classifier’s decision boundary
(black). The line M0 (green) is the optimal margin defining the boundary between a successful or
failed adversarial attack. Line M (red) represents the margin derived from Thm. 2 which is an upper
bound on M0. Four datapoints from the blue class are highlighted: 1 is wrongly classified, 2 is
a non-robust example, 3 is robust but does not fulfill equation (1), and 4 is a robust classification
fulfilling the bound in (1).

4 Robustness Classification Criterion

In Sec. 3, we presented a theoretical result independent of any particular downstream task and valid
for various loss functions. Here, we focus on classification tasks, and, in this context, we provide an
additional statement that studies the robustness of a linear classifier w.r.t. adversarial attacks. We
refer to a classifier as robust if there does not exist a bounded input perturbation that changes the
classifier’s prediction.

In particular, we consider the classifier

c(x) = argmaxi f(x)i,

where f(x) = Wgθ(x) is the model as defined in Sec. 3. The following theorem provides insights on
how the robustness of the underlying representation function gθ impacts the robustness of a linear
classifier. Specifically, it formally describes how the robustness of the representation, i.e. the AS
score on a datapoint x, determines the set of weight matrices which yield a robust classifier.

Theorem 2. The classifier c(x) is robust in x, i.e., c(x+ δ) = c(x) for δ ∈ Rd with ∥δ∥ < ϵ, if for
x ∈ X with c(x) = y it holds that

∥gθ(x+ δ)− gθ(x)∥2 ≤ min
j ̸=y

|f(x)y − f(x)j |
∥Wy −Wj∥2

. (1)

The proof of the theorem can be found in Appx. A.2.

Proof sketch: To prove robustness, we need to show that f(x+ δ)y > f(x+ δ)j if f(x)y > f(x)j .
The proof consists of rewriting this condition and applying the Cauchy-Schwarz inequality to
separately bound in terms of the difference in W and gθ.

Intuition: Thm. 2 shows that the effect an ϵ-perturbation has on the representation function gθ
determines the necessary class separation by the linear predictor for robust classification to be
ensured. Specifically, the RHS of Thm. 2 can be understood as a normalized margin between class
logits for x, where the classification margin refers to the difference between the classification score
for the true class and maximal classification score from all false classes. Thus, the theorem states
that if the margin is larger than the effect of an ϵ-perturbation on the representation function, then
the classifier is robust. Note that if a datapoint does not satisfy the bound, i.e. LHS is greater than
the RHS, the robustness of the classifier is ambiguous. In this case, the RHS margin is not the exact
separation, or the optimal margin, between robust and non-robust classification. Fig. 2 provides
intuition for this interpretation of the result in a binary classification scenario.
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5 Empirical Study of Theory

The following experiments serve to validate the theoretical results in practical applications. For
the finite sample version of Thm. 1, Lemma 1, we consider a classification task in Sec. 5.1, and a
regression task in Appx. B.2. In Sec. 5.2, we study the robustness condition established in Thm. 2.

In the following sections, we train a linear predictor on top of a pretrained representation function for
a specific downstream task, i.e., we perform transfer learning via linear probing. To study robustness
transfer, we use robustly pretrained representation functions and examine if the transferred robustness
is consistent with the theoretical bounds. As our robust representation function, we use models
robustly pretrained on CIFAR-100 [1, 34], and ImageNet [47, 17]. Both models are available on
RobustBench [16] and are adversarially trained using the softmax cross-entropy loss and L∞-attacks.
For our downstream tasks, we consider CIFAR-10 [34], Fashion-MNIST [57] and Intel Image2.
Further experimental details can be found in Appx. B.1.

5.1 Classification - Cross-Entropy Loss

Here, we empirically evaluate Lemma 1, the finite sample version of Thm. 1, on classification tasks.
As per Sec. 3.1, for softmax cross-entropy, we can apply Lemma 1 with Lipschitz constant C = 2
and mapping function L∞(W ).

In Tab. 1, we present the left-hand side (LHS), the scaled difference between clean and robust
cross-entropy (CE) loss, and the right-hand side (RHS), the representation function’s AS score,
of Lemma 1. Note that, for LHS, the attack on f maximizes the CE loss, while for RHS, the attack on
gθ maximizes the impact on the representation function, i.e. ∥gθ(xi)− gθ(xi + δ)∥2. See Appx. B.1
for further details.

The results in Tab. 1 validate our theoretical predictions in practice, as the LHS is indeed always
upper bounded by the RHS. Furthermore, we see signs of correlation between the LHS and RHS, i.e.
significant changes on one side of the bound are accompanied by similar changes on the other. Tab. 2
further highlights the connection between our result and weight norm regularization, as it confirms
that a smaller weight norm, i.e., smaller Lα(W ), corresponds to a smaller decrease in robustness, i.e.,
a smaller difference between the losses.

Table 1: For the CIFAR-100 and ImageNet pretraining datasets, the LHS and RHS, i.e., the AS score,
of Lemma 1 are computed for each of the CIFAR-10, Fashion-MNIST and Intel Image downstream
tasks. Additionally, L∞(W ) and the absolute difference between clean and adversarial CE loss are
provided.

CIFAR-100 ImageNet

CIFAR-10 F-MNIST Intel Image CIFAR-10 F-MNIST Intel Image

Diff. CE 0.74 0.8 0.47 4.14 9.4 0.14
L∞(W ) 4.4 4.6 3.1 1.9 2.0 1.4

LHS 0.08 0.09 0.08 1.11 2.33 0.05
AS score 0.98 2.11 1.05 15.7 53.2 2.75

Table 2: The same datasets and metrics are considered as in Tab. 1. Here, however, L2 weight matrix
regularization (λ = 0.01) is employed for all downstream tasks.

CIFAR-100 ImageNet

CIFAR-10 F-MNIST Intel Image CIFAR-10 F-MNIST Intel Image

Diff. CE 0.46 0.51 0.38 3.57 7.3 0.14
L∞(W ) 2.1 2.3 2.2 1.4 1.5 1.2

LHS 0.11 0.11 0.09 0.81 2.43 0.06
AS score 0.98 2.11 1.05 15.7 53.2 2.75

2https://www.kaggle.com/datasets/puneet6060/intel-image-classification
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5.2 Classification Criterion

Here, we focus on empirically analysing Thm. 2, which specifies an upper bound on the represen-
tation’s sensitivity against ϵ-perturbations, where the condition ensures robustness of the classifier
against local perturbations for each datapoint.

In Tab. 3, we observe that indeed: if condition (1) is fulfilled, the classification is always robust, as can
be seen from "rob. fulfilled". With that said, we do observe instances of robust classification which
do not fulfill Eq. (1), which we proved ensures robustness, as can be seen from comparing "robust
accuracy" to "prop. fulfilled". As with Lemma 1, we see that tighter results would be necessary for
identifying all transferred robustness. Furthermore, as discussed in Sec. 4, since datapoints fulfilling
our bound are even further away from the classification boundary than necessary, we also find that
fulfilling the bound is predictive of robustness to stronger attacks, as can be seen in Appx. B.3.

For the scenario of pretraining on ImageNet and transferring to CIFAR-10 or Fashion-MNIST, almost
no datapoint from the test set fulfills condition (1). This observation is accompanied by a steep drop
from clean accuracy to robust accuracy, which suggests this is likely a consequence of the large
distribution shift between ImageNet and the lower-resolution images of CIFAR-10 (32 × 32) and
Fashion-MNIST (28× 28) resized to ImageNet resolution (256× 256). Note that this distribution
shift is evident regardless of how the images are scaled before applying the ImageNet representation
function, see Appx. B.5. In Tab. 1, the correlation between distribution shift and loss of robustness is
also captured prior to transfer learning by a large AS score, and Appx. B.5 provides further insight
into this connection.

Table 3: For the CIFAR-100 and ImageNet pretraining datasets, we report clean & robust accuracy,
the proportion of images fulfilling the theoretical bound, and, of the images fulfilling the theoretical
bound, the proportion of images that are robust for each of the CIFAR-10, Fashion-MNIST and Intel
Image downstream tasks.

CIFAR-100 ImageNet

CIFAR-10 F-MNIST Intel Image CIFAR-10 F-MNIST Intel Image

clean accuracy 70.9% 84% 78.5% 92.4% 87.2% 91.2%
robust accuracy 42.2% 56.2% 56.8% 15.8% 0% 85.3%
prop. fulfilled 13.4% 10.1% 26.3% 0.1% 0% 56.2%
rob. fulfilled 100% 100% 100% 100% - 100%

6 Adversarial Sensitivity Score

In the prior sections, we empirically validated that our theoretical results and required assumptions are
realistic and hold in applications. Note that, in both of our results, the robustness of the representation
function determines the robustness that transfers to downstream tasks. Specifically, Lemma 1 is stated
using the adversarial sensitivity (AS) score of the representation function on a dataset X,

1

n

n∑
i=1

max
∥δ∥<ϵ

∥gθ(xi + δ)− gθ(xi)∥2, (2)

to bound the difference between clean and adversarial loss. Before specifying a downstream task, we
can compute the representation function’s adversarial sensitivity score on a set of unlabeled input
images. In the following, we explore how to calibrate expectations on the robustness upon transfer of
the representation function via linear probing to a particular downstream task based on the AS score.

6.1 Robustness Transfer via Linear Probing

Here, we explore how the AS score can be used to provide valuable insights on the transferability of
robustness with linear probing. In Tab. 4, we find that if the AS score on the unlabeled pretraining and
downstream datasets are similarly small, then it is reasonable to expect that robustness will transfer
via linear probing. However, if the AS score on the downstream task is much higher, it is reasonable
to expect that robustness will not transfer via linear probing.
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In Tab. 4, we compare the AS score to the relative difference between clean and robust CE loss on
each dataset, i.e., (CE - robust CE)/CE. Indeed, the similar AS scores of CIFAR-100, CIFAR-10,
and Intel Image upon pretraining on CIFAR-100 correspond to a successful transfer of robustness,
whereas the dissimilar adversarial sensitivity scores of ImageNet, Fashion-MNIST, and CIFAR-10
upon pretraining on ImageNet reflect the striking loss of robustness upon transfer. One explanation for
a larger AS score is a shift in distribution between pretraining and downstream data. This connection
is confirmed in an additional empirical analysis in Appx. B.5.

Table 4: For the CIFAR-100 and ImageNet pretraining datasets, we report the AS score (Eq. (2)),
clean & robust cross-entropy loss, and the relative difference between said losses for the pretraining
dataset, as well as the CIFAR-10, Fashion-MNIST and Intel Image downstream tasks.

Pretraining Downstream AS score clean /robust CE relative dif.

CIFAR-100 CIFAR-100 1.0 2.71 / 3.27 0.21
CIFAR-10 0.98 0.82 / 1.55 0.9

Fashion-MNIST 2.11 0.45 / 1.25 1.8
Intel Image 1.05 0.61 / 1.08 0.76

ImageNet ImageNet 1.27 1.38 / 1.64 0.19
CIFAR-10 15.7 0.22 / 4.36 18.8

Fashion-MNIST 53.2 0.36 / 9.76 26.1
Intel Image 2.75 0.25 / 0.39 0.57

6.2 Beyond Linear Probing?

In the prior section, we observe a correlation between AS score and the difference between clean and
robust CE, i.e., the AS score is predictive of robustness transfer via linear probing. However, linear
probing is not the only transfer learning approach, what can we say about alternatives?

In finetuning, the representation function is changed, and thus also the AS score changes post-
transfer. Thus, we can expect the AS score computed pre-transfer is less predictive of the downstream
robustness for finetuning than for linear probing. To gain a better understanding, we study the
difference between clean/robust accuracy for linear probing (LP), full finetuning (FT) as well as linear
probing then finetuning (LP-FT) [35], where LP-FT was proposed to combine the benefits of the two
approaches. The main results can be found in Tab. 5, and additional details about the experiment are
provided in Appx. B.4.

Tab. 5 shows the performance of each transfer learning method applied to the model robustly
pretrained on CIFAR-100 or ImageNet. On CIFAR-100, LP preserves the most robust accuracy,
whereas LP-FT performs better on ImageNet. Note that the AS score for LP is highlighted, as this
is the score we can obtain prior to transfer learning, which allows us to calibrate expectations on
downstream performance.

We find no correlation between LP and FT performance, and do not observe a predictive relationship
between AS score pre-transfer and robustness transfer via FT. Instead, we observe successful robust-
ness transfer via FT and LP-FT for cases with high AS score pre-transfer. This provides us with a
first indication that the adversarial sensitivity score may point to scenarios where FT preserves more
robustness downstream than LP.

7 Discussion

Significance: If the representation does not change at all in response to ϵ-perturbations, it may
seem immediately clear that any predictor operating on said representation is robust. However, if
the representation function is variant to ϵ-perturbations, how much robustness is lost as a result is
dependent on the nature of the predictor function under consideration and the distribution shift in
the data from pretraining to target task. In this work, we consider a linear predictor, and formally
compute the exact effect this function can have on the test-time robustness.

Comparison of the theorems: The theoretical statement in Thm. 1 is closely related to the one
in Thm. 2, as a more robust predictor to adversarial attacks leads to a smaller difference in the loss

8



Table 5: Clean accuracy (Acc) and robust accuracy (RAcc) for the three transfer learning approaches
using the model robustly pretrained on CIFAR-100.

CIFAR-100 CIFAR-10 Fashion-MNIST Intel Image
Method Acc RAcc AS Acc RAcc AS Acc RAcc AS

FT 94.2% 3.9% 8.93 95.1% 40% 6.68 90.1% 7.5% 6.86
LP 70.9% 42.2% 0.98 84% 56.2% 2.11 78.5% 56.8% 1.05

LP-FT 93.9% 1.4% 6.44 95% 36% 4.27 89.2% 27.1% 3.02

ImageNet CIFAR-10 Fashion-MNIST Intel Image
Method Acc RAcc AS Acc RAcc AS Acc RAcc AS

FT 98.6% 38.4% 12.6 95.7% 63.5% 9.0 93.9% 85.8% 3.8
LP 92.4% 15.8% 15.7 87.2% 0% 53.2 91.2% 85.3% 2.7

LP-FT 98.5% 44.5% 9.8 95.6% 73.9% 5.1 93.9% 85.9% 3.9

between clean and adversarial examples, and vice versa. Thm. 1 provides a bound on the robustness
based on the difference of the loss function, while Thm. 2 only considers the specific form of
the classifier and thus information about and restrictions on the used loss function is unnecessary.
However, studying the loss function makes Thm. 1 valid in a much broader set of scenarios, and
further provides reasoning on why using weight norm regularization during linear probing improves
robustness transfer, see Sec. 5.1.
The bound in Thm. 2, on the other hand, provides insights on how robustness of a classifier can be
guaranteed. In particular, one could use our results to derive robustness guarantees post-transfer from
attacks on the representation function pre-transfer.

Clarification: Note that we consider a model f as a composition of a linear layer and a representation
function, i.e., f(x) = Wgθ(x), but do not specify how the parameters of f are learned. As our
motivating example, the representation function gθ is optimized on a pretraining task and subsequently
W is trained w.r.t. a downstream task. However, one could also approach the downstream task with the
classical strategy of training the model end-to-end instead, i.e., optimizing W̃ and θ̃ simultaneously
in fW̃ ,θ̃ = W̃gθ̃, assuming the same architecture as before. The parameters θ,W and θ̃, W̃ obtained
from the two strategies may be very different. For example, the representation function gθ may not be
as useful for linearly separating the dataset into c classes as gθ̃, which was optimized specifically for
this task. This observation is described as a task mismatch between pretraining and the supervised
downstream task.
Our contributed theoretical results demonstrate that we can study robustness by studying the learned
functions themselves, irregardless of how said functions were optimized in the first place. With that
said, this does not mean that the aforementioned task mismatch does not affect the model’s robustness.
Thm. 1’s bound will loosen if, e.g., gθ does not enable linear separation of the dataset into c classes,
and if the AS score of the representation function increases due to this task mismatch or distribution
shift in the data. We provide a study on the impact of the distribution shift in the data on the AS score
in Appx. B.5.

Finally, while the linear probing protocol is standard practice [10, 11], alternative methodology
exists for leveraging a representation function for a specified downstream task. For one, we could
consider a model f as a composition of a nonlinear function h and a representation function, i.e.
f(x) = h ◦ gθ(x), a scenario our theoretical statements do not account for. Furthermore, alternative
approaches can include updating the parameters of the representation function gθ, e.g., full finetuning.
As suggested by the results in Sec. 6.2, while a high AS score may not be predictive of robustness
transfer for finetuning, it may instead indicate when finetuning is required to transfer robustness.
Overall, the theoretical dependencies between the robustness of the representations and transfer
learning alternatives to linear probing present interesting opportunities for future analysis.

8 Conclusion

We prove two theorems which demonstrate that the robustness of a linear predictor on downstream
tasks can be bound by the robustness of its underlying representation. We provide a result applicable
to various loss functions and downstream tasks, as well as a more direct result for classification. Our

9



theoretical insights can be used for analysis when representations are transferred between domains,
and sets the stage for carefully studying the robustness of adapting pretrained models.
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A Proofs and Auxiliary Results

We state two auxiliary results first and subsequently provide the full proofs for Thm. 1 and Thm. 2
in Appx. A.1 and Appx. A.2.

Lemma 2. For a matrix W ∈ Rc×r and a vector g ∈ Rr, the following bounds hold,

1. ∥Wg∥2 ≤ ∥W∥2∥g∥2,

2. ∥Wg∥1 ≤
∑c

i=1 ∥Wi∥2∥g∥2,

3. ∥Wg∥∞ ≤ maxi∥Wi∥2∥g∥2.

Proof. 1. ∥Wg∥2 =
√∑c

i=1(Wig)2 ≤
√∑c

i=1(∥Wi∥2∥g∥2)2 = ∥W∥2∥g∥2, where the
second step follows by Cauchy-Schwartz inequality.

2. ∥Wg∥1 =
∑c

i=1 |Wig| ≤
∑c

i=1 ∥Wi∥2∥g∥2 =
∑c

i=1 ∥Wi∥2∥g∥2, where the second step
follows again by Cauchy-Schwartz inequality.

3. ∥Wg∥∞ = maxi|Wig| ≤ maxi∥Wi∥2∥g∥2, where the second step follows by Cauchy-
Schwartz inequality.

The following Lemma proves a Lipschitz condition for the cross-entropy-softmax loss.

Lemma 3. We define the cross-entropy loss with softmax function for a vector f ∈ Rc and a class
index y ∈ {1, . . . , c}, i.e.,

ℓ(f, y) := − log (py(f)) = − log

(
exp{fy}∑c
i=1 exp{fi}

)
.

Then, the following Lipschitz condition holds for ℓ(f, y),

|ℓ(a, y)− ℓ(b, y)| ≤ 2 ∥a− b∥∞,

for any vectors a, b ∈ Rc and an arbitrary class index y ∈ {1, . . . , c}.

Proof.

|ℓ(a, y)− ℓ(b, y)| = | − log
( exp{ay}∑c

j=1 exp{aj}

)
+ log

( exp{by}∑c
j=1 exp{bj}

)
|

= | log
(
exp{by − ay}

)
− log

(∑c
j=1 exp{bj}∑c
j=1 exp{aj}

)
|

= |
(
by − ay

)
− log

( c∑
j=1

exp{aj}∑c
l=1 exp{al}

exp{bj − aj}
)
|

≤ |
(
by − ay

)
−

c∑
j=1

pj(a)
(
bj − aj

)
|,

where pj(a) :=
exp{aj}∑c
l=1 exp{al} denotes the soft-max output of the vector a. The inequality in the last

line follows by Jensen’s inequality, since − log is convex and the soft-max probabilities pj sum up to
one.

|
(
by − ay

)
−

c∑
j=1

pj(a)
(
bj − aj

)
| ≤ |by − ay|+

c∑
j=1

pj(a)|bj − aj | ≤ 2 ∥b− a∥∞,

since both summands in the middle can be bounded by the supremum norm.
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A.1 Proof of Theorem 1

Proof of Theorem 1. We use Hoeffding’s inequality on the independent random variables
D1. . . . , Dn, which are defined as

Di := max
∥δ∥<ϵ

ℓ(f(xi + δ), yi)− ℓ(f(xi), yi),

based on independently drawn data points with probability distribution P(X ), where the observations
are xi ∈ X with corresponding labels yi. We can use the upper bound on ℓ to obtain that 0 ≤ Di ≤ C2

and conclude that

P

(∣∣∣ n∑
i=1

Di − nE[D]
∣∣∣ ≥ t

)
≤ 2 · exp

(
−2t2

nC2
2

)

⇒ P

(∣∣∣ 1
n

n∑
i=1

Di − E[D]
∣∣∣ ≤ C2

√
log(ρ/2)

−2n

)
≥ 1− ρ.

Thus, with probability of at least 1− ρ it holds that

E[D] =
∣∣∣Ladv(f)− L(f)

∣∣∣ = ∣∣∣E(x,y)

[
max
∥δ∥<ϵ

ℓ(f(x+ δ), y)− ℓ(f(x), y)

] ∣∣∣
≤
∣∣∣ 1
n

n∑
i=1

max
∥δ∥<ϵ

ℓ(f(xi + δ), yi)− ℓ(f(xi), yi)
∣∣∣+ C2

√
log(ρ/2)

−2n
.

We can further bound the first term on the right-hand side, since the loss function ℓ(r, y) is C1-
Lipschitz in ∥ · ∥α for r ∈ f(X ) and f(x) = Wgθ(x).∣∣∣ 1

n

n∑
i=1

max
∥δ∥<ϵ

ℓ(Wgθ(xi + δ), yi)− ℓ(Wgθ(xi), yi)
∣∣∣

=
∣∣∣ 1
n

n∑
i=1

∣∣ℓ(Wgθ(xi + δi), yi)− ℓ(Wgθ(xi), yi)
∣∣ ∣∣∣

≤ C1
1

n

n∑
i=1

∥Wgθ(xi + δi)−Wgθ(xi)∥α,

where δ1, . . . , δn ∈ X with ∥δi∥ < ϵ are chosen appropriately. In a next step, we apply Lemma 2
and the definition of Lα in the theorem statement,

C1
1

n

n∑
i=1

∥Wgθ(xi + δi)−Wgθ(xi)∥α ≤ Lα(W )C1
1

n

n∑
i=1

∥gθ(xi + δi)− gθ(xi)∥2.

The δi’s might not be the same that maximize the distance between the representations but their
effect can be upper bounded by the maximum. Combining the derived bounds and using that
gθ(xi + δi) ≤ max

∥δ∥<ϵ
gθ(xi + δ), we obtain our result.

Ladv(f)− L(f) =
∣∣∣Ladv(f)− L(f)

∣∣∣
≤ Lα(W )C1

1

n

n∑
i=1

max
∥δ∥<ϵ

∥gθ(xi + δ)− gθ(xi)∥2 + C2

√
log(ρ/2)

−2n
.

A.2 Proof of Theorem 2

Proof of Theorem 2. We want to proof that the classifier c(x) is robust in x ∈ X , i.e., it holds that
c(x + δ) = c(x) for all δ ∈ Rd with ∥δ∥ < ϵ. The classifier predicts class y, i.e., c(x) = y, if the
y-th value of the model f(x) is larger than all other entries, i.e., f(x)y > f(x)j for all j ̸= y. We
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denote the y-th row of the linear layer’s matrix W by Wy , thus f(x)y = Wygθ(x).
For an input x with c(x) = y, we want to prove that c(x+ δ) = y for any δ with ∥δ∥ < ϵ., i.e.,

f(x+ δ)y > f(x+ δ)j , if f(x)y > f(x)j .

It holds that

f(x+ δ)y = f(x+ δ)j + (Wj(gθ(x)− gθ(x+ δ))) + (Wygθ(x)−Wjgθ(x)) + (Wy(gθ(x+ δ)− gθ(x))).

Thus, for f(x+ δ)y > f(x+ δ)j to be true, it is necessary that

(Wj(gθ(x)− gθ(x+ δ))) + (Wygθ(x)−Wjgθ(x)) + (Wy(gθ(x+ δ)− gθ(x))) ≥ 0

⇐⇒ Wygθ(x)−Wjgθ(x) ≥ (Wy −Wj)(gθ(x)− gθ(x+ δ))). (3)

By Cauchy-Schwartz inequality follows that

(Wy −Wj)(gθ(x)− gθ(x+ δ))) ≤ |(Wy −Wj)(gθ(x)− gθ(x+ δ))| ≤ ∥Wy −Wj∥2 · ∥gθ(x+ δ)− gθ(x)∥2.

Since further Wygθ(x) −Wjgθ(x) = f(x)y − f(x)j , the condition of equation (3) holds for any
j ̸= y if

f(x)y − f(x)j = |f(x)y − f(x)j | ≥ ∥Wy −Wj∥2 · ∥gθ(x+ δ)− gθ(x)∥2.

For c(x+ δ) = c(x) to be true, the above condition needs to be true for all j ̸= y and this holds if

min
j ̸=y

|f(x)y − f(x)j |
∥Wy −Wj∥2

≥ max
∥δ∥<ϵ

∥gθ(x+ δ)− gθ(x)∥2.

B Additional Experimental Results

We provide additional information on the datasets used and the employed hyperparameters
in Appx. B.1. A further application of Thm. 1 is presented in Appx. B.2, where robustness transfer
is analysed for a regression task. In Appx. B.3, we extend the analysis from Sec. 6 by evaluating
the robustness against stronger attacks. In Appx. B.4, an empirical study compares the robustness
transfer depending on the chosen transfer learning method. Finally, in Appx. B.5, we investigate
the effect of a shift in distribution between pretraining and downstream task data on the transferred
robustness and the AS score.

B.1 Experimental Setup for Section 5

For our experiments, we consider two models robustly pretrained on CIFAR-100 [34] and ImageNet
[17]. CIFAR-100 consists of 32x32 RGB images with 100 different classes. ImageNet-1K consists
of 256x256 RGB images of 1,000 different classes.
We investigate the performance of robustness transfer on CIFAR-10 [34], Fashion-MNIST [57] and
Intel Image Classification3. The CIFAR-10 dataset consists of 32x32 RGB images in 10 classes.
Intel Image Classification consists of 150x150 RGB images of 6 natural scenes (buildings, forest,
glacier, mountain, sea, and street). Fashion-MNIST is a dataset of Zalando’s article images, where
each example is a 28x28 grayscale image, associated with a label from 10 classes.

We use two models from RobustBench [16], namely robust models trained on CIFAR-100 and
ImageNet. For CIFAR-100, we use a WideResNet-34-10 (≈46M parameters) architecture [61] which
is adversarially trained using a combination of simple and complex augmentations with separate
batch normalization layers [1]. For ImageNet, we use a WideResNet-50-2 (≈66M parameters)
architecture [61] which is is also adversarially trained [47, 40].

For the model pretrained on CIFAR-100, run 20 epochs of linear probing (LP) using a batch size of
128, and resize all input images to 32x32. For the model pretrained on ImageNet, we run 10 epochs
of LP using a batch size of 32, and resize all input images to 256x256. We reduce the batch size
to compensate for the increase in input resolution. For LP, we set the learning rate using a cosine

3https://www.kaggle.com/datasets/puneet6060/intel-image-classification

16

https://www.kaggle.com/datasets/puneet6060/intel-image-classification


Layer Layer Type Activation and Normalization

1 Convolutional layer (c=6, k=5) ReLu, Average Pooling, and Batch Norm
2 Convolutional layer (c=16, k=5) ReLu, Average Pooling, and Batch Norm
3 Linear Layer (out=120) ReLu and Batch Norm
4 Linear Layer (out=84) ReLu and Batch Norm
5 Linear Layer (out=84) ReLu and Batch Norm

"head" Linear Layer (out=1) -
Table 6: The table presents the model architecture used in experiments on MSE loss and the dSprites
dataset. The convolutional layers are provided with number of output channels and kernel size, i.e.,
(c=channels, k=kernel_size), where as the linear layers are listed together with the size of their output
vector.

annealing schedule [39], with an initial learning rate of 0.01, and use stochastic gradient descent with
a momentum of 0.9 on the cross-entropy loss.

To compute LHS and RHS, we must attack the cross-entropy loss on f as well as the MSE on
gθ. In both cases, we employ L∞-PGD attacks implemented in the foolbox package [45]. As
hyperparameters for the L∞-PGD attack, we choose 20 steps and a relative step size of 0.7, since this
setting yields highest adversarial sensitivity (AS) scores over all the tasks. The attack strength ϵ is
set to ϵ = 8/255 for attacking the CIFAR-100 pretrained model and ϵ = 1/255 for the ImageNet
model. Thus, we use the same ϵ on CIFAR-100 as used during the RobustBench pre-training and
reduce the ϵ on ImageNet due to the constant pixel blocks introduced after resizing CIFAR-10 and
Fashion-MNIST images from 32x32 and 28x28 to 256x256, respectively.

The experiments were run on a single GeForce RTX 3080 GPU and for each downstream task transfer
learning or theory evaluation took between 30 minutes to 3 hours.

B.2 Regression - MSE

Here, we empirically evaluate Lemma 1 on regression tasks using the mean squared error (MSE) as
the scoring criterion. As per Sec. 3.1, we can apply Lemma 1 with Lipschitz constant C = 1 and
mapping function L2(W ).

We consider the dSprites [41] dataset, which consists of 64x64 grayscale images of 2D shapes
procedurally generated from 6 factors of variation (FoVs) which fully specify each sprite image:
color, shape, scale, orientation, x-position (posX) and y-position (posY). The dataset consists of
737,280 images, of which we use an 80-20 train-test split. Here, we pre-train for the regression task
of decoding an FoV from an image, i.e., we optimise the network f to minimize MSE with the exact
orientation of the sprite. For LP, we consider 4 downstream tasks, each corresponds to decoding a
unique FoV, while one matches the task used for pre-training.

The model architecture is summarized in Tab. 6. We consider 3 different representation functions,
network before training (with default kaiming uniform initialization [24]), after training, and after
adversarial training. For the robust model, we utilize L∞-PGD attacks implemented in the foolbox
package [45] with 20 steps and a relative step size of 1.0. The attack strength ϵ is set to ϵ = 8/255.
The model was trained for 10 epochs with a batch size of 512, learning rate of 1e−3 with a cosine
annealing schedule [39], and stochastic gradient descent with a momentum of 0.9.

In Tab. 7, we present the left-hand side (LHS), the rescaled difference between clean and robust
cross-entropy (CE) loss, and the right-hand side (RHS), the representation function’s AS score,
of Lemma 1. To obtain the scores for LHS and RHS, we separately attack f as well as the MSE on gθ,
where in both cases the objective uses the MSE. For these attacks, we again utilize L∞-PGD, but also
L2-PGD attacks, both based on the foolbox [45] implementation, with 50 steps and a relative step
size of 1.0. The attack strength ϵ is set to ϵ = 16/255 for both the attack types. As can be seen, LHS
is indeed always upper bounded by RHS. Note that, for each pretraining and attack type combination,
the RHS is the same over all latent factors, i.e. in each row, because the same images and the same
representation function are used.
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Pretraining Attack Type Scale Orientation posX posY

Adversarial L∞-PGD LHS 0.10 0.09 0.02 0.02
RHS 2.29 2.29 2.29 2.29

Standard L∞-PGD LHS 3.32 1.20 2.02 2.95
RHS 23.80 23.80 23.80 23.80

Random L∞-PGD LHS 2.33 2.29 2.43 1.84
RHS 29.25 29.25 29.25 29.25

Adversarial L2-PGD LHS 0.004 0.003 0.001 0.001
RHS 0.15 0.15 0.15 0.15

Standard L2-PGD LHS 0.33 0.22 0.17 0.19
RHS 3.15 3.15 3.15 3.15

Random L2-PGD LHS 0.19 0.21 0.14 0.12
RHS 1.69 1.69 1.69 1.69

Table 7: Left-hand side (LHS) and right-hand side (RHS) of Lemma 1 using a model pretrained on
the orientation latent factor of dSprites.

B.3 Classification Criterion - Attack Strength

Here, we study the hypothesis stated in Sec. 5.2 that datapoints fulfilling the bound in Thm. 2 are
still robust against an increased attack strength. We repeat the experiments from Sec. 5.2 for the
model pretrained on CIFAR-100, where the attack strength is ϵ = 8/255, since, for this case, a
subset of each dataset fulfilled the equation. Additionally, we compute the robust accuracy against
stronger attacks employing double and three times the attack strength, i.e., using 2ϵ = 16/255 and
3ϵ = 24/255.

In Tab. 8, we observe that indeed most of the datapoints fulfilling the bound in Eq. (1) are still robust
against the doubled attack strength, which is suggested by the robust accuracy for 2ϵ being larger
than the proportion that fulfilled the bound. Most of these datapoints, approximately 50%, are even
robust against 3ϵ. Further analysis is needed to better understand the observed robust accuracy scores
and to derive a precise connection to the bound from Thm. 2.

CIFAR-100

attack strength CIFAR-10 Fashion-MNIST Intel Image

clean accuracy 0 70.9% 84% 78.5%
robust accuracy ϵ 42.2% 56.2% 56.8%
prop. fulfilled ϵ 11.3% 4.6% 27.1%

robust accuracy 2ϵ 18.4% 28.5% 31.4%
robust accuracy 3ϵ 6.6% 13.1% 13.4%

Table 8: For the CIFAR-100 pretraining dataset, we report clean accuracy, the proportion of images
fulfilling the theoretical bound, and robust accuracy for several attack strengths for each of the
CIFAR-10, Fashion-MNIST and Intel Image downstream tasks.

B.4 Comparison Study between LP, FT and LP-FT

Here, we compare robustness transfer on classification tasks for three transfer learning techniques,
linear probing, full finetuning, and linear probing then finetuning [35]. As explained before, linear
probing (LP) refers to freezing all pretrained weights and only optimizing the linear classification
head. In full finetuning (FT) all pretrained parameters are updated during transfer learning. Linear
probing then finetuning (LP-FT) combines LP and FT sequentially, as after LP is done, FT is applied
to all parameters.

For the model pretrained on CIFAR-100, we choose a batch size of 128, and run 20 epochs for FT,
LP and 10 epochs of FT after LP for LP-FT. For the model pretrained on ImageNet, we choose a
batch size of 32 to compensate for the increase in input resolution to 256x256. We run 10 epochs
for FT and LP and 5 epochs for LP-FT. In both settings, we use half as many epochs for finetuning
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after linear probing in LP-FT, as in [35]. For all methods we apply a cosine annealing learning rate
schedule [39], with an initial learning rate of 0.01 for LP on CIFAR-100, and 0.001 for all other
scenarios. We use stochastic gradient descent with a momentum of 0.9 on the cross-entropy loss for
all experiments.
We evaluate the adversarial robustness on the test set after training by employing the L∞-PGD attack
provided by the foolbox package [45], with 20 steps and a relative step size of 0.7. As the attack
strength, we choose ϵ = 8/255 for the model pretrained on CIFAR-100. Due to the increase in input
resolution for the ImageNet model, we apply ϵ = 1/255.

Tab. 5 in Sec. 6.2 shows the performance of each transfer learning method applied to the model
robustly pretrained on CIFAR-100. For all datasets, LP preserves the most robust accuracy, while
performing worst on natural examples. FT and LP-FT show similar natural and robust accuracy. Only
for the Intel Image dataset do we observe a significant difference (10%) in the robustness of LP-FT
and FT. In contrast, when pretraining on ImageNet, LP has the worst clean and robust accuracy.
Instead, LP-FT has the highest robust accuracy for all datasets, while FT achieves the highest clean
accuracy. Although FT has the highest clean accuracy for all datasets, the difference between FT and
LP-FT is marginal.

Additionally, Tab. 9 provides confirmation that our theory indeed holds for the other transfer learning
approaches as well. The difference is that for FT and LP-FT the AS score changes during transfer
learning and thus the score computed prior transfer learning is no longer predictive of the transferred
robustness. Still, it is an interesting observation that indeed the AS score shrinks during LP-FT when
it improves robustness transfer compared to LP.

CIFAR-100 CIFAR-10 Fashion-MNIST Intel Image
Method ∆CE L∞(W ) AS ∆CE L∞(W ) AS ∆CE L∞(W ) AS

FT 8.7 1.31 8.93 4.49 1.26 6.68 5.62 1.1 6.86
LP 0.73 4.4 0.98 0.8 4.59 2.11 0.47 3.05 1.05

LP-FT 14.1 4.42 6.44 5.98 4.6 4.27 3.06 3.07 3.02

ImageNet CIFAR-10 Fashion-MNIST Intel Image
Method ∆CE L∞(W ) AS ∆CE L∞(W ) AS ∆CE L∞(W ) AS

FT 4.39 1.1 12.6 2.28 1.1 9.0 0.32 0.94 3.8
LP 4.14 1.86 15.7 9.4 2.02 53.2 0.14 1.39 2.7

LP-FT 3.18 1.9 9.8 0.92 2.06 5.1 0.37 1.0 3.9
Table 9: Absolute difference between clean and robust CE loss (∆CE ), L∞(W ) from Thm. 1 and the
adversarial sensitivity score (AS) for the three transfer learning approaches using the model robustly
pretrained on CIFAR-100 or ImageNet.

B.5 Distribution Shift Experiments

In this section, we analyse the impact of distribution shift between pretraining and downstream data
on the adversarial sensitivity score and thereby on robustness transfer via linear probing. First, we
consider the distribution shift between CIFAR-10 and ImageNet and, in particular, its dependence on
how the smaller CIFAR-10 images are resized before applying the representation function. Second,
we employ ideas from prior work [26]4 to create increasingly corrupted versions of CIFAR-100 to
simulate varying shifts in distribution.

In our experiments in Sec. 5, we resize the 32x32 CIFAR-10 input images to 256x256 for the
ImageNet model, and observe a strong distribution shift by a severely increased AS score. Here,
we evaluate if increasing the image size before applying the ResNet model causes this shift, or if
it is inherent in the data. In Tab. 10, we repeat our linear probing experiment for the CIFAR-10 to
ImageNet case on differently rescaled input images. The results indicate that reducing the increase
in the input image size improves robustness transfer, at the cost of a drop in clean performance.
However, even for a smaller input image size, the AS score remains increased indicating a tangible
distribution shift remains.

4https://github.com/hendrycks/robustness/blob/master/ImageNet-C/create_c
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input image clean /robust CE clean /robust acc prop. fulfilled LHS RHS

256x256 0.22 / 4.36 92% / 16% 0.1% 1.14 15.7
128x128 0.41 / 1.31 86% / 57% 0.2% 0.28 12.7

64x64 1.04 / 1.49 64% / 48% 0.1% 0.14 8.2
Table 10: The table contains clean and robust CE loss and accuracy, the proportion of images
fulfilling the theoretical bound in Eq. (1), LHS and RHS of Lemma 1, when performing linear
probing from an ImageNet pre-trained model based on differently resized CIFAR-10 images.

In the following, we consider an increasingly corrupted version of CIFAR-100 to simulate distribution
shift following prior work [26]. In particular, we use the Gaussian noise (Tab. 12) and Zoom blur
(Tab. 13) corruption types with increasing severity to simulate an increasing distribution shift. The
experimental results from both distortion methods confirm that an increasing shift between the data
distributions leads to an increase in the AS score and poorer robustness transfer via linear probing.
The different corruption strength are used as suggested in [26] and are stated in Tab. 11.

Approach C1 C2 C5

Gaussian Noise 0.04, 0.06 0.10
Zoom Blur [1, 1.06] [1, 1.11] [1, 1.26]

Table 11: Definition of the corruption strength considered in our experiments. The Gaussian noise
corruption severity is defined by the scale, i.e. the variance of the Gaussian noise distribution. The
Zoom blur is defined via the interval of zoom factors. For each 0.01 increment in the interval, a
zoomed-in image is created, and all zoomed-in images are summed to create a blurred image.

Metric CIFAR-100 CIFAR-100-C1 CIFAR-100-C2 CIFAR-100-C5

Acc. 67.3% 66.5% 65.3% 63.6%
Robust Acc. 46.8% 44.5% 43.3% 40.9%
CE 1.28 1.32 1.37 1.44
robust CE 2.1 2.21 2.3 2.44
difference CE 0.82 0.89 0.93 1.0
L∞(W ) 3.31 3.34 3.36 3.47
LHS (Lem.1) 0.124 0.133 0.138 0.144
AS score 0.835 0.892 0.915 0.949

Table 12: Various metrics for transfer learning from a model robustly pretrained on CIFAR-100 to an
increasingly corrupted CIFAR-100 dataset using Gaussian noise. C1 indicates severity level 1 of the
corruption is applied.
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Metric CIFAR-100 CIFAR-100-C1 CIFAR-100-C2 CIFAR-100-C5

Acc. 67.3% 65.4% 65.7% 63.9%
Robust Acc. 46.8% 41.2% 40.3% 35.5%
CE 1.28 1.36 1.36 1.43
robust CE 2.1 2.39 2.42 2.73
difference CE 0.82 1.03 1.06 1.3
L∞(W ) 3.31 3.36 3.35 3.42
LHS (Lem.1) 0.124 0.153 0.158 0.19
AS score 0.835 1.001 1.031 1.195

Table 13: Various metrics for transfer learning from a model robustly pretrained on CIFAR-100 to
an increasingly corrupted CIFAR-100 dataset using Zoom blur. C1 indicates severity level 1 of the
corruption is applied.
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