
Online RL in Linearly 𝑞𝜋-Realizable MDPs Is as Easy
as in Linear MDPs If You Learn What to Ignore

Gellért Weisz
Google DeepMind, London, UK

University College London, London, UK

András György
Google DeepMind, London, UK

Csaba Szepesvári
Google DeepMind, Montreal, Canada

University of Alberta, Edmonton, Canada

Abstract

We consider online reinforcement learning (RL) in episodic Markov decision pro-
cesses (MDPs) under the linear 𝑞𝜋-realizability assumption, where it is assumed
that the action-values of all policies can be expressed as linear functions of state-
action features. This class is known to be more general than linear MDPs, where
the transition kernel and the reward function are assumed to be linear functions of
the feature vectors. As our first contribution, we show that the difference between
the two classes is the presence of states in linearly 𝑞𝜋-realizable MDPs where
for any policy, all the actions have approximately equal values, and skipping over
these states by following an arbitrarily fixed policy in those states transforms the
problem to a linear MDP. Based on this observation, we derive a novel (com-
putationally inefficient) learning algorithm for linearly 𝑞𝜋-realizable MDPs that
simultaneously learns what states should be skipped over and runs another learn-
ing algorithm on the linear MDP hidden in the problem. The method returns an
𝜀-optimal policy after polylog(𝐻, 𝑑)/𝜀2 interactions with the MDP, where 𝐻 is
the time horizon and 𝑑 is the dimension of the feature vectors, giving the first
polynomial-sample-complexity online RL algorithm for this setting. The results
are proved for the misspecified case, where the sample complexity is shown to
degrade gracefully with the misspecification error.

1 Introduction

We consider reinforcement learning where an agent interacts in an online fashion with an environ-
ment modeled as a Markov decision process: The agent, observing a state, takes an action that
results in a random next state and reward, the latter of which is to be maximized over time. To tackle
large, possibly infinite state spaces, additional structure needs to be introduced to this problem. One
such structure is a “feature-map” that maps state-action pairs to 𝑑-dimensional vectors (for some
positive integer 𝑑) with the intention that a “good feature-map extracts important information from
the state-action pairs so that learning with this extra information becomes tractable. An example
is the case of linear MDPs [Jin et al., 2020a], where the assumption is that both the transition and
reward functions are linearly factorizable and their left factors are given by the feature-map. In con-
trast, value-based approaches, such as 𝑞𝜋-realizability [Du et al., 2019, Lattimore et al., 2020] aim
to model only the action-values with the features. In this work, we focus on the latter, a strictly more
general setting than that of linear MDPs [Zanette et al., 2020, Proposition 4].

There are several sample-efficient algorithms discovering near-optimal policies in linear MDPs un-
der various MDP access models and settings (online access: Jin et al. [2020a]; batch setting: Jin et al.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Online RL Planning with simulator
MDP class poly(·) sample poly(·) compute poly(·) sample poly(·) compute

Linear MDP Jin et al. [2020a]
𝑞𝜋-realizable MDP This work Open problem Yin et al. [2022]

Table 1: Comparison of efficiency results for linear MDPs and 𝑞𝜋 -realizable MDPs under online RL and
planing with a simulator. This work establishes that 𝑞𝜋 -realizable MDPs are also sample efficiently solvable
under online RL. The computational complexity of this problem remains open.

[2021]; reward-free setting: Wagenmaker et al. [2022]). The best known sample-complexity bound
for the online access model is achieved by the computationally inefficient algorithm of Zanette et al.
[2020], called ELEANOR, which serves as a starting point of our work.

In this work we consider the setting of linearly 𝑞𝜋-realizable MDPs. As opposed to linear MDPs,
before this work, sample efficient solutions were only known for this case when the MDP is accessed
through a simulator that implements some form of a state-reset function [Lattimore et al., 2020, Yin
et al., 2022, Weisz et al., 2022] (Table 1). In this work we resolve an open problem by Du et al.
[2019], and show that having access to a state-reset is not essential in this setting. To this end, we
present SKIPPYELEANOR (Algorithm 1) and a corresponding theorem (Theorem 4.1) that shows
that SKIPPYELEANOR, which uses online interactions only, is a provably sample-efficient solution
to this problem. The rest of this paper is organized as follows. In Section 2 we introduce the basic
definitions. In Section 3 we give an insight into the difference between linear 𝑞𝜋-realizability and
linear MDPs, which motivates our approach. In Section 4 we describe our algorithm and the most
important technical tools we discovered for its analysis. Notably, in Section 4.2 we establish a rich
structure inherent in 𝑞𝜋-realizable MDPs, which acts as the technical foundation to this work, and
may be of independent interest. Finally, Section 5 gives a summary of the proof of our main result
(Theorem 4.1), before concluding with some notes on future work in Section 6.

2 Preliminaries

For a linear subspace 𝑋 of R𝑑 , let Proj𝑋 denote the orthogonal projection matrix onto 𝑋 . Throughout
we fix 𝑑 ∈ N+. For 𝐿 > 0, let B(𝐿) = {𝑥 ∈ R𝑑 : ∥𝑥∥2 ≤ 𝐿} denote the 𝑑-dimensional Euclidean
ball of radius 𝐿 centered at the origin, where ∥ · ∥2 denotes the Euclidean norm. Let PD denote the
set of positive definite matrices in R𝑑×𝑑 . We write 𝑎 ≈𝜀 𝑏 for 𝑎, 𝑏, 𝜀 ∈ R if |𝑎 − 𝑏 | ≤ 𝜀. Let I{𝐵}
be the indicator function of a boolean-valued (possibly random) 𝐵 taking value 1 if 𝐵 is true and 0
if false. LetM1 (𝑋) denote the set of probability distributions supported on set 𝑋 . The rest of our
notation is standard, but described in Appendix A for completeness.

For the setting of episodic finite horizon RL, with horizon 𝐻, a finite-action Markov decision pro-
cess (MDP) describes an environment for sequential decision-making. It is defined by a tuple
(S, [A], 𝑃,R) as follows. The state space S is split across stages: S = (S𝑡)𝑡 ∈[𝐻] with S1 = {𝑠1}
for some designated initial state 𝑠1. Without loss of generality, we assume the (S𝑡)𝑡 ∈[𝐻] are disjoint
sets. We define the function stage : S → [𝐻] as stage(𝑠) = 𝑡 if 𝑠 ∈ S𝑡 . We consider finite action
spaces of size A for some A ∈ N+, and without loss of generality, define the set of actions to be
[A] := {1, . . . ,A}. The transition kernel is 𝑃 :

(⋃
𝑡 ∈[𝐻−1] S𝑡

)
× [A] → M1 (S), with the prop-

erty that transitions happen between successive stages, that is, for any 𝑡 ∈ [𝐻 − 1], state 𝑠𝑡 ∈ S𝑡 ,
and action 𝑎 ∈ [A], 𝑃(𝑠𝑡 , 𝑎) ∈ M1 (S𝑡+1). The reward kernel is R : S × [A] → M1 ([0, 1]).
An agent interacts sequentially with this environment in an episode lasting 𝐻 steps by taking some
action 𝑎 ∈ [A] in the current state. The environment responds by transitioning to some next-state
according to 𝑃, and giving a reward in [0, 1] according to R.1

We describe an agent interacting with the MDP by a policy 𝜋, which, to each history of interaction
(including states, actions and rewards) assigns a probability distribution over the actions. Policies
where this distribution only depend on the last state in the history are called memoryless, and these
are identified with elements of the set Π = {𝜋 : S →M1 ([A])}. Using a policy 𝜋, starting at some
state 𝑠 in an MDP induces a probability distribution over histories, which we denote by P𝜋,𝑠 . For

1Here, the reward and next-state are independent, given the current state and last action. Independence is
nonessential and is assumed only to simplify the presentation.

2

any 𝑎 ∈ [A], P𝜋,𝑠,𝑎 is the distribution over the histories when first action 𝑎 is used in state 𝑠, after
which policy 𝜋 is followed. E• is the expectation operator corresponding to a distribution P• (e.g.,
E𝜋,𝑠 is the expectation with respect to P𝜋,𝑠). The state- and action-value functions 𝑣𝜋 and 𝑞𝜋 are
defined as the expected total reward within the first episode while 𝜋 is used:

𝑣𝜋 (𝑠) = E
𝜋,𝑠

𝐻∑
𝑢=stage(𝑠)

𝑅𝑢 for 𝑠 ∈ S and 𝑞𝜋 (𝑠, 𝑎) = E
𝜋,𝑠,𝑎

𝐻∑
𝑢=stage(𝑠)

𝑅𝑢 for 𝑠 ∈ S, 𝑎 ∈ [A] .

Let 𝜋★ ∈ Π be an optimal policy, satisfying 𝑞𝜋★ (𝑠, 𝑎) = sup𝜋∈Π 𝑞𝜋 (𝑠, 𝑎) = sup𝜋∈all policies 𝑞
𝜋 (𝑠, 𝑎)

for all (𝑠, 𝑎) ∈ S × [A]. Let 𝑞★(𝑠, 𝑎) = 𝑞𝜋★ (𝑠, 𝑎) and 𝑣★(𝑠) = sup𝑎′∈[A] 𝑞★(𝑠, 𝑎) for all (𝑠, 𝑎).

3 From linear 𝑞𝜋-realizability to linear MDPs

As described in the introduction, we endow our MDP with a feature map 𝜑 : S × [A] → B(𝐿1)
for some 𝐿1 > 0. For reference, we start with a definition of linear MDPs with a parameter norm
bound 𝐿2 > 0, formalizing that the transition kernel and the expected rewards are approximately
linear functions of the features:2

Definition 3.1. [𝜅-approximately linear MDP] For any 𝜅 ≤ 1, an MDP is a 𝜅-approximately linear
MDP if (i) there exists 𝜃1, . . . , 𝜃𝐻 ∈ B(𝐿2) such that for any ℎ ∈ [𝐻] and (𝑠, 𝑎) ∈ Sℎ × [A],��E𝑅∼R(𝑠,𝑎) 𝑅 − ⟨𝜑(𝑠, 𝑎), 𝜃ℎ⟩�� ≤ 𝜅 and (ii) for any 𝑓 : S → [0, 𝐻] and ℎ ∈ [𝐻 − 1], there exists
𝜃 ′ℎ ∈ B(𝐿2) such that for all (𝑠, 𝑎) ∈ Sℎ × [A],

��E𝑆′∼𝑃 (𝑠,𝑎) 𝑓 (𝑆′) − 〈
𝜑(𝑠, 𝑎), 𝜃 ′ℎ

〉�� ≤ 𝜅.

A key consequence of the linear MDP assumption is that the inherent Bellman error

sup
𝜃ℎ+1∈B(𝐿2)

inf
𝜃ℎ ∈B(𝐿2)

sup
(𝑠,𝑎) ∈Sℎ×[A]

��� E
𝑅∼R(𝑠,𝑎) ,𝑆′∼𝑃 (𝑠,𝑎)

𝑅(𝑠, 𝑎)+ max
𝑎′∈[A]

⟨𝜑(𝑆′, 𝑎′), 𝜃ℎ+1⟩−⟨𝜑(𝑠, 𝑎), 𝜃ℎ⟩
��� ,

scales with the misspecification 𝜅. This property is also referred to as the closedness to the Bellman
operator, and is a crucial component in the analysis of approximation errors for algorithms tackling
linear MDPs.

In this work we consider a weaker linearity assumption where we only assume that the action-value
functions are approximately linear:
Definition 3.2 (𝑞𝜋-realizability: uniform linear function approximation error of value-functions).
Given an MDP, the uniform value-function approximation error (or misspecification) induced by a
feature map 𝜑 : S × [A] → B(𝐿1), over a set of parameters in B(𝐿2) is

𝜂 = sup
𝜋∈Π

max
ℎ∈[𝐻]

inf
𝜃 (ℎ) ∈B(𝐿2)

sup
(𝑠,𝑎) ∈Sℎ×[A]

���𝑞𝜋 (𝑠, 𝑎) −
〈
𝜑(𝑠, 𝑎), 𝜃 (ℎ)

〉��� .
For the MDP and the corresponding feature map, for all ℎ ∈ [𝐻] fix any 𝜃ℎ : Π→ B(𝐿2) mapping
each memoryless policy 𝜋 ∈ Π to its “parameter”, such that

𝑞𝜋 (𝑠, 𝑎) ≈𝜂 ⟨𝜑(𝑠, 𝑎), 𝜃ℎ (𝜋)⟩ for all 𝜋 ∈ Π, 𝑠 ∈ Sℎ , and 𝑎 ∈ [A] . (1)

The set of all parameters Θℎ ⊆ B(𝐿2) for a stage ℎ ∈ [𝐻] is given by Θℎ = {𝜃ℎ (𝜋) : 𝜋 ∈ Π} .

Note that 𝜃ℎ satisfying Eq. (1) always exist [Weisz et al., 2022, Appendix C]. We focus on the
feasible regime where 𝜂 is polynomially small in the relevant parameters. Specifically, we assume
that 𝜂 is bounded according to Eq. (21). The main problem of interest in this work is the following:
Problem 3.3 (informal). For any 𝜀, 𝜁 > 0 and any MDP with corresponding uniform value-function
approximation error 𝜂, derive an algorithm that, with probability at least 1−𝜁 , will find an 𝜀-optimal
policy (i.e., a policy 𝜋 such that 𝑣𝜋 (𝑠1) ≥ 𝑣★(𝑠1) −𝜀) by interacting with the MDP online for 𝑇 steps
with 𝑇 bounded by a polynomial function of (𝑑, 𝐻, 𝜀−1, log 𝜁−1, log 𝐿1, log 𝐿2). That the interaction
with the MDP is online means that it is only possible to observe the features corresponding to the
current state, and to take an action and subsequently observe the resulting reward and next state,
which then becomes the current state. We consider the fixed horizon episodic setting, that is, the next
state is reset to the initial state 𝑠1 after every 𝐻 steps.

2Compared to the definition of Jin et al. [2020b], our definition does not require the existence of a vector-
valued measure to represent the transition kernel. This is a generalization that is compatible with all existing
algorithms for linear MDPs.

3

𝑠1

𝑠2

𝑠3

𝑠4

1/1

2/0.5

1/0

2/0
1/0.5

2/0.5

𝑠1 𝑠4

1/1

2/1

Figure 1: Left: MDP with deterministic transitions and rewards (edges are labeled with action/reward). Right:
The same MDP with the red “low-range” states “skipped” over. 𝜑(𝑠1, ·) = (1), 𝜑(𝑠3, ·) = (0.5), 𝜑(·, ·) = (0)
otherwise. Both MDPs are 𝑞𝜋 -realizable, but only the right MDP is linear.

Algorithms developed for linear MDPs are not directly applicable to Problem 3.3 when the MDP is
only 𝑞𝜋-realizable: While a linear MDP is also 𝑞𝜋-realizable, a 𝑞𝜋-realizable MDP may be neither
a linear MDP, nor one with a low inherent Bellman error [Zanette et al., 2020]. As an illustrative
example, Fig. 1, left shows an MDP that is 𝑞𝜋-realizable but not linear. To see this, observe that the
features for both actions in 𝑠1 are identical, but their transitions and rewards are not. As illustrated in
the figure however, if we skip over the red states (with identical actions) by taking the first action on
them and summing up the rewards received until we reach a black state, we arrive at a linear MDP.
This serves as the main intuition behind our work: the red states have no bearing on action-values,
so they can be skipped, and the resulting MDP is linear.

More generally, we can define the range of any state as the maximum possible difference in action-
value that the choice of action in that state can make:

range(𝑠) = sup
𝜃 ∈Θstage(𝑠)

max
𝑖, 𝑗∈[A]

⟨𝜑(𝑠, 𝑖, 𝑗), 𝜃⟩ for all ℎ ∈ [𝐻], 𝑠 ∈ Sℎ , (2)

where 𝜑(𝑠, 𝑖, 𝑗) = 𝜑(𝑠, 𝑖) − 𝜑(𝑠, 𝑗) is the notation for feature differences. Clearly, the choice of
action in low-range states is not too important, as

𝑣𝜋 (𝑠) − 𝑞𝜋 (𝑠, 𝑎) ≤ range(𝑠) + 2𝜂 for any 𝜋 ∈ Π and all 𝑎 ∈ [A]. (3)
Not only are the action choices in low-range states unimportant for the task of finding a near-optimal
policy for the MDP, these choices can affect transitions and rewards in a nonlinear way. Interestingly,
the existence of low-range states is the reason why 𝑞𝜋-realizable MDPs are not necessarily linear,
as shown by the next result (proved in Appendix C), which follows easily from Lemma 4.7.
Proposition 3.4. Consider an MDP with uniform value-function approximation error 𝜂 ≥ 0. If
there are no states 𝑠 ∈ S with range(𝑠) < 𝛼 for some 𝛼 > 0, then the transitions and rewards of the
MDP are linear (Definition 3.1) with misspecification scaling with 𝜂, and parameter norms scaling
inversely with 𝛼.

Our approach. The above result immediately offers a strategy to learn under the (linear) 𝑞𝜋-
realizability assumption. Assuming access to an oracle that can determine whether or not range(𝑠) <
𝛼 for any state 𝑠, the MDP could be “converted” to one that has no low-range states but has near-
identical state and action-value functions of any policy (compared to the original MDP), by skipping
over low-range states (by executing an arbitrary action) until a state with a range at least 𝛼 is reached.
We will call such a multi-state transition a skippy step and refer to such a policy as a skippy policy.
The reward presented for a skippy step is the cumulative reward over the skipped states. When the
oracle is correct, the new MDP is a linear MDP, allowing techniques such as ELEANOR to efficiently
learn a near-optimal policy. This conversion argument is part of the intuition of our method, but it
is not strictly part of the proof, so we defer the details to Appendix C. The only missing piece for
solving the general case, Problem 3.3, is learning an oracle that can suggest when to skip over a state,
and combining it with the learning algorithm for the linear MDP. This general approach leads to our
algorithm, SKIPPYELEANOR, which runs a modified version of ELEANOR with guessed oracles.
During the algorithm, we detect when an incorrect oracle leads to suboptimal results, and refine the
oracle accordingly. The details of the algorithm are explained in the next section.

4 Algorithm

In this section we present our main results following our plan outlined above. We first give Algo-
rithm 1, along with a high-level overview of the algorithm; the details are explained throughout the
section. The parameters of the algorithm are presented in Appendix B.

4

Algorithm 1 SKIPPYELEANOR

1: Input: accuracy 𝜀 > 0, failure probability 𝜁 > 0
2: Initialize 𝑚 ← 0, 𝑚′← 0, 𝑄ℎ = 𝐿2𝐼 for ℎ ∈ [𝐻], 𝜋0 = (𝑠 ↦→ 1)
3: while 𝑚′ ≤ 𝑚′max do
4: 𝑚 ← 𝑚 + 1, 𝑚′← 𝑚′ + 1 ⊲ 𝑚′ also counts iterations repeated due to Line 14
5: Estimate optimistic problem parameters �̂�, 𝜃 by solving Optimization Problem 4.10
6: for 𝑘 ∈ [𝐻] do
7: Let 𝜋𝑚𝑘 be the policy defined by SKIPPYPOLICY(�̂�, 𝜃, 𝑘)
8: Sample 𝑛 trajectories by executing 𝜋𝑚𝑘 from 𝑠1 for 𝑛 episodes
9: Record data (𝑆𝑚𝑘 𝑗

ℎ , 𝐴
𝑚𝑘 𝑗
ℎ , 𝑅

𝑚𝑘 𝑗
ℎ)ℎ∈[𝐻], 𝑗∈[𝑛] and stage-mapping functions (𝑝𝑚𝑘 𝑗) 𝑗∈[𝑛]

10: Solve Optimization Problem 4.12 with input (�̂�, 𝜃), ⊲ Consistency check
record its value 𝑥 (maximum discrepancy), and arguments 𝑣 (direction) and 𝑖 (stage).

11: Calculate useful component 𝑤 ← Proj𝑍 (𝑄,𝑖) 𝑣 ⊲ Definition 4.2
12: if 𝑥 > discrepancy_threshold then
13: 𝑄𝑖 ←

(
𝑄−2

𝑖 +𝑄−1
𝑖 𝑤𝑤⊤𝑄−1

𝑖

)− 1
2 ⊲ append 𝑄−1

𝑖 𝑤 to 𝐶𝑖 according to Eq. (4)
14: 𝑚 ← 𝑚 − 1 ⊲ redo this iteration
15: continue
16: if average_uncertainty ≤ uncertainty_threshold then
17: return policy 𝜋𝑚𝐻

Algorithm 2 SKIPPYPOLICY

1: Input: �̂�, 𝜃, 𝑘
2: Initialize 𝑆1 ← 𝑠1, 𝑗 ← 1, 𝜋0 ← (𝑠 ↦→ 1), stage mapping 𝑝
3: for 𝑖 = 1 to 𝐻 do
4: Compute skip probabilities 𝜏𝑖 ← 𝜏�̂� (𝑆𝑖) and non-skip action 𝑎+ ← 𝜋+

𝜃
(𝑆𝑖) from Eq. (8)

5: Sample independently 𝐵𝑖 ∼ Bernoulli(𝜏𝑖)
6: if 𝐵𝑖 = 0 then 𝐴𝑖 ← 1 ⊲ skip (follow 𝜋0) with probability 1 − 𝜏𝑖
7: else
8: 𝑝(𝑗) ← 𝑖, 𝑗 ← 𝑗 + 1
9: if 𝑗 ≤ 𝑘 then 𝐴𝑖 ← 𝑎+ (Phase I) else 𝐴𝑖 ← 1 (Phase II)

10: if 𝑖 = 𝐻 then
11: 𝑝(𝑗 ′) = 𝐻 + 1 for 𝑗 ′ = 𝑗 , . . . , 𝐻

For every stage ℎ ∈ [𝐻], the algorithm keeps a progressively refined estimate of the geometry of
the parameter space Θℎ , by maintaining an ever shrinking ellipsoid enclosing Θℎ . This ellipsoid
is parametrized by an ’inverse covariance matrix’-like quantity 𝑄ℎ , determined by Õ(𝑑) vectors,
which guarantees max𝜃ℎ ∈Θℎ ∥𝜃ℎ ∥𝑄−2

ℎ
= Õ(

√
𝑑). Looking at the definition of range in Eq. (2), it is

clear that the smaller the ellipsoid becomes, the better estimate we can give for the ranges.

Given some data collected so far and (𝑄ℎ)ℎ∈[𝐻] , SKIPPYELEANOR computes optimistic estimates
of the action-values by calculating an optimistic policy parameter 𝜃, as well as a guess �̂� to a near-
optimal design which is used to estimate the range for the states (due to technical reasons, �̂� will
guess a near-optimal design for the transformed parameter space 𝑄−1

ℎ Θℎ).

Data is collected by running stochastic versions of skippy policies on the MDP, where the states
to be skipped over are determined based on the range estimates; when a state is skipped, an action
is selected using a deterministic policy 𝜋0 that always chooses the first action in every state. To
ensure that the estimation problem is smooth in terms of �̂�, we use a smoothed version of skippy
policies, where states are skipped randomly, and the probability of skipping is larger for states
with lower ranges, while high-range states are never skipped. Similarly to ELEANOR, we aim to
estimate the action-value function of a state-action pair by adding the estimated one-step reward
to the estimated value-function of the next state. However, unlike ELEANOR, we would like to
do this in the reduced MDP, where the low-range states that are skipped over are removed (and
the corresponding transitions are replaced by skippy steps). Since we do not know these states
in advance, we run exploratory policies that skip over next states starting from any state: namely,

5

we run SKIPPYPOLICY(�̂�, 𝜃, 𝑘) for all 𝑘 ∈ [𝐻] with a maximum number of unskipped states 𝑘
(Phase I), and once this is skip budget is exhausted, all remaining states are skipped over by rolling
out 𝜋0 (Phase II), which ensures that we collect enough data at every stage of the MDP to be able
to estimate the one-skippy-step reward of any skipping mechanism. Compared to ELEANOR, this
introduces an additional loop in Line 6 of SKIPPYELEANOR; see Appendix D for additional details.
For any execution, SKIPPYPOLICY maintains a stage-mapping function 𝑝, which, for any stage ℎ of
the trajectory in the reduced MDP gives the stage index in the original MDP. In other words, 𝑝(𝑗) is
the stage of the landing state of the 𝑗 𝑡ℎ skippy step.

Finally, we check if the data collected is consistent with our estimates �̂� and 𝜃, by calculating the
maximal discrepancy of the estimates of the action-value difference at the last non-skipped state of
𝜋𝑚𝑘 = SKIPPYPOLICY(�̂�, 𝜃, 𝑘) and that of the fixed skipping policy 𝜋0 in different directions in
the parameter space. If the discrepancy is too large for any 𝑘 , we add the discrepancy-maximizing
direction to 𝑄 and throw away the data collected in this (i.e., the 𝑚𝑡ℎ) iteration; this is achieved by
reducing the iteration counter 𝑚 by 1. On the other hand, if the discrepancy is small enough, we can
guarantee that the gap between the value of 𝜋𝑚𝐻 and 𝑣★(𝑠1) scales with how much new information
we collected, thus the algorithm can terminate returning this policy if this term is sufficiently small
(which it eventually has to be).

The following theorem shows that with high probability, SKIPPYELEANOR finds a near-optimal
policy after polynomially many interactions with the MDP. Rhe proof sketch is provided in Section 5,
while our method and proof strategy is explained from the perspective of ELEANOR in Appendix D.

Theorem 4.1. With probability at least 1− 𝜁 , SKIPPYELEANOR interacts with the MDP for at most
Õ

(
𝐻11𝑑7/𝜀2) many steps, before returning a policy 𝜋 that satisfies 𝑣★(𝑠1) ≤ 𝑣𝜋 (𝑠1) + 𝜀.

4.1 Preconditioning: the enclosing ellipsoid

In this section we give the technical details about the effects of using the matrix 𝑄ℎ describing an
enclosing ellipsoid for Θℎ (see Lemma 4.3) as preconditioning the features.

Definition 4.2 (Valid preconditioning). 𝑄 = (𝑄ℎ)ℎ∈[𝐻] is a valid preconditioning matrix sequence
if for all ℎ ∈ [𝐻]

𝑄ℎ =
(
𝐿−2

2 𝐼 +∑
𝑣∈𝐶ℎ

𝑣𝑣⊤
)−1/2 (4)

for some sequence 𝐶ℎ = (𝑣1, . . . , 𝑣𝑛) of vectors in R𝑑 such that for all 1 ≤ 𝑖 ≤ 𝑛,

sup𝜃 ∈Θℎ
|⟨𝜃, 𝑣𝑖⟩| ≤ 1 and

(𝐿−2
2 𝐼 +∑𝑖−1

𝑗=1 𝑣 𝑗𝑣
⊤
𝑗

)− 1
2
𝑣𝑖

2

2
≥ 1

2 and ∥𝑣∥2 ≤ 𝐿3 , (5)

where 𝐿3 is some fixed polynomial of the problem parameters (𝑑, 𝐻, 𝜀−1, log 𝜁−1, log 𝐿1, log 𝐿2).
(see Eq. (35) for its precise value).

For a valid preconditioning 𝑄 and some ℎ ∈ [𝐻], let 𝑍 (𝑄, ℎ) be the linear subspace spanned by
those eigenvectors of 𝑄 whose corresponding eigenvalues are at least 𝐿−2

3 . Let Proj𝑍 (𝑄,ℎ) be the
orthogonal projection matrix onto this subspace.

Sometimes it will be convenient to precondition the features and parameters so that the enclosing el-
lipsoid is transformed to a ball of controlled radius (as Lemma 4.3 will show). To this end, introduce
for all ℎ ∈ [𝐻] and (𝑠, 𝑎, 𝑏) ∈ Sℎ × [A] × [A] the following:3

𝜑𝑄 (𝑠, 𝑎) = 𝑄ℎ𝜑(𝑠, 𝑎), 𝜑𝑄 (𝑠, 𝑎, 𝑏) = 𝑄ℎ𝜑(𝑠, 𝑎, 𝑏)

𝜃𝑄ℎ (𝜋) = 𝑄−1
ℎ 𝜃ℎ (𝜋), Θ𝑄

ℎ =
{
𝜃𝑄ℎ (𝜋) : 𝜋 ∈ Π

}
=

{
𝑄−1

ℎ 𝜃 : 𝜃 ∈ Θℎ

}
𝑞𝜋 (𝑠, 𝑎) = ⟨𝜑(𝑠, 𝑎), 𝜃ℎ (𝜋)⟩ =

〈
𝜑𝑄 (𝑠, 𝑎), 𝜃𝑄ℎ (𝜋)

〉
for all 𝜋 ∈ Π .

(6)

The next lemma (proved in Appendix F) shows that for all ℎ ∈ [𝐻], 𝑄ℎ defines an enclosing ellipsoid
for Θℎ; that is, Θℎ ⊂ {𝜃 : ∥𝜃∥𝑄−2

ℎ
≤
√
𝑑1 + 1}.

3Note that 𝑄ℎ , ℎ ∈ [𝐻] is invertible by construction.

6

Lemma 4.3. Let 𝑑1=4𝑑 log(1+16𝐿4
3𝐿

4
2)= Õ(𝑑). Then, for any valid preconditioning 𝑄 and ℎ ∈ [𝐻],

sup𝜃 ∈Θℎ
∥𝜃∥𝑄−2

ℎ
= sup

𝜃 ∈Θ𝑄
ℎ
∥𝜃∥2 ≤

√
𝑑1 + 1 .

Clearly, every time a new vector is added to 𝐶ℎ , the enclosing ellipsoid {𝜃 : ∥𝜃∥𝑄−2
ℎ
≤
√
𝑑1 + 1}

shrinks (as a positive semidefinite matrix is added to 𝑄−2
ℎ). The following lemma (also proved in

Appendix F) uses an elliptical potential argument to bound the number of times this can happen.
Lemma 4.4. For any valid preconditioning 𝑄, for all ℎ ∈ [𝐻], the length of sequence 𝐶ℎ corre-
sponding to 𝑄ℎ according to Definition 4.2 is at most 𝑑1.

Near-optimal design for Θ𝑄
ℎ . As 𝑄ℎ only provides an enclosing ellipsoid for Θℎ , we introduce

an (unknown) ellipsoid that aligns better with Θ𝑄
ℎ . For all ℎ ∈ [𝐻], fix a set 𝐺𝑄

ℎ of policies of size
𝑑0 := 4𝑑 log log(𝑑) + 16, together with a probability distribution 𝜌𝑄ℎ on 𝐺𝑄

ℎ , such that (𝐺𝑄
ℎ , 𝜌

𝑄
ℎ) is

a near-optimal design for Θ𝑄
ℎ (i.e., satisfying Definition F.1). The existence of such a near-optimal

design follows from [Todd, 2016, Part (ii) of Lemma 3.9].

We apply 𝐺𝑄
ℎ to define a cruder version of range that depends only on a small set of policies, and

can therefore be succinctly parametrized to inform SKIPPYPOLICY:
range𝑄 (𝑠) = max

𝜋∈𝐺𝑄
ℎ

max
𝑖, 𝑗∈[A]

⟨𝜑(𝑠, 𝑖, 𝑗), 𝜃ℎ (𝜋)⟩ for all ℎ ∈ [𝐻], 𝑠 ∈ Sℎ . (7)

range𝑄 is easy to estimate, and can be used to bound the range function (proved in Appendix F):
Proposition 4.5. For all 𝑠 ∈ S and 𝑄 ∈ PD𝐻 , range(𝑠) ≤

√
2𝑑 range𝑄 (𝑠).

4.2 Linearly realizable functions

𝑞𝜋-realizability (Definition 3.2) implies the linearity of many more functions than the action-value
functions. In this section we characterize an interesting set of such functions, whose (approximate)
linearity plays a crucial role in our algorithm and analysis, as their parameters can be conveniently
estimated by least squares using the features. We rely on functions 𝑓 : Sℎ → R (for some ℎ ∈ [𝐻])
being small for all states, relative to the states’ range𝑄-value:
Definition 4.6. For any ℎ ∈ [𝐻], 𝑓 : Sℎ → R is 𝛼-admissible for some 𝛼 > 0 if for all 𝑠 ∈ Sℎ ,
| 𝑓 (𝑠) | ≤ range𝑄 (𝑠)/𝛼.

The key observation is that expected (admissible) 𝑓 values are linearly realizable.
Lemma 4.7 (Admissible-realizability). If 𝑓 : Sℎ → R is 𝛼-admissible then it is realizable, that is,
for all 𝑡 ∈ [ℎ − 1] and 𝜋 ∈ Π, there exists some 𝜃 ∈ R𝑑 with

𝜃2 ≤ 4𝑑0𝐿2/𝛼 such that for all
(𝑠, 𝑎) ∈ S𝑡 × [A],

E
𝜋,𝑠,𝑎

𝑓 (𝑆ℎ) ≈𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃

〉
where 𝜂0 = 5𝑑0𝜂/𝛼.

The proof relies on constructing a set of policies that at states 𝑠 ∈ Sℎ take a higher value action as
opposed to a lower one with a certain probability, configured such that the expected action-value
difference of some pairs within the set of policies is (approximately) proportional to 𝑓 (𝑠). Thus, a
linear combination of the action-values of policies in this set are also (approximately) proportional
to 𝑓 (𝑠). The statement of the lemma then follows from setting 𝜃 to the corresponding linear combi-
nation of the policies’ parameters. The full proof is presented in Appendix G.

Next, we define matrix-valued functions with a special admissibility guarantee even when the under-
lying scalar-valued function does not satisfy any non-trivial admissibility criterion. We introduce a
guess on the near-optimal design parameters that define range𝑄 (Eq. (7)) for some valid precondi-
tioning 𝑄:

Definition 4.8. For ℎ ∈ [2 : 𝐻], fix some arbitrary order of the policies in the set 𝐺𝑄
ℎ (recall that

this set is the support of the near-optimal design for Θ𝑄
ℎ). Let the parameter of the 𝑖th policy in

𝐺𝑄
ℎ be 𝜗𝑖

ℎ for 𝑖 ∈ [𝑑0]. Call a “guess” of these parameters �̂� = (�̂�ℎ)ℎ∈[2:𝐻] = (�̂�𝑖
ℎ)ℎ∈[2:𝐻],𝑖∈[𝑑0]

“valid”, if for all ℎ ∈ [2 : 𝐻], 𝑖 ∈ [𝑑0], �̂�𝑖
ℎ ∈ B(

√
𝑑1 + 1). Let the set of valid guesses be G.4 By

Lemma 4.3, (𝜗𝑖
ℎ)ℎ∈[2:𝐻],𝑖∈[𝑑0] ∈ G, that is, it is a valid guess, and we call this the “correct” guess.

4Note that while 𝐺𝑄
ℎ

contains policies, G and its elements (commonly denoted by �̂�) contain policy param-
eter vectors.

7

From a guess �̂� = (�̂�𝑖
ℎ)ℎ∈[2:𝐻],𝑖∈[𝑑0] we can calculate corresponding guesses of the range𝑄-values:

range�̂�𝑄 (𝑠) = max
𝑘∈[𝑑0]

max
𝑖, 𝑗∈[A]

〈
𝜑𝑄 (𝑠, 𝑖, 𝑗), �̂�𝑘

stage(𝑠)

〉
for all ℎ ∈ [2 : 𝐻], 𝑠 ∈ Sℎ .

Note that for any ℎ∈ [2:𝐻] and 𝑠∈Sℎ , range�̂�𝑄 (𝑠) = range𝑄 (𝑠) if �̂� is the correct guess for stage ℎ.

Let �̄�𝑄 (𝑠) be the unit vector in the direction of the largest feature difference between actions in 𝑠
and the zero vector if all feature vectors are the same (see Eq. (27) for a formal definition). Then,
for any �̂� ∈ G, ℎ ∈ [2 : 𝐻], and 𝑓 : Sℎ → [−𝐻, 𝐻], let

f (𝑠) = �̄�𝑄 (𝑠)�̄�𝑄 (𝑠)⊤min
{
1, range�̂�𝑄 (𝑠)

√
2𝑑𝐻
𝜀

}
𝑓 (𝑠) for 𝑠 ∈ Sℎ .

For such f : Sℎ → R𝑑×𝑑 , we adopt the notation 𝑎⊤f𝑏 for any 𝑎, 𝑏 ∈ R𝑑 to denote the function
𝑠 ∈ Sℎ ↦→ 𝑎⊤f (𝑠)𝑏, and similarly, Tr(f) to denote the function 𝑠 ∈ Sℎ ↦→ Tr(f (𝑠)).
Let Proj∥ (𝑄,ℎ) be the projection matrix onto the linear subspace spanned by those eigenvectors of the
design matrix 𝑉 (𝐺𝑄

ℎ , 𝜌
𝑄
ℎ) (defined in Eq. (25)) whose corresponding eigenvalues are at least 𝛾 (for

some 𝛾 > 0 specified in Appendix B). Intuitively, this is the subspace where Θ𝑄
ℎ has a sufficiently

large width. Let Proj⊥(𝑄,ℎ) be the projection to the orthogonal complement subspace. For any
𝑣 ∈ R𝑑 , we write 𝑣 ∥ (𝑄,ℎ) and 𝑣⊥(𝑄,ℎ) for Proj∥ (𝑄,ℎ) 𝑣 and Proj⊥(𝑄,ℎ) 𝑣, respectively.

We are now ready to state our special admissibility guarantee, which is proved in Appendix G. Let
𝛼 = Õ(𝜀/(𝑑1.5𝐻2)) be as in Eq. (16).
Lemma 4.9. For any ℎ ∈ [2 : 𝐻], �̂� ∈ G, any function f constructed as above from some 𝑓 : Sℎ →
[−𝐻, 𝐻], and any 𝑣, 𝑤 ∈ B(1), 𝑣⊤∥(𝑄,ℎ) f𝑤 is 𝛼-admissible. Furthermore, if �̂� = (𝜗𝑖

ℎ)ℎ∈[2:𝐻],𝑖∈[𝑑0]
(the correct guess), Tr(f) is also 𝛼-admissible.

4.3 Least-squares targets and Optimization Problem 4.10

Recall that SKIPPYELEANOR estimates action-values of states by first adding the estimated one-
step reward and the estimated value-function of the next state in the reduced MDP (where low-range
states are skipped). Due to the linearity of 𝑞𝜋-values, these can be used as target variables of a
least-squares estimator to estimate the policy parameters. This estimator is only guaranteed to be
accurate if the right (low-range) states are skipped; otherwise, we will argue in Section 4.4 that
a discrepancy is detected and it is handled by changing the preconditioning 𝑄. Finally, to ensure
optimism, we select parameter estimates that lead to the largest estimated policy values. The whole
estimation process leads to Optimization Problem 4.10, which we define in this section along with
the functions that it uses as least-square targets. Each estimation is for a particular stage ℎ and
may use the estimates 𝜃𝑖 of Optimization Problem 4.10 for stages 𝑖 > ℎ. In this subsection, we
consider the 𝑚th iteration of the optimization called by SKIPPYELEANOR, and consider 𝑄 fixed. As
a shorthand, we introduce the following notation for 𝑙 ∈ [𝑚], 𝑗 ∈ [𝑛], 𝑘 ∈ [𝐻]:
p(𝑙𝑘 𝑗) = 𝑝𝑙𝑘 𝑗 (𝑘) as recorded in Line 9 of Algorithm 1, and

𝑆
𝑙𝑘 𝑗
p(𝑘) = 𝑆

𝑙𝑘 𝑗

𝑝𝑙𝑘 𝑗 (𝑘) , 𝐴
𝑙𝑘 𝑗
p(𝑘) = 𝐴

𝑙𝑘 𝑗

𝑝𝑙𝑘 𝑗 (𝑘) , 𝑅
𝑙𝑘 𝑗
p(𝑘) = 𝑅

𝑙𝑘 𝑗

𝑝𝑙𝑘 𝑗 (𝑘) , 𝜑
𝑙𝑘 𝑗
𝑡 = 𝜑(𝑆𝑙𝑘 𝑗𝑡 , 𝐴

𝑙𝑘 𝑗
𝑡), 𝜑

𝑙𝑘 𝑗
p(𝑘) = 𝜑(𝑆𝑙𝑘 𝑗p(𝑘) , 𝐴

𝑙𝑘 𝑗
p(𝑘)) .

We collect the set of (𝑙, 𝑘, 𝑗) tuples for which the 𝑘 th skippy step lands at stage 𝑡, for 𝑡 ∈ [𝐻], as
I𝑚 (𝑡) = {(𝑙, 𝑘, 𝑗) : 𝑙 ∈ [𝑚 − 1], 𝑗 ∈ [𝑛], 𝑘 ∈ [𝐻], p(𝑙𝑘 𝑗) = 𝑡}

Note in particular that here 𝑙 ∈ [𝑚 − 1], so I𝑚 only considers data collected prior to iteration 𝑚.

To estimate the parameters �̂� and 𝜃, we consider (simulated) trajectories of SKIPPYPOLICY starting
from stage 𝑡. For simplicity, we suppress the dependence of quantities on �̂� and 𝜃, which will be
brought back later. The skipping probability 1−𝜏, the policy 𝜋+ (to be also used in SKIPPYPOLICY),
and corresponding clipped action-value estimates are defined as

𝜏(𝑠) = min

{
1, range�̂�𝑄 (𝑠)

√
2𝑑𝐻
𝜀

}
if stage(𝑠) > 1, and 𝜏(𝑠1) = 1;

𝜋+ (𝑠𝑖) = arg max
𝑎∈[A]

〈
𝜑(𝑠𝑖 , 𝑎), 𝜃𝑖

〉
, 𝐶 (𝑠𝑖) = clip[0,𝐻]

〈
𝜑(𝑠𝑖 , 𝜋+ (𝑠𝑖)), 𝜃𝑖

〉
.

(8)

8

Let 𝑠𝑖�= (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , . . . , 𝑠𝐻 , 𝑎𝐻 , 𝑟𝐻) ∈ S𝑖 × [A] × [0, 1] × · · · × [0, 1] be any ending of a trajectory.
For 𝑠𝑡+1 �, let 𝐼 be the (random) index of the first state that is not skipped by SKIPPYPOLICY
with the above 𝜏 (or 𝐻 + 1, if such an index does not exist). Then the estimated policy value of
SKIPPYPOLICY from stage 𝑡 is

E𝐼 [
∑𝐼−1

𝑢=𝑡 𝑟𝑢 + 1 {𝐼 < 𝐻 + 1}𝐶 (𝑠𝐼)] ,
the sum of rewards along the skipped states plus the policy-value estimate from stage 𝐼. It follows
from Corollary 4.11 below (proved based on Lemma 4.9) that if range�̂�𝑄 is an accurate estimate of
range𝑄, then this quantity decomposes into terms that are linearly expressible using the features.
Therefore, we use such quantities as least-square targets. Indeed, writing out the expectation, we
can re-express the estimated policy value as the sum of all rewards

∑𝐻
𝑢=𝑡 𝑟𝑢 plus a correction term

𝐸→ (𝑠𝑡+1�) defined as

𝐸→ (𝑠𝑖�) = 𝐻∑
𝑗=𝑖

𝐷 (𝑠 𝑗�)𝜏(𝑠 𝑗) 𝑗−1∏
𝑗′=𝑖

(1 − 𝜏(𝑠 𝑗′)) where 𝐷 (𝑠𝑖�) = 𝐶 (𝑠𝑖) −
𝐻∑
𝑢=𝑖

𝑟𝑢 for 𝑖 > 1. (9)

The next optimization problem aims to find optimistic parameters yielding the largest estimated
action-value function for 𝑠1, where 𝜃 is in the confidence ellipsoid of the least-squares estimates 𝜃.
Optimization Problem 4.10 (for iteration 𝑚). For input state 𝑠, with 𝛽 defined in Appendix B
(emphasizing the dependence of functions defined above on �̂� and 𝜃 by adding them as subscripts):

arg max
�̂�∈G, 𝜃𝑡 ∈B(4𝑑0𝐻𝐿2/𝛼) for 𝑡 ∈[𝐻]

𝐶�̂� 𝜃 (𝑠1) subject to, for all 𝑡 ∈ [𝐻]

𝑋𝑚𝑡 = 𝜆𝐼 +
∑

𝑙𝑘 𝑗∈I𝑚 (𝑡)
𝜑
𝑙𝑘 𝑗
𝑡 𝜑

𝑙𝑘 𝑗
𝑡

⊤
,
𝜃𝑡 − 𝜃𝑡𝑋𝑚𝑡

≤ 𝛽𝐻, 𝜃𝑡 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

(
𝐸→
�̂� 𝜃
(𝑆𝑙𝑘 𝑗

𝑡+1 , . . . , 𝑅
𝑙𝑘 𝑗
𝐻) +

𝐻∑
𝑢=𝑡

𝑅
𝑙𝑘 𝑗
𝑢︸ ︷︷ ︸

least-squares target

)
.

Since our realizability results in Section 4.2 only apply to functions defined at a given stage (as only
memoryless policies are 𝑞𝜋-realizable), to be able to show that the least-squares targets are linearly
realizable, we first decompose 𝐸→ (𝑠𝑖�) (𝑖 ∈ [2 : 𝐻]) to directly express the effect of each stage in
the trajectory (backwards): defining 𝐸 (𝑠𝑖�) = 𝐸→ (𝑠𝑖�) − 𝐸→ (𝑠𝑖+1�) (for convenience, we use the
notation 𝐸→ (𝑠𝐻+1�) = 0), we easily obtain

𝐸→ (𝑠𝑖�) = ∑𝐻
𝑗=𝑖 𝐸 (𝑠 𝑗�) and 𝐸 (𝑠𝑖�) = 𝜏(𝑠𝑖)

(
𝐷 (𝑠𝑖�) − 𝐸→ (𝑠𝑖+1�)) . (10)

Next we define matrix-valued functions, whose trace equals 𝐸 (𝑠𝑖�), that have the same form as f
in Section 4.2, for which Lemma 4.9 applies. This is crucial in establishing optimism of Optimiza-
tion Problem 4.10, as well as learning from instances where we detect that 𝐸→ is not realizable in
Optimization Problem 4.12. To this end, let

𝐹 (𝑠𝑖�) = �̄�𝑄 (𝑠𝑖)�̄�𝑄 (𝑠𝑖)⊤𝐸 (𝑠𝑖�) and �̄� (𝑠𝑖) = E𝜋0 ,𝑠𝑖 [𝐹 (𝑠𝑖 , 𝐴𝑖 , . . . , 𝑅𝐻)] for 𝑠𝑖 ∈ S𝑖 .

Let Θ̄ = (B(4𝑑0𝐻𝐿2/𝛼))𝐻 denote the base set for the variables 𝜃𝑡 in Optimization Problem 4.10. As
�̄� is of the same form as f, we can apply Lemma 4.9 and then Lemma 4.7 to arrive at the following:

Corollary 4.11. For any �̂� ∈ G, 𝜃 ∈ Θ̄, 𝑣, 𝑤 ∈ B(1), and for any 𝑡 ∈ [𝐻 − 1], 𝑖 ∈ [𝑡 + 1 : 𝐻], there
exists some 𝜃𝑡𝑖 ∈ R𝑑 with

𝜃𝑡𝑖2 ≤ 4𝑑0𝐿2/𝛼 = 1/
√
𝜆 such that for all (𝑠, 𝑎) ∈ S𝑡 × [A], where 𝜂0

is defined in Lemma 4.7.

E𝜋0 ,𝑠,𝑎

[
𝑣⊤∥(𝑄,𝑖) �̄��̂� 𝜃 (𝑆𝑖)𝑤

]
≈𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉
. (11)

Furthermore, if �̂� is the correct guess, there exists some 𝜃 ′𝑡𝑖 ∈ R𝑑 with
𝜃 ′𝑡𝑖2 ≤ 4𝑑0𝐿2/𝛼 such that

for all (𝑠, 𝑎) ∈ S𝑡 × [A], E𝜋0 ,𝑠,𝑎 [𝐸�̂� 𝜃 (𝑆𝑖 , . . . , 𝑅𝐻))] = E𝜋0 ,𝑠,𝑎 [Tr(�̄��̂� 𝜃 (𝑆𝑖))] ≈𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃 ′𝑡𝑖

〉
.

4.4 Checking consistency

Considering the 𝑚th iteration of SKIPPYELEANOR, we want to verify if the estimated targets of Opti-
mization Problem 4.10 are accurate (and learn if a discrepancy is detected), by using Corollary 4.11
on the targets’ decomposition into 𝐹-functions. We filter the data collected in the 𝑚th iteration with
the indicator 𝑐 𝑗

𝑘𝑖 = 1 {p(𝑚𝑘 𝑗) < 𝑖} for 𝑗 ∈ [𝑛], 𝑘 ∈ [𝐻 + 1], 𝑖 ∈ [𝐻 + 1], and further constrain

9

this by another indicator 𝑐
𝑗
𝑘𝑖 (defined in Appendix B) that requires the data-point’s least-squares

uncertainty term to be sufficiently low, and the prediction non-negative (the contribution of the rest
of the data will be analyzed separately). Next, we define the least-squares solution for estimating
the matrix-valued 𝐹, as well as the empirical average prediction and realization of 𝐹 on the data
collected in the 𝑚th round. For any 𝑖 ∈ [2 : 𝐻], 𝑘 ∈ [𝑖−1] (recall that ⊗ denotes the tensor product):

𝜃𝑡𝑖
�̂� 𝜃

= 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡 ⊗𝐹�̂� 𝜃 (𝑆

𝑙𝑘 𝑗
𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻) for 𝑡 ∈ [𝑖 − 1]

𝑦𝑘𝑖
�̂� 𝜃

=
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖𝜑

𝑚𝑘 𝑗
p(𝑘)

⊤
𝜃

p(𝑚𝑘 𝑗) ,𝑖
�̂� 𝜃

�̂�𝑘𝑖
�̂� 𝜃

=
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖𝐹�̂� 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻)

(12)

In Appendix E.1, it is established via the usual least-squares analysis techniques and covering argu-
ments, that with high probability the norm of the product of the matrix 𝑦𝑘𝑖

�̂� 𝜃
− �̂�𝑘𝑖

�̂� 𝜃
and the projection

matrix Proj∥ (𝑄,𝑖) is small (Lemmas E.2 and E.3). The next optimization problem tests if this is true
in arbitrary directions:
Optimization Problem 4.12 (Consistency check). Input: (�̂�, 𝜃)

arg max
𝑘∈[𝐻−1], 𝑖∈[𝑘+1:𝐻], 𝑣∈R𝑑 :∥𝑣 ∥2=1

𝑣⊤
(
𝑦𝑘𝑖
�̂� 𝜃
− �̂�𝑘𝑖

�̂� 𝜃

)
𝑣

Lemma E.1 shows that the projection 𝑤 = Proj𝑍 (𝑄,𝑖) 𝑣 is close to 𝑣, where 𝑣 is the outcome of
Optimization Problem 4.12. Also, Lemmas E.1–E.3 imply that if the consistency check fails (i.e.,
Line 13 is executed because the value of Optimization Problem 4.12 is large), then 𝑤 aligns well with
the subspace Proj⊥(𝑄,𝑖) projects to, and therefore 𝑄 stays a valid preconditioning after appending 𝑤
to the list of values 𝑄 is calculated from (Lemma E.4). Thus, 𝑄 is always a valid preconditioning.

5 Proof overview

The proof of Theorem 4.1 is presented in Appendix E. It is composed of the following main steps:
First, we bound the number of times the consistency check can fail (i.e., Line 13 is executed) by
Lemma 4.4. Combining this with Lemma E.5, an elliptical potential argument bounding the number
of times the average uncertainty can be large (these are the only two ways that the main iteration
can continue) implies a sample-complexity result for SKIPPYELEANOR (Corollary E.6). Having
limited the number of times the consistency check can fail, we derive guarantees regarding the
performance of the policy returned by the algorithm: Via an induction argument (Lemma E.8) we
show Corollary E.9, which shows that with high probability the difference between the optimization
value of Optimization Problem 4.10, 𝐶�̂�, 𝜃 (𝑠1) and 𝑣𝜋

𝑚𝐻
scales with the average uncertainty term∑𝐻

𝑖=1 �̄�
𝑚
𝑘 . Thus, they are close when SKIPPYELEANOR returns in Line 17. This is complemented

with the optimism property proved in Lemma E.10, stating that the optimization value 𝐶�̂�, 𝜃 (𝑠1) is
close to 𝑣★(𝑠1). Combined, this proves Theorem 4.1.

6 Future work

Since we are not aware of a computationally efficient implementation of SKIPPYELEANOR, it re-
mains an open question whether the problem of learning near-optimal policies from online interac-
tions with a 𝑞𝜋-realizable MDP (Problem 3.3) is possible if the computational resources as well as
the sample complexity are bounded by a polynomial in the relevant parameters. One approach is to
replace ELEANOR with LSVI-UCB as the underlying algorithm, as the latter, despite having worse
sample complexity, has a computationally efficient implementation [Jin et al., 2020b]. The challenge
is to compute the optimal solution for the parameter �̂� in Optimization Problem 4.10. This parame-
ter interacts with the least-squares targets in a highly nonlinear way. We have been unable to derive
a computationally efficient approximation that has an additive instead of a multiplicative approxima-
tion error (additive errors increase linearly in 𝐻, while multiplicative errors increase exponentially).
Alternatively, it may be possible to show a computational hardness result for Problem 3.3 by e.g.,
reducing it to the satisfiability problem. These are left for future work. Our work on the realizability
of auxiliary functions (Section 4.2) may be of independent interest for designing provably efficient
algorithms for related problem settings, e.g., the setting of 𝑞𝜋-realizability in batch RL, where the
data collection is not controlled.

10

References
Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient

for sample efficient reinforcement learning? In International Conference on Learning Represen-
tations, 2019.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143, 2020a.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–
2143. PMLR, 2020b.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

T. Lattimore and Cs. Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

Tor Lattimore, Csaba Szepesvári, and Gellért Weisz. Learning with good feature representations in
bandits and in RL with a generative model. In ICML, pages 9464–9472, 2020.

Michael J Todd. Minimum-volume ellipsoids: Theory and algorithms. SIAM, 2016.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Andrew Wagenmaker, Yifang Chen, Max Simchowitz, Simon S Du, and Kevin Jamieson. Reward-
free RL is no harder than reward-aware RL in linear Markov decision processes. arXiv preprint
arXiv:2201.11206, 2022.

Gellért Weisz, András György, Tadashi Kozuno, and Csaba Szepesvari. Confident approximate
policy iteration for efficient local planning in 𝑞𝜋-realizable MDPs. In Advances in Neural Infor-
mation Processing Systems, 2022.

Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena Lazić, and Csaba Szepesvári. Efficient local
planning with linear function approximation. In International Conference on Algorithmic Learn-
ing Theory, pages 1165–1192. PMLR, 2022.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near opti-
mal policies with low inherent Bellman error. In International Conference on Machine Learning,
pages 10978–10989. PMLR, 2020.

11

A Notation

As usual, we use R, N, and N+ to denote the set of reals, non-negative and positive integers, respec-
tively. For 𝑖 ∈ N+, let [𝑖] = {1, . . . , 𝑖}; for another positive integer 𝑗 , let [𝑖 : 𝑗] = {𝑖, . . . , 𝑗} if
𝑖 ≤ 𝑗 , and [𝑖 : 𝑗] = {} otherwise. For 𝑎, 𝑏, 𝑥 ∈ R, let clip[𝑎,𝑏] (𝑥) = min{max{𝑥, 𝑎}, 𝑏} and let ⌈𝑥⌉
denote the smallest integer i such that 𝑖 ≥ 𝑥. Let 0 be the all-0 vector in R𝑑 and 𝐼 the 𝑑-dimensional
identity matrix. For a (square) matrix 𝑉 , let 𝑉† denote its Moore-Penrose inverse, and Tr(𝑉) denote
its trace. Let PD (and PSD) denote the set of positive definite (and positive semi-definite, respec-
tively) matrices in R𝑑×𝑑 . For some 𝐴 ∈ PSD let 𝐴

1
2 denote the unique matrix 𝐵 ∈ PSD such that

𝐴 = 𝐵𝐵. For 𝑉 ∈ PD and 𝑥 ∈ R𝑑 , let ∥𝑥∥2𝑉 = 𝑥⊤𝐺𝑥. For matrices 𝐴 and 𝐵, we say that 𝐴 ⪰ 𝐵 (or
𝐴 ⪯ 𝐵) if 𝐵 − 𝐴 (or 𝐴 − 𝐵, respectively) is positive semidefinite. Ker(𝐴) and Im(𝐴) are the kernel
(or null space), and image, respectively, of matrix 𝐴. For compatible vectors 𝑥, 𝑦, let ⟨𝑥, 𝑦⟩ be their
inner product: ⟨𝑥, 𝑦⟩ = 𝑥⊤𝑦. We write 𝑦⊗𝐴 for the tensor product between 𝑦 and matrix 𝐴, and then
⟨𝑥, 𝑦⊗𝐴⟩ = ⟨𝑥, 𝑦⟩ 𝐴. Where 𝑄 and ℎ are obvious from the context, we write 𝑣 ∥ and 𝑣⊥ for 𝑣 ∥ (𝑄,ℎ)
and 𝑣⊥(𝑄,ℎ) , respectively. Throughout the paper, we omit commas between quantities in subscripts
or superscript for clarity of presentation, for example, by writing 𝐴𝑏𝑐 for 𝐴𝑏,𝑐 .

For the big-Oh notation O, we introduce its counterpart Õ that hides logarithmic factors of the
problem parameters (𝑑, 𝐻, 𝜀−1, 𝜁−1, 𝐿1, 𝐿2).

B Parameters of Algorithm 1

𝑛 = Õ
(
𝑑5𝐻6/𝜀2

)
(for precise value see Eq. (42))

𝜔 = 7(𝑑1 + 1) + 7/3 = Õ(𝑑) (13)

𝛾−1 = 8𝑑 = Õ(𝑑) (14)

𝛽 = Õ(𝐻1.5𝑑) (for precise value see Eq. (36)) (15)

𝛼−1 =

√
2𝑑
√
𝑑1 + 1𝐻2
√
𝛾𝜀

= Õ(𝑑1.5𝐻2/𝜀) (16)

𝜆−1 = (4𝑑0𝐿2/𝛼)2 (17)

𝑚max = 𝛽2 log

(
1 +

𝐻𝑚𝑛𝐿2
1

𝑑𝜆

)
+ 1 = Õ

(
𝐻3𝑑2

)
𝑚′max = 𝑚max + 𝐻𝑑1 = Õ(𝐻3𝑑2)

�̄�𝑚
𝑘 =

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1 min

{
2(𝛽𝜔𝑑𝐻)−1,

𝜑𝑚𝑘 𝑗
p(𝑘)

𝑋−1
𝑚,p(𝑚𝑘 𝑗)

}
for 𝑘 ∈ [𝐻] (18)

(19)

𝑐
𝑗
𝑘𝑖 = 1

{
p(𝑚𝑘 𝑗) < 𝑖 and

𝜑𝑚𝑘 𝑗
p(𝑘)

𝑋−1
𝑚,p(𝑚𝑘 𝑗)

< 2(𝛽𝜔𝑑𝐻)−1 and
〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
≥ 0

}
(20)

average_uncertainty =
𝐻∑
𝑘=1

�̄�𝑚
𝑘

uncertainty_threshold = 𝜀/(𝑑𝐻2𝛽𝜔)

discrepancy_threshold = �̄�𝑚
𝑘 𝛽𝜔 + 3

𝜀

𝑑𝐻2

Assumption on the maximum discrepancy:

𝜂 ≤ 𝛼

10𝑑0
min

{
𝜀/(𝑑𝐻3𝜔), 1/

√
𝑚′max𝑛𝐻

}
= Õ

(
𝜀2

𝑑6𝐻8

)
(21)

12

C Proof of Proposition 3.4

Proof of Proposition 3.4, and the MDP conversion argument. First, for (i), we show the linearity
of rewards with 𝜃1, . . . , 𝜃𝐻 . For this take any ℎ ∈ [𝐻]. Fix any policy 𝜋 ∈ Π and let 𝜃ℎ ∈ B(𝐿2)
be such that for all (𝑠, 𝑎) ∈ Sℎ × [A], 𝑞𝜋 (𝑠, 𝑎) ≈𝜂

〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
(the existence of such a 𝜃 follows

from Definition 3.2). If ℎ = 𝐻, E𝑅 ∼R(𝑠,𝑎) [𝑅] = 𝑞𝜋 (𝑠, 𝑎), so 𝜃𝐻 = 𝜃𝐻 satisfies Definition 3.1.
For ℎ < 𝐻, let 𝑓 : Sℎ+1 → R be defined as 𝑓 (𝑠) = 𝑣𝜋 (𝑠). Fix an arbitrary 𝑄 ∈ PD𝐻 , e.g.,
𝑄 = (𝐼, . . . , 𝐼). Since 𝑣𝜋 (𝑠) ∈ [0, 𝐻] and range𝑄 (𝑠) ≥ range(𝑠)/

√
2𝑑 ≥ 𝛼/

√
2𝑑 by Proposition 4.5,

𝑓 is 𝛼/(
√

2𝑑𝐻)-admissible, and therefore by Lemma 4.7 we can take 𝜃ℎ ∈ B(4𝐻𝑑0
√

2𝑑𝐿2/𝛼) such
that for all (𝑠, 𝑎) ∈ Sℎ × [A],

E(𝑣𝜋 (𝑆ℎ+1) | 𝑠, 𝑎) ≈√2𝑑𝐻 𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
,

where, as before, 𝜂0 = 5𝑑0𝜂/𝛼. Since

E
𝑅 ∼R(𝑠,𝑎)

(𝑅) = 𝑞𝜋 (𝑠, 𝑎) − E(𝑣𝜋 (𝑆ℎ+1) | 𝑠, 𝑎) ,

letting 𝜃ℎ = 𝜃ℎ − 𝜃ℎ satisfies (i) of Definition 3.1 with 𝜅 = 𝜂 +
√

2𝑑𝐻𝜂0 = 𝜂 + 5𝐻
√

2𝑑𝑑0𝜂/𝛼.

To show (ii), take any 𝑓 : S → [0, 𝐻] and ℎ ∈ [𝐻 − 1]. As before, 𝑓 is 𝛼/(
√

2𝑑𝐻)-admissible,
therefore Lemma 4.7 immediately provides 𝜃 ′ℎ satisfying the required conditions.

Therefore, the MDP is shown to be linear with misspecification 𝜂 +
√

2𝑑𝐻𝜂0, and parameter bound
𝐿2 (4𝐻𝑑0

√
2𝑑/𝛼 + 1). □

Sketch of the 𝑞𝜋-to-linear MDP conversion argument. We elaborate on the conversion to linear
MDP mechanism presented in Section 3. As the basis of this argument is that an idealistic range-
determining oracle is present, we note that this argument only serves as intuition and is otherwise
tangential to our proof. Instead of a direct approach of learning this oracle, our proof argues that
learning about this oracle happens whenever there is a need (performance shortfall) for it. A formal
reduction to linear MDPs given this oracle however is fairly straightforward but cumbersome, with
the caveat that the linear MDP will end up with 𝑑𝐻 (instead of 𝑑) dimensional features. One would
proceed by copying the features of each state 𝑠 in stage ℎ into the ℎth chunk of size 𝑑 of this vector
of size 𝑑𝐻 (the rest of the vector remains zero). A similar transformation is applied to all 𝜃ℎ (𝜋).
Then, 𝐻 copies are made of each high-enough-range state, with all possible stages (but keeping the
feature vectors). These will be the states of the new MDP we construct. When a transition from state
𝑠 leads to skipped states, the linear MDP returns with the copy of the first non-skipped state that has
a stage counter of stage(𝑠) + 1, so that in this linear MDP the stage numbers are consecutive (as
required by our definitions). 𝑞𝜋-realizability of this modified MDP is easy to show, and (as it has no
low-range states) Proposition 3.4 can be used to show that the modified MDP is linear. To account
for the fact that this new MDP may finish an episode in fewer than 𝐻 steps due to the skips, we add
a special, zero-reward, self-transitioning state called “episode-over”. To ensure that the MDP stays
linear, we extend the feature vectors of each state by a scalar 1, and a scalar indicator of being in
this state, with all original features of the “episode-over” state defined to be zero. It is easy to see
that this construction leads to a linear MDP with the desired action-value functions.

D Intuition behind our method and proof strategy from the perspective of
ELEANOR [Zanette et al., 2020]

The starting point of our method is the ELEANOR algorithm, which is designed for linear MDPs.
Similarly to SKIPPYELEANOR, ELEANOR solves an optimistic optimization problem inside a loop.
The optimization problem computes optimistic estimates 𝜃𝑡 of the parameters of the MDP simultane-
ously for all 𝑡 ∈ [𝐻], and in each iteration of the loop, more data is collected according to the policy
that is optimal for the MDP defined by the estimated parameters. Initial estimates 𝜃𝑡 are computed
via solving least-squares problems whose covariates are the features corresponding to state-action
pairs (𝑆𝑡 , 𝐴𝑡) from all the data collected so far, while the corresponding least-squares targets are
computed as the sum of the immediate reward 𝑅𝑡 and the estimated value for 𝑆𝑡+1, computed from
𝜃𝑡+1. 𝜃𝑡 is then optimistically chosen as the solution of the optimization problem, in the neighbor-
hood (confidence ellipsoid) of 𝜃𝑡 , the solution to this least-squares problem. It is shown that this

13

optimistic choice of estimates results in an optimistic estimate of the value of 𝑣★ of the initial state,
and the regret is upper bounded in terms of the sum of elliptic potentials of the covariates.

This argument appears in our analysis too, with minor modifications due to our PAC-like setting
(instead of aiming to bound the regret), leading to our final-iteration condition of Line 16 in Algo-
rithm 1. Our Optimization Problem 4.10 is similar to ELEANOR’s, and the parameters 𝜃𝑡 and 𝜃𝑡
have the same meaning. A key difference between the optimization problems of ELEANOR and
SKIPPYELEANOR are how the least-squares targets are determined. For ELEANOR, it is the sum of
the immediate reward 𝑅𝑡 and its estimated value for 𝑆𝑡+1); with this target, only one on-policy rollout
is required for each episode in order to get the least-squares parameter estimate for all 𝐻 stages. In
contrast, our least-squares targets are formed as the sum of 𝑅𝑡 + . . .+𝑅𝑡+𝑖 and the estimated value for
𝑆𝑡+𝑖+1, where 𝑖, the number of stages “skipped”, depends on the guess �̂�. The guess �̂� is selected
only in Optimization Problem 4.10, and we do not know its value at the time of data collection, so we
cannot know which stages will have to be skipped for each rollout. Therefore, (i) we need access to
the rewards of the current policy at any stage (similarly to ELEANOR), and hence we run the current
policy to any stage (including the last one); and (ii) perform rollouts with the fixed policy 𝜋0 (from
any stage) to be able to estimate the reward 𝑅𝑡 + . . .+ 𝑅𝑡+𝑖 collected while skipping over 𝑖 stages (for
any 𝑖). To ensure this happens for every stage, we start Phase II from every stage 𝑘 , resulting in the
additional for loop in Line 6 of Algorithm 1 compared to ELEANOR. Finally, the randomization in
Phase I is applied to make the optimization problem smooth, as described in Section 4.

One could analyze this algorithm similarly to the analysis of ELEANOR if it were not for the fact that
the least-squares targets we just introduced are not realizable in general. We can, however, prove
the realizability of certain components of the matrix-valued version of these targets, 𝐹 (Lemma 4.9
and Corollary 4.11). This enables us to detect when the realizability of our least-squares targets
fail, measure the direction (component) of the largest error, and learn from that. This is the job of
Optimization Problem 4.12: �̂�𝑘𝑖

�̂� 𝜃
corresponds to the matrix-valued empirical measurements of 𝐹,

while the 𝑦𝑘𝑖
�̂� 𝜃

are the average predictions of the same quantities. If the targets are realizable, which
happens if we manage to skip the right number of stages), these matrices are very close; if not, the
direction of their largest discrepancy tells us something about ⊥ (𝑄, 𝑖), and allows us to learn.

Optimism ties all this together: either there is no shortfall between predicted and measured 𝑞-values
(and we are done) or we grow the elliptical potential of 𝑋 (the two cases present in the analysis of
ELEANOR, Zanette et al. [2020]), or we grow the elliptical potential of 𝑄 (the new case due to the
lack of realizability guarantees).

E Proof of Theorem 4.1

In this section we present the proof of Theorem 4.1. Recall that some quantities are defined in
Appendix B.

E.1 Checking consistency

We introduce some lemmas to establish the required guarantees of the consistency checker. Their
proofs, which rely on the usual least squares analysis techniques and covering arguments, are pre-
sented in Appendix H.

Lemma E.1. Let (𝑘, 𝑖, 𝑣) be the outcome of Optimization Problem 4.12 any time during the execu-
tion of SKIPPYELEANOR, and let 𝑤 = Proj𝑍 (𝑄,𝑖) 𝑣 as in the algorithm. Then,

𝑤⊤
(
𝑦𝑘𝑖
�̂� 𝜃
− �̂�𝑘𝑖

�̂� 𝜃

)
𝑤 ≥ 𝑣⊤

(
𝑦𝑘𝑖
�̂� 𝜃
− �̂�𝑘𝑖

�̂� 𝜃

)
𝑣 − 𝜀

𝑑𝐻2𝜔

Lemma E.2. There is an event E1 that happens with probability at least 1 − 𝜁 , such that under E1,
during the execution of SKIPPYELEANOR, when the beginning of any iteration (Line 5) is executed,
for any 𝑡 ∈ [𝐻−1], 𝑖 ∈ [𝑡+1 : 𝐻], for any �̂� ∈ G, 𝜃 ∈ Θ̄, and 𝑣, 𝑤 ∈ B(1), for all (𝑠, 𝑎) ∈ S𝑡 × [A],����𝑣⊤∥ (

𝜑(𝑠, 𝑎)⊤𝜃𝑡𝑖
�̂� 𝜃
− E

𝜋0 ,𝑠,𝑎
�̄��̂� 𝜃 (𝑆𝑖)

)
𝑤

���� ≤ ∥𝜑(𝑠, 𝑎)∥𝑋−1
𝑚𝑡

𝛽 + 𝜀

𝑑𝐻2𝜔
,

where •∥ denotes •∥ (𝑄,𝑖) .

14

The next lemma uses the average least-squares predictions’ (capped) uncertainty term �̄�𝑚
𝑘 (defined

in Eq. (18)), where the average is taken over predictions from the state-action pair where Phase I of
SKIPPYPOLICY(·, ·, 𝑘) ends.
Lemma E.3. There is an event E2 with probability at least 1 − 𝜁 , such that under E1 ∩ E2, during
the execution of SKIPPYELEANOR, when Optimization Problem 4.12 is solved (Line 10), for (�̂�, 𝜃)
as recorded in Line 5 for all 𝑘 ∈ [𝐻 − 1], 𝑖 ∈ [𝑘 + 1 : 𝐻], and 𝑣, 𝑤 ∈ B(1),���𝑣⊤∥ (

𝑦𝑘𝑖
�̂� 𝜃
− �̂�𝑘𝑖

�̂� 𝜃

)
𝑤
��� ≤ �̄�𝑚

𝑘 𝛽 + 3
𝜀

𝑑𝐻2𝜔

where •∥ denotes •∥ (𝑄,𝑖) .

Together, these lemmas can be used to show that the vector 𝑤 derived from Line 10 in SKIPPYE-
LEANOR is sufficiently aligned with both 𝑍 (𝑄, ·) and the subspace Proj⊥(𝑄, ·) projects to, which
leads to the following important result:
Lemma E.4. Under the E1 ∩ E2, if Line 13 is executed any time during the execution of SKIP-
PYELEANOR (i.e., when the consistency check fails), then the resulting 𝑄 continues to be a valid
preconditioning.

From now on, our lemmas assume the high-probability events of Lemmas E.2 and E.3 hold, and
therefore 𝑄 is a valid preconditioning at any time during the execution by Lemma E.4.

E.2 Sample complexity bounds

We bound the number of iterations of 𝑚 that SKIPPYELEANOR can execute. The proof of the
following lemma is presented in Appendix I:
Lemma E.5. Throughout the execution of SKIPPYELEANOR, 𝑚 ≤ 𝑚max.

Note that throughout the execution of SKIPPYELEANOR, 𝑚′ ≤ 𝑚′max. As 𝑚′ −𝑚 equals the number
of times Line 13 is executed, i.e., the sum of sequence lengths corresponding to 𝑄, by Lemma 4.4,
Corollary E.6. Under E1 ∩ E2, SKIPPYELEANOR returns with a policy before exiting the while
loop of Line 3, and as each iteration executes 𝐻𝑛 trajectories in Line 8, the number of interactions
of SKIPPYELEANOR with the MDP is bounded by Õ

(
𝐻11𝑑7/𝜀2) .

E.3 Performance guarantee

We next consider the 𝑚th iteration of SKIPPYELEANOR under the assumption that the consistency
check passes, that is, Line 16 is executed. We intend to guarantee the performance of 𝜋𝑚𝐻 in terms
of

∑𝐻
𝑡=1 �̄�

𝑚
𝑘 , given that the optimization value 𝑥 satisfies 𝑥 ≤ �̄�𝑚

𝑘 𝛽𝜔+3 𝜀
𝑑𝐻 2 (which follows from the

execution reaching Line 16). Next we introduce variants of 𝑐 𝑗
𝑘𝑖 and 𝑐

𝑗
𝑘𝑖 (Eq. (20)) which act, instead

of the data collected during the execution of the algorithm, on a trajectory (𝑆ℎ , 𝐴ℎ , 𝑅ℎ)ℎ∈[𝐻] and
corresponding stage mapping 𝑝 obtained by an independent run of SKIPPYPOLICY, which will be
clear from the context: 𝑐𝑘𝑖 = 1 {𝑝(𝑘) < 𝑖}, and

𝑐𝑘𝑖 = 1

{
𝑝(𝑘) < 𝑖 and

𝜑(𝑆𝑝 (𝑘) , 𝐴𝑝 (𝑘))

𝑋−1
𝑚,𝑝 (𝑘)

< 2(𝛽𝜔𝑑𝐻)−1 and
〈
𝜑(𝑆𝑝 (𝑘) , 𝐴𝑝 (𝑘)), 𝜃𝑝 (𝑘)

〉
≥ 0

}
.

Remark E.7. In our analysis we rely on the obvious fact that the laws of the trajectories of
SKIPPYPOLICY(�̂�, 𝜃, 𝑘) and SKIPPYPOLICY(�̂�, 𝜃, 𝑘 + 1) are the same until stage 𝑝(𝑘 + 1) (as
the policies are the same until then), for any parameters �̂� and 𝜃. This includes 𝑆𝑝 (𝑘+1) but not
𝐴𝑝 (𝑘+1) if 𝑝(𝑘 + 1) ≤ 𝐻, and includes the whole trajectory ending with 𝑅𝐻 otherwise.

We prove the following using induction on 𝑘 = 𝐻, . . . , 1 in Appendix J:
Lemma E.8. There is an event E3 with probability at least 1 − 3𝜁 , such that under E1 ∩ E2 ∩ E3,
during the execution of SKIPPYELEANOR, whenever Line 16 is executed, for (�̂�, 𝜃) as recorded in
Line 5 of the current iteration, for 𝑘 ∈ [𝐻],

�̄�𝑘 := E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝐶�̂� 𝜃 (𝑆𝑝 (𝑘)) ≤ E
𝜋𝑚𝐻 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 2
𝐻∑
𝑖=𝑘

�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 + 4(𝐻 − 𝑘 + 1) 𝜀

𝐻
. (22)

15

As 𝑆1 = 𝑠1 is fixed and 𝜏(𝑠1) = 1, we get the following corollary, which shows that the value 𝐶�̂� 𝜃

of the solution (�̂�, 𝜃) of Optimization Problem 4.10 can be used as a lower bound on the value of
the policy 𝜋𝑚𝐻 up to the uncertainty and some 𝜀 terms:

Corollary E.9. Under E1∩E2∩E3, the value of Optimization Problem 4.10 with the solution (�̂�, 𝜃)
satisfies

𝐶�̂� 𝜃 (𝑠1) = �̄�1 ≤ E
𝜋𝑚𝐻 ,𝑠1

𝐻∑
𝑢=1

𝑅𝑢 + 2
𝐻∑
𝑖=1

�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻2 + 4𝜀 = 𝑣𝜋

𝑚𝐻 (𝑠1) + 2
𝐻∑
𝑖=1

�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻2 + 4𝜀 .

E.4 Optimism of Optimization Problem 4.10

The following establishes the optimistic property, that is, that the value of Optimization Problem 4.10
competes with 𝑣★(𝑠1). The proof relies on the fact that the correct guess �̂� and a good choice of 𝜃
are feasible for the optimization problem, combined with the fact that this 𝜃 induces a policy 𝜋 =
SKIPPYPOLICY(�̂�, 𝜃, 𝐻) that takes action-value maximizing actions according to a very accurate
approximation of action-values almost everywhere. In fact, it only skips states whose range is at
most 𝜀/𝐻. The proof is presented in Appendix K.

Lemma E.10. There is an event E4 with probability at least 1 − 𝜁 , such that under E1 ∩ E2 ∩ E4,
throughout the execution of SKIPPYELEANOR, the value of Optimization Problem 4.10 is at least
𝑣★(𝑠1) − 2𝜀.

Proof of Theorem 4.1. We combine Lemma E.10 with Corollary E.9, Corollary E.6, and the fact
that the condition of Line 16 is satisfied when SKIPPYELEANOR returns with a policy, to get that
under E1 ∩ E2 ∩ E3 ∩ E4, that is, with probability at least 1 − 6𝜁 , SKIPPYELEANOR interacts with
the MDP for at most Õ

(
𝐻11𝑑7/𝜀2) many steps, before returning with the policy 𝜋𝑚𝐻 that satisfies

𝑣★(𝑠1) ≤ 𝐶�̂� 𝜃 (𝑠1) + 2𝜀 ≤ 𝑣𝜋
𝑚𝐻 (𝑠1) + 2

𝐻∑
𝑖=1

�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻2 + 6𝜀 ≤ 𝑣𝜋

𝑚𝐻 (𝑠1) + 8𝜀 ,

where the final inequality follows from the fact that when SKIPPYELEANOR returns in Line 17,∑𝐻
𝑘=1 �̄�

𝑚
𝑘 ≤ 𝜀/(𝛽𝜔𝑑𝐻2). By scaling the parameters, this finishes the proof of Theorem 4.1. □

F Deferred definitions and proofs for Section 4.1

Proof of Lemma 4.3. For any 𝜃 ∈ Θ𝑄
ℎ , it holds that 𝜃 = 𝑄−1

ℎ 𝜃 for some 𝜃 ∈ Θℎ . Since
𝜃2 ≤ 𝐿2,

and writing 𝑄ℎ as in Definition 4.2,

∥𝜃∥22 = 𝜃⊤
(
𝐿−2

2 𝐼 +∑
𝑣∈𝐶ℎ

𝑣𝑣⊤
)
𝜃 ≤ 𝐿−2

2 𝐿2
2 + |𝐶ℎ | ≤ 1 + 𝑑1 ,

where we used Definition 4.2 and Lemma 4.4. Finally, we conclude that ∥𝜃∥2 ≤
√
𝑑1 + 1. □

Definition F.1. (𝐺𝑄
ℎ , 𝜌

𝑄
ℎ) is a near-optimal design for Θ𝑄

ℎ , if for any 𝜃 ∈ Θ𝑄
ℎ ,

⟨𝑣, 𝜃⟩ = 0 for all 𝑣 ∈ Ker(𝑉 (𝐺𝑄
ℎ , 𝜌

𝑄
ℎ)), and (23)

∥𝜃∥2
𝑉 (𝐺𝑄

ℎ
,𝜌𝑄

ℎ
)†
≤ 2𝑑, (24)

where 𝑉 (𝐺𝑄
ℎ , 𝜌

𝑄
ℎ) =

∑
𝜋∈𝐺𝑄

ℎ

𝜌𝑄ℎ (𝜋) (𝜃
𝑄
ℎ (𝜋)) (𝜃

𝑄
ℎ (𝜋))

⊤
. (25)

An important corollary of the above definition is that if 𝑀 = ProjIm(𝑉 (𝐺𝑄
ℎ
,𝜌𝑄

ℎ
)) , then

𝑉 (𝐺𝑄
ℎ , 𝜌

𝑄
ℎ)
†

1
2𝑉 (𝐺𝑄

ℎ , 𝜌
𝑄
ℎ)

1
2 𝑀𝑣 = 𝑀𝑣, and ⟨𝜃, 𝑀𝑣⟩ = ⟨𝜃, 𝑣⟩ due to Eq. (23), and so

𝜃⊤𝑣 = 𝜃⊤𝑉 (𝐺𝑄
ℎ , 𝜌

𝑄
ℎ)
†

1
2𝑉 (𝐺𝑄

ℎ , 𝜌
𝑄
ℎ)

1
2 𝑣 for all 𝜃 ∈ Θ𝑄

ℎ and 𝑣 ∈ R𝑑 . (26)

16

Proof of Proposition 4.5. Take any ℎ ∈ [𝐻], 𝑠 ∈ Sℎ , and 𝑄 ∈ PD𝐻 . Take 𝑖, 𝑗 ∈ [A] such that
range(𝑠) = sup𝜃 ∈Θℎ

⟨𝜑(𝑠, 𝑖, 𝑗), 𝜃⟩. Then,

range(𝑠)2 = sup
𝜃 ∈Θℎ

⟨𝜑(𝑠, 𝑖, 𝑗), 𝜃⟩2 = sup
𝜃 ∈Θ𝑄

ℎ

〈
𝜑𝑄 (𝑠, 𝑖, 𝑗), 𝜃

〉2

≤ sup
𝜃 ∈Θ𝑄

ℎ

∥𝜃∥2
𝑉 (𝐺𝑄

ℎ
,𝜌𝑄

ℎ
)†

𝜑𝑄 (𝑠, 𝑖, 𝑗)
2
𝑉 (𝐺𝑄

ℎ
,𝜌𝑄

ℎ
)

≤ 2𝑑𝜑𝑄 (𝑠, 𝑖, 𝑗)⊤
©«

∑
𝜋∈𝐺𝑄

ℎ

𝜌𝑄ℎ (𝜋) (𝜃
𝑄
ℎ (𝜋)) (𝜃

𝑄
ℎ (𝜋))

⊤ª®®¬ 𝜑𝑄 (𝑠, 𝑖, 𝑗)

= 2𝑑𝜑(𝑠, 𝑖, 𝑗)⊤
©«

∑
𝜋∈𝐺𝑄

ℎ

𝜌𝑄ℎ (𝜋) (𝜃ℎ (𝜋)) (𝜃ℎ (𝜋))
⊤ª®®¬ 𝜑(𝑠, 𝑖, 𝑗)

≤ 2𝑑 max
𝜋∈𝐺𝑄

ℎ

〈
𝜑(𝑠, 𝑖, 𝑗)⊤, 𝜃ℎ (𝜋)

〉2 ≤ 2𝑑 range𝑄 (𝑠)2 ,

where the first inequality uses Eq. (26) and the Cauchy-Schwarz inequality, and the second inequality
follows by substituting the definition of 𝑉 (𝐺𝑄

ℎ , 𝜌
𝑄
ℎ) and using Eq. (24). Finally, the first inequality

in the last line holds as we replace the weighted sum from the previous line with the maximum
operator. We therefore get that range(𝑠) ≤

√
2𝑑 range𝑄 (𝑠), finishing the proof. □

Proof of Lemma 4.4. Take any ℎ ∈ [𝐻] and the sequence 𝐶ℎ corresponding to 𝑄. Assume that this
sequence is of length 𝑙, and let Σℎ,𝑖 = 𝐿−2

2 𝐼 +∑𝑖
𝑗=1 𝑣 𝑗𝑣

⊤
𝑗 for 𝑖 ∈ [𝑙]. By the second part of Eq. (5),

𝑙 =
𝑙∑

𝑖=1
min

1, 2

©«𝐿−2
2 𝐼 +

𝑖−1∑
𝑗=1

𝑣 𝑗𝑣
⊤
𝑗
ª®¬
− 1

2

𝑣𝑖

2

2

 ≤ 2
𝑙∑

𝑖=1
min

{
1, ∥𝑣𝑖 ∥2Σ−1

ℎ,𝑖−1

}
.

Applying the elliptical potential lemma (Lemma L.1),

𝑙 ≤ 2
𝑙∑

𝑖=1
min

{
1, ∥𝑣𝑖 ∥2Σ−1

ℎ,𝑖−1

}
≤ 4𝑑 log

(
Tr(Σℎ,0) + 𝑙𝐿2

3
𝑑 det(Σℎ,0)1/𝑑

)
= 4𝑑 log

(
1 +

𝑙𝐿2
3

𝐿−2
2 𝑑

)
.

where Σℎ,0 = 𝐿−2
2 𝐼 by definition. Using that log(1 + 𝑥) ≤ √𝑥 for 𝑥 ≥ 0, we have 𝑙 ≤ 4𝑑

√
𝑙𝐿2

3𝐿
2
2/𝑑,

which implies 𝑙 ≤ 16𝑑𝐿2
3𝐿

2
2. Substituting this into the previous bound yields

𝑙 ≤ 4𝑑 log

(
1 +
(16𝑑𝐿2

3𝐿
2
2)𝐿2

3

𝐿−2
2 𝑑

)
= 4𝑑 log

(
1 + 16𝐿4

3𝐿
4
2

)
= 𝑑1 . □

G Deferred proofs for Section 4.2

For any vector 𝑣 ∈ R𝑑 , we define 𝑣 = 𝑣/∥𝑣∥2 as the unit vector in the direction of 𝑣 if 𝑣 ≠ 0 and
0 = 0 otherwise. For any ℎ ∈ [2 : 𝐻], 𝑠 ∈ Sℎ , the normalized version of the largest preconditioned
feature difference is denoted by

�̄�𝑄 (𝑠) = 𝜑𝑄 (𝑠, 𝑖, 𝑗) where (𝑖, 𝑗) = arg max
𝑖′, 𝑗′∈[A]

𝜑𝑄 (𝑠, 𝑖′, 𝑗 ′)

2 . (27)

Proof of Lemma 4.7. Fix ℎ ∈ [𝐻], 𝛼-admissible 𝑓 : Sℎ → R, 𝑡 ∈ [ℎ−1], and 𝜋 ∈ Π. Our aim is to
construct policies 𝜋+𝑘 , 𝜋

−
𝑘 ∈ Π for 𝑘 ∈ [𝑑0], such that for all (𝑠, 𝑎) ∈ S𝑡 × [A],

∑
𝑘∈[𝑑0] (𝑞

𝜋+𝑘 (𝑠, 𝑎) −
𝑞𝜋−𝑘 (𝑠, 𝑎)) is approximately proportional to the desired E𝜋,𝑠,𝑎 𝑓 (𝑆ℎ). Let 𝐺𝑄

ℎ,1, 𝐺
𝑄
ℎ,2, . . . denote the

policies in 𝐺𝑄
ℎ underlying the near-optimal design of Θ𝑄

ℎ , and for any 𝑠 ∈ Sℎ , denote by ord(𝑠) ∈

17

[𝑑0] the index of the policy maximizing the range of the action-value function in state 𝑠, that is,
𝐺𝑄

ℎ,ord(𝑠) = arg max
𝜋∈𝐺𝑄

ℎ
max𝑖, 𝑗∈[A] (𝑞𝜋 (𝑠, 𝑖) − 𝑞𝜋 (𝑠, 𝑗)); to simplify notation, we define �̃� (𝑠) =

𝐺𝑄
ℎ,ord(𝑠) . For 𝑠 ∈ Sℎ let

(𝑎+ (𝑠), 𝑎− (𝑠)) =
{

arg max𝑖, 𝑗∈[A] 𝑞�̃� (𝑠) (𝑠, 𝑖) − 𝑞�̃� (𝑠) (𝑠, 𝑗) if 𝑓 (𝑠) ≥ 0
arg min𝑖, 𝑗∈[A] 𝑞�̃� (𝑠) (𝑠, 𝑖) − 𝑞�̃� (𝑠) (𝑠, 𝑗) otherwise.

By Eq. (7) and Definition 4.6 have that���𝑞�̃� (𝑠) (𝑠, 𝑎+ (𝑠)) − 𝑞�̃� (𝑠) (𝑠, 𝑎− (𝑠))��� = range𝑄 (𝑠) ≥ 𝛼 | 𝑓 (𝑠) | ≥ 0 .

Since 𝑞�̃� (𝑠) (𝑠, 𝑎+ (𝑠)) − 𝑞�̃� (𝑠) (𝑠, 𝑎− (𝑠)) ≈2𝜂 𝑞�̃� (𝑠) (𝑠, 𝑎+ (𝑠)) − 𝑞�̃� (𝑠) (𝑠, 𝑎− (𝑠)), if 𝛼 | 𝑓 (𝑠) | ≥ 4𝜂, we
have

𝑞�̃� (𝑠) (𝑠, 𝑎+ (𝑠)) − 𝑞�̃� (𝑠) (𝑠, 𝑎− (𝑠)) ≥ 𝛼 𝑓 (𝑠) − 2𝜂 ≥ 𝛼

2
𝑓 (𝑠) > 0 if 𝑓 (𝑠) ≥ 0

𝑞�̃� (𝑠) (𝑠, 𝑎+ (𝑠)) − 𝑞�̃� (𝑠) (𝑠, 𝑎− (𝑠)) ≤ 𝛼 𝑓 (𝑠) + 2𝜂 ≤ 𝛼

2
𝑓 (𝑠) < 0 otherwise.

(28)

Let us define 𝑓 ′ : Sℎ → R as

𝑓 ′(𝑠) =
{

𝛼 𝑓 (𝑠)/2
𝑞�̃� (𝑠) (𝑠,𝑎+ (𝑠))−𝑞�̃� (𝑠) (𝑠,𝑎− (𝑠)) if 𝛼 | 𝑓 (𝑠) | ≥ 4𝜂
0 otherwise.

By Eq. (28), there can be no division by zero in the above definition, and 0 ≤ 𝑓 ′(𝑠) ≤ 1.

Now we are ready to define 𝜋+𝑘 and 𝜋−𝑘 . Both policies follow 𝜋 up to stage ℎ − 1, when they switch
to 𝐺𝑄

ℎ,𝑘 , except if at stage ℎ a state 𝑠 ∈ Sℎ is such that 𝐺𝑄
ℎ,𝑘 has the maximal action-value function

range. In this case 𝜋+𝑘 selects 𝑎+ (𝑠) with probability 𝑓 ′(𝑠) and 𝑎− (𝑠) with probability 1 − 𝑓 ′(𝑠),
while 𝜋−𝑘 always selects 𝑎− (𝑠). Formally, for 𝑘 ∈ [𝑑0], we define for 𝑠 ∈ S

𝜋+𝑘 (𝑠) =

𝜋(𝑠) if stage(𝑠) < ℎ;
𝑎+ (𝑠) w.p. 𝑓 ′(𝑠), and 𝑎− (𝑠) w.p. 1 − 𝑓 ′(𝑠) if stage(𝑠) = ℎ and ord(𝑠) = 𝑘;
𝐺𝑄

ℎ,𝑘 (𝑠), otherwise,

where w.p. stands for with probability. Similarly,

𝜋−𝑘 (𝑠) =

𝜋(𝑠) if stage(𝑠) < ℎ;
𝑎− (𝑠) w.p. 1 if stage(𝑠) = ℎ and ord(𝑠) = 𝑘;
𝐺𝑄

ℎ,𝑘 (𝑠) otherwise.

Note that 𝜋+𝑘 ∈ Π and 𝜋−𝑘 ∈ Π, as desired. Since for all 𝑘 ∈ [𝑑0], the policies follow 𝐺ℎ,𝑘 for 𝑠 ∈ S𝑡′
for 𝑡 ′ > ℎ, therefore for all 𝑘 ∈ [𝑑0],

𝑣𝜋
−
𝑘 (𝑠) = 𝑣𝜋

+
𝑘 (𝑠) = 𝑣𝐺

𝑄
ℎ,𝑘 (𝑠) for all 𝑠 ∈ Sℎ+1, and (29)

𝑞𝜋−𝑘 (𝑠, 𝑎) = 𝑞𝜋+𝑘 (𝑠, 𝑎) = 𝑞𝐺
𝑄
ℎ,𝑘 (𝑠, 𝑎) for all (𝑠, 𝑎) ∈ Sℎ × [A]. (30)

Also, for any 𝑠 ∈ S with stage(𝑠) < ℎ and any 𝑎 ∈ [A],∑
𝑘∈[𝑑0]

(
𝑞𝜋+𝑘 (𝑠, 𝑎) − 𝑞𝜋−𝑘 (𝑠, 𝑎)

)
= E

𝜋,𝑠,𝑎

∑
𝑘∈[𝑑0]

(
𝑣𝜋
+
𝑘 (𝑆ℎ) − 𝑣𝜋

−
𝑘 (𝑆ℎ)

)
= E

𝜋,𝑠,𝑎

(
𝑣
𝜋+ord(𝑆ℎ) (𝑆ℎ) − 𝑣

𝜋−ord(𝑆ℎ) (𝑆ℎ)
)

= E
𝜋,𝑠,𝑎

(
𝑞�̃� (𝑆ℎ) (𝑆ℎ , 𝑎+ (𝑆ℎ)) 𝑓 ′(𝑆ℎ) + 𝑞�̃� (𝑆ℎ) (𝑆ℎ , 𝑎− (𝑆ℎ)) (1 − 𝑓 ′(𝑆ℎ))

− 𝑞�̃� (𝑆ℎ) (𝑆ℎ , 𝑎− (𝑆ℎ))
)

= E
𝜋,𝑠,𝑎

(
𝑓 ′(𝑆ℎ)

(
𝑞�̃� (𝑆ℎ) (𝑆ℎ , 𝑎+ (𝑆ℎ)) − 𝑞�̃� (𝑆ℎ) (𝑆ℎ , 𝑎− (𝑆ℎ))

))
= E

𝜋,𝑠,𝑎
I{𝛼 | 𝑓 (𝑆ℎ) | ≥ 4𝜂}𝛼

2
𝑓 (𝑆ℎ) ≈2𝜂

𝛼

2 E
𝜋,𝑠,𝑎

𝑓 (𝑆ℎ) ,

18

where the first line is due to both 𝑞𝜋+𝑘 and 𝑞𝜋−𝑘 following 𝜋 on states with stage less than ℎ, the
second line follows from the fact that for any 𝑠 ∈ Sℎ , 𝜋+𝑘 (𝑠) = 𝜋−𝑘 (𝑠) for any 𝑘 ≠ ord(𝑠); combining
this with Eq. (29) leads to all 𝑘 ≠ ord(𝑠) terms of the sum to cancel. The third line follows from
expanding the definition of the policies and Eq. (30).

Let 𝜃 = 2
𝛼

∑
𝑘∈[𝑑0]

(
𝜃𝑡 (𝜋+𝑘) − 𝜃𝑡 (𝜋−𝑘)

)
. Since ∥𝜃𝑡 (·)∥2 ≤ 𝐿2 by definition, we have

𝜃2 ≤ 4𝑑0𝐿2/𝛼.
By Definition 3.2, for all (𝑠, 𝑎) ∈ S𝑡 × [A],〈

𝜑(𝑠, 𝑎), 𝛼
2
𝜃
〉
≈2𝑑0𝜂

∑
𝑘∈[𝑑0]

𝑞𝜋+𝑘 (𝑠, 𝑎) − 𝑞𝜋−𝑘 (𝑠, 𝑎) ≈2𝜂
𝛼

2 E
𝜋,𝑠,𝑎

𝑓 (𝑆ℎ),

and hence 〈
𝜑(𝑠, 𝑎), 𝜃

〉
≈4(𝑑0+1)𝜂/𝛼 E

𝜋,𝑠,𝑎
𝑓 (𝑆ℎ) .

Since 4(𝑑0 + 1)𝜂/𝛼 ≤ 𝜂0 = 5𝑑0𝜂/𝛼 as 𝑑0 ≥ 4 by definition, this completes the proof. □

Proof of Lemma 4.9. Take any 𝑠 ∈ Sℎ . For the correct guess, range�̂�𝑄 (𝑠) = range𝑄 (𝑠). Then, using

that
�̄�𝑄 (·)

2 ≤ 1, Tr(f (𝑠)) ≤ range𝑄 (𝑠)

√
2𝑑𝐻 2

𝜀 , proving the second claim of the lemma (as 𝛾 ≤ 1).

For the first claim, take any �̂� = (�̂�𝑖
ℎ)ℎ∈[2:𝐻],𝑖∈[𝑑0] ∈ G. Let 𝜑′ be the unnormalized version of

�̄�𝑄 (𝑠) of Eq. (27), that is, 𝜑′ = 𝜑𝑄 (𝑠, 𝑖, 𝑗) for the same 𝑖, 𝑗 as in Eq. (27) (i.e., with the largest
ℓ2-norm). Then, using that �̂� ∈ G,

range�̂�𝑄 (𝑠) = max
𝑘∈[𝑑0]

max
𝑖, 𝑗

〈
𝜑𝑄 (𝑠, 𝑖, 𝑗), �̂�𝑘

ℎ

〉
≤ ∥𝜑′∥2 max

𝑘∈[𝑑0]

�̂�𝑘
ℎ

2 ≤ ∥𝜑

′∥2
√
𝑑1 + 1.

Using that above in combination with | 𝑓 (𝑠) | ≤ 𝐻, 𝑣, 𝑤 ∈ B(1),
�̄�𝑄 (𝑠)

2 ≤ 1, we obtain

|𝑣⊤∥ f (𝑠)𝑤 | ≤
��〈�̄�𝑄 (𝑠), 𝑣 ∥

〉 〈
�̄�𝑄 (𝑠), 𝑤

〉�� range�̂�𝑄 (𝑠)
√

2𝑑𝐻2

𝜀

≤
�̄�𝑄 (𝑠) ∥

2 ∥𝜑

′∥2
√
𝑑1 + 1

√
2𝑑𝐻2

𝜀
=

𝜑′∥2

√
𝑑1 + 1

√
2𝑑𝐻2

𝜀
.

As the eigenvalues of𝑉 (𝐺𝑄
ℎ , 𝜌

𝑄
ℎ) =

∑
𝜋∈𝐺𝑄

ℎ
𝜌𝑄ℎ (𝜋)(𝜃

𝑄
ℎ (𝜋)) (𝜃

𝑄
ℎ (𝜋))

⊤
corresponding to the subspace

in which 𝜑′∥ lies are by definition at least 𝛾, we can write

(range𝑄 (𝑠))2 ≥ max
𝜋∈𝐺𝑄

ℎ

〈
𝜑′, 𝜃𝑄ℎ (𝜋)

〉2
≥ 𝜑′⊤𝑉 (𝐺𝑄

ℎ , 𝜌
𝑄
ℎ)𝜑

′ ≥ 𝜑′∥
⊤𝑉 (𝐺𝑄

ℎ , 𝜌
𝑄
ℎ)𝜑

′
∥ ≥

𝜑′∥2

2
𝛾 .

Combining with the previous result, we get that

range𝑄 (𝑠) ≥
√
𝛾
𝜑′∥2

≥
√
𝛾𝜀

√
2𝑑
√
𝑑1 + 1𝐻2

|𝑣⊤∥ f (𝑠)𝑤 | = 𝛼 |𝑣⊤∥ f (𝑠)𝑤 |,

finishing the proof. □

H Deferred proofs for Appendix E.1

The definitions (Eqs. (9) and (10)) immediately give rise to the following facts:

𝐷 (𝑠𝑖�) ∈ [
−

𝐻∑
𝑢=𝑖

𝑟𝑢 , 𝐻

]
⊆ [−𝐻, 𝐻] and 𝜏(·) ∈ [0, 1], implying

𝐸→ (𝑠𝑖�) ∈ [
−

𝐻∑
𝑢=𝑖

𝑟𝑢 , 𝐻

]
⊆ [−𝐻, 𝐻], implying

𝐸 (𝑠𝑖�) ∈ [−2𝜏(𝑠𝑖)𝐻, 2𝜏(𝑠𝑖)𝐻] ⊆ [−2𝐻, 2𝐻] .

(31)

Furthermore, since either 𝜏(𝑠𝑖) = 0 or
�̄�𝑄 (𝑠𝑖)

2 = 1 (as

�̄�𝑄 (𝑠𝑖)
 = 0 implies that range𝑄 (𝑠𝑖) and

hence 𝜏(𝑠𝑖) are both zero), we have
Tr(𝐹 (𝑠𝑖�)) = 𝐸 (𝑠𝑖�) , (32)

which was used to establish the last part of Corollary 4.11.

19

Proof of Lemma E.1. We drop the subscripts (�̂�, 𝜃). Let (�̂�𝑖
ℎ)ℎ∈[2:𝐻],𝑖∈[𝑑0] = �̂� ∈ G. Let 𝑧 = 𝑣−𝑤

be the projection of 𝑣 to the subspace orthogonal to 𝑍 (𝑄, 𝑖), denoted by 𝑍 (𝑄, 𝑖)⊥. In other words,
𝑧 = Proj𝑍 (𝑄,𝑖)⊥ 𝑣. Let M = 𝑦𝑘𝑖 − �̂�𝑘𝑖 . By the symmetry of M,

𝑣⊤M𝑣 = 𝑧⊤M(𝑣 + 𝑤) + 𝑤⊤M𝑤 .

It is enough to prove therefore that
𝜀

𝑑𝐻2𝜔
≥ 𝑧⊤M(𝑣 + 𝑤) .

As ∥𝑣∥2 ≤ 1 and ∥𝑣 + 𝑤∥2 ≤ 2, and using the definitions and Eq. (31), for any input (𝑠𝑖�),��𝑧⊤𝐹 (𝑠𝑖�)(𝑣 + 𝑤)�� = ��〈𝑧, �̄�𝑄 (𝑠𝑖)
〉 〈

𝑣 + 𝑤, �̄�𝑄 (𝑠𝑖)
〉
𝐸 (𝑠𝑖�)��

≤ 4𝐻𝜏(𝑠𝑖)
��〈𝑧, �̄�𝑄 (𝑠𝑖)

〉�� ≤ 4 range�̂�𝑄 (𝑠𝑖)
√

2𝑑𝐻2

𝜀

��〈𝑧, �̄�𝑄 (𝑠𝑖)
〉��

≤ 4
��〈𝑧, �̄�𝑄 (𝑠𝑖)

〉�� max
𝑎,𝑏,𝑘∈[𝑑0]

〈
𝜑𝑄 (𝑠, 𝑎, 𝑏), �̂�𝑘

ℎ

〉 √2𝑑𝐻2

𝜀

≤ 4
Proj𝑍 (𝑄,𝑖)⊥ �̄�𝑄 (𝑠)

2 ∥𝜑

′∥2 max
𝑘∈[𝑑0]

�̂�𝑘
ℎ

2

√
2𝑑𝐻2

𝜀

≤ 4
Proj𝑍 (𝑄,𝑖)⊥ 𝜑

′
2

√
𝑑1 + 1

√
2𝑑𝐻2

𝜀
,

where 𝜑′ is the unnormalized version of �̄�𝑄 (𝑠𝑖) of Eq. (27), that is, 𝜑′ = 𝜑𝑄 (𝑠𝑖 , 𝑎, 𝑏) for the same
𝑎, 𝑏 as in Eq. (27) (i.e., with the largest ℓ2-norm).

As Proj𝑍 (𝑄,𝑖)⊥ 𝜑
′ = Proj𝑍 (𝑄,𝑖)⊥ (𝜑𝑄 (𝑠, 𝑎) − 𝜑𝑄 (𝑠, 𝑏)) = Proj𝑍 (𝑄,𝑖)⊥ 𝑄𝑖 (𝜑(𝑠, 𝑎) − 𝜑(𝑠, 𝑏)) for

some 𝑠 ∈ S𝑖 , 𝑎, 𝑏 ∈ [A], and by definition Proj𝑍 (𝑄,𝑖)⊥ 𝑄𝑖 ⪯ 𝐿−2
3 𝐼,

Proj𝑍 (𝑄,𝑖)⊥ 𝜑
′

2 ≤
𝐿−2

3 ∥𝜑(𝑠, 𝑎) − 𝜑(𝑠, 𝑏)∥2 ≤ 2𝐿−2
3 𝐿1, so��𝑧⊤𝐹 (𝑠𝑖�) (𝑣 + 𝑤)�� ≤ 8𝐿−2

3 𝐿1
√
𝑑1 + 1

√
2𝑑𝐻2

𝜀
, (33)

and hence ��𝑧⊤�̂�𝑘𝑖 (𝑣 + 𝑤)
�� ≤ 8𝐿−2

3 𝐿1
√
𝑑1 + 1

√
2𝑑𝐻2

𝜀
. (34)

To bound
��𝑧⊤𝑦𝑘𝑖 (𝑣 + 𝑤)��, note that by the definition 𝑦𝑘𝑖 ,

𝑧⊤𝑦𝑘𝑖 (𝑣 + 𝑤) = 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃

p(𝑚𝑘 𝑗) ,𝑖
〉

where 𝜃𝑡𝑖 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

(
𝑧⊤𝐹 (𝑆𝑙𝑘 𝑗𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻) (𝑣 + 𝑤)

)
for 𝑡 ∈ [𝑖 − 1]

Therefore ��𝑧⊤𝑦𝑘𝑖 (𝑣 + 𝑤)�� ≤ max
𝑡 ∈[𝑖−1],𝑠∈S𝑡 ,𝑎∈[A]

〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉
.

Fix any 𝑡 ∈ [𝑖 − 1], 𝑠 ∈ S𝑡 , 𝑎 ∈ [A]. By repeated application of the Cauchy-Schwarz inequality, the
fact that 𝑋𝑚𝑡 ⪰ 𝜆𝐼, the triangle inequality, and using Eq. (33),��〈𝜑(𝑠, 𝑎), 𝜃𝑡𝑖〉�� ≤ ∥𝜑(𝑠, 𝑎)∥𝑋−1

𝑚𝑡

 ∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

(
𝑧⊤𝐹 (𝑆𝑙𝑘 𝑗𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻)(𝑣 + 𝑤)

)
𝑋−1
𝑚𝑡

≤ ∥𝜑(𝑠, 𝑎)∥2 𝜆−1/2 · 8𝐿−2
3 𝐿1

√
𝑑1 + 1

√
2𝑑𝐻2

𝜀

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑𝑙𝑘 𝑗
𝑡

𝑋−1
𝑚𝑡

≤ 8𝐿−2
3 𝐿2

1𝜆
−1/2√𝑑1 + 1

√
2𝑑𝐻2

𝜀

√
|I𝑚 (𝑡) |

√√ ∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑𝑙𝑘 𝑗
𝑡

2

𝑋−1
𝑚𝑡

≤ 8𝐿−2
3 𝐿2

1𝜆
−1/2√𝑑1 + 1

√
2𝑑𝐻2

𝜀

√
𝑚max𝑛𝐻𝑑 ,

20

where we use that |I𝑚 (𝑡) | ≤ 𝑚𝑛𝐻, 𝑚 ≤ 𝑚max by Lemma E.5, and that√√ ∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑𝑙𝑘 𝑗
𝑡

2

𝑋−1
𝑚𝑡

=
√ ∑

𝑙𝑘 𝑗∈I𝑚 (𝑡)
Tr(𝑋−1

𝑚𝑡𝜑
𝑙𝑘 𝑗
𝑡 𝜑

𝑙𝑘 𝑗
𝑡

⊤) ≤
√

Tr 𝑋−1
𝑚𝑡𝑋𝑚𝑡 =

√
𝑑 .

Combining with Eq. (34), with an appropriate choice of 𝐿3, we obtain��𝑧⊤M(𝑣 + 𝑤)
�� ≤ 8𝐿−2

3 𝐿1
√
𝑑1 + 1

√
2𝑑𝐻2

𝜀

(
1 + 𝐿1𝜆

−1/2√𝑚max𝑛𝐻𝑑
)
≤ 𝜀

𝑑𝐻2𝜔
(35)

as desired. □

Proof of Lemma E.2. Choose 𝛽

𝛽 ≤ 2 + 2𝐻

√
2𝑑𝐻 (𝑑0 + 1) log

12𝑑0𝐻𝐿2

𝛼𝜉
+ 2 log

𝑚′max𝐻2

𝜁
+ 𝑑 log

(
𝜆 + 𝑚′max𝑛𝐻𝐿2

1/𝑑
)
, (36)

satisfying 𝛽 = Õ(𝐻3/2𝑑) as given in Eq. (15), and define

𝜉 =
𝜀

5
√

2𝑑 (𝐻 + 1)3𝐿1

(
min

{
𝜀/(𝑑𝐻2𝜔), 1/

√
𝑚′max𝑛𝐻

}
− 𝜂0

)
.

Note that subtracting 𝜂0 keeps 𝜉 positive, and of the same order, by our assumption that 𝜂 is small
enough: 𝜂0 ≤ 1

2 min
{
𝜀/(𝑑𝐻2𝜔), 1/

√
𝑚′max𝑛𝐻

}
, which follows from Eq. (21).

We start with a covering argument for the set of functions of the form 𝑣⊤∥ �̄��̂� 𝜃𝑤, for different choices

of �̂�, 𝜃, 𝑣, and 𝑤. By [Vershynin, 2018, Corollary 4.2.13], there is a set 𝐶𝜉 ⊂ B(1) with |𝐶𝜉 | ≤
(3/𝜉)𝑑 such that for all 𝑥 ∈ B(1) there exists a 𝑦 ∈ 𝐶𝜉 with ∥𝑥 − 𝑦∥2 ≤ 𝜉. Therefore, there

is a set 𝐶×𝜉 ⊂
(>

ℎ∈[2:𝐻],𝑘∈[𝑑0] B(
√
𝑑1 + 1)

)
×

(>
ℎ∈[2:𝐻] B(4𝑑0𝐻𝐿2/𝛼)

)
× B(1) × B(1) with

|𝐶×𝜉 | ≤ (12𝑑0𝐻𝐿2/(𝛼𝜉))𝑑𝐻 (𝑑0+1) such that for any �̂� = (�̂�𝑖
ℎ)ℎ∈[2:𝐻],𝑖∈[𝑑0] ∈ G, 𝜃 ∈ Θ̄, and 𝑣, 𝑤 ∈

B(1), there exists a 𝑦 ∈ 𝐶×𝜉 , such that if we let �̃� = (�̃�𝑖)ℎ∈[2:𝐻],𝑖∈[𝑑0] = (𝑦 (ℎ−1)𝑑0+𝑖)ℎ∈[2:𝐻],𝑖∈[𝑑0] ,
𝜃 = (𝜃ℎ)ℎ∈[2:𝐻] = (𝑦 (𝐻−1)𝑑0+ℎ)ℎ∈[2:𝐻] , and 𝑎 = 𝑦 (𝐻−1) (𝑑0+1)+1, 𝑏 = 𝑦 (𝐻−1) (𝑑0+1)+2, then �̃� ∈ G,
𝜃 ∈ Θ̄, 𝑎, 𝑏 ∈ B(1), and

∥𝑎 − 𝑣∥2 ≤ 𝜉 and ∥𝑏 − 𝑤∥2 ≤ 𝜉 , and�̂�𝑖
ℎ − �̃�

𝑖

2 ≤ 𝜉 and
𝜃ℎ − 𝜃ℎ2 ≤ 𝜉 for all ℎ ∈ [2 : 𝐻], 𝑖 ∈ [𝑑0] .

As a result, for all 𝑠 ∈ S \ S1, | range�̂�𝑄 (𝑠) − range�̃�𝑄 (𝑠) | ≤ 2𝐿1𝜉, and therefore |𝜏�̂� 𝜃 (𝑠) − 𝜏�̃� 𝜃 (𝑠) | ≤
2
√

2𝑑𝐻𝐿1𝜉/𝜀. Furthermore, |𝐷�̂� 𝜃 (𝑠, . . . , 𝑟𝐻) − 𝐷�̃� 𝜃 (𝑠, . . . , 𝑟𝐻) | ≤ 𝐿1𝜉. Combining these with
the facts that in either case, 𝜏(·) ∈ [0, 1], 𝐷 (·) ∈ [−𝐻, 𝐻], and 𝐸→ (·) ∈ [−𝐻, 𝐻] (Eq. (31)), and
using the definition of 𝐸 and 𝐸→,we have that for any 𝑖 ∈ [𝐻 + 1] and inputs,

|𝐸�̂� 𝜃 (𝑠𝑖�) − 𝐸�̃� 𝜃 (𝑠𝑖�) | ≤ 4
√

2𝑑𝐻2𝐿1𝜉/𝜀 + 𝐿1𝜉 + |𝐸→�̂� 𝜃
(𝑠𝑖+1�) − 𝐸→

�̃� 𝜃
(𝑠𝑖+1�) |

= 4
√

2𝑑𝐻2𝐿1𝜉/𝜀 + 𝐿1𝜉 +
𝐻∑

𝑗=𝑖+1
|𝐸�̂� 𝜃 (𝑠 𝑗�) − 𝐸�̃� 𝜃 (𝑠 𝑗�) |

≤ (𝐻 + 1)5
√

2𝑑𝐻2𝐿1𝜉/𝜀 ,
where the first inequality sums over the contributions of 𝜏, 𝐷, and 𝐸→, and the second applies
induction. By combining this bound with the bounds on ∥𝑣 − 𝑎∥2 and ∥𝑤 − 𝑏∥2, and that 𝐸 (·) ∈
[−2𝐻, 2𝐻] (Eq. (31)) implying that �̄� (·) ∈ [−2𝐻, 2𝐻], for all 𝑠 ∈ S \ S1, we have that���𝑣⊤∥ �̄��̂� 𝜃 (𝑠)𝑤 − 𝑎⊤∥ �̄��̃� 𝜃𝑏

��� (𝑠) ≤ 6𝐻𝜉 + (𝐻 + 1)5
√

2𝑑𝐻2𝐿1𝜉/𝜀

≤ 5
√

2𝑑 (𝐻 + 1)3𝐿1𝜉/𝜀 = min{𝜀/(𝑑𝐻2𝜔), 1/
√
𝑚′max𝑛𝐻} − 𝜂0

(37)

Take any 𝑚′ ∈ [𝑚′max] (this includes the entire execution of SKIPPYELEANOR). and let the quan-
tities of Section 4.3 (such as 𝐹) be calculated with the value of 𝑄 at the beginning iteration 𝑚′

21

(Line 5). Take any 𝑡 ∈ [𝐻 − 1], 𝑖 ∈ [𝑡 + 1 : 𝐻]. Take any 𝑦 ∈ 𝐶×𝜉 and assign values to 𝑎, 𝑏, �̃�, and 𝜃

based on 𝑦 as above. For any 𝑙𝑘 𝑗 ∈ I𝑚 (𝑡), observe that given all the history of SKIPPYELEANOR

interacting with the MDP up to (and including) 𝑆
𝑙𝑘 𝑗
𝑡 , 𝐴

𝑙𝑘 𝑗
𝑡 , the trajectory 𝑆

𝑙𝑘 𝑗
𝑡+1, 𝐴

𝑙𝑘 𝑗
𝑡+1, . . . , 𝑅

𝑙𝑘 𝑗
𝐻 is

an independent rollout with policy 𝜋0, with its law given by P𝜋0 ,𝑆
𝑙𝑘 𝑗
𝑡 ,𝐴

𝑙𝑘 𝑗
𝑡

. The random vari-

able 𝑎⊤∥ 𝐹�̃� 𝜃 (𝑆
𝑙𝑘 𝑗
𝑖 . . . , 𝑅

𝑙𝑘 𝑗
𝐻)𝑏 has range [−2𝐻, 2𝐻] and expectation (conditioned on this history)

E𝜋0 ,𝑆
𝑙𝑘 𝑗
𝑡 ,𝐴

𝑙𝑘 𝑗
𝑡

𝑎⊤∥ �̄��̃� 𝜃 (𝑆𝑖)𝑏. Let 𝜃𝑡𝑖 be 𝜃𝑡𝑖 from Corollary 4.11, satisfying
𝜃𝑡𝑖2 ≤ 1/

√
𝜆 and Eq. (11)

for 𝑎 ∥ , 𝑏, �̃�, and 𝜃 instead of 𝑣 ∥ , 𝑤, �̂�, and 𝜃:

E
𝜋0 ,𝑠,𝑎

𝑎⊤∥ �̄��̃� 𝜃 (𝑆𝑖)𝑏 ≈𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉
. (38)

Take the sequence 𝐴 formed of 𝜑𝑙𝑘 𝑗
𝑡 (for 𝑙𝑘 𝑗 ∈ I𝑚 (𝑡), in the order that these random variables are

observed), and the sequence 𝑋 formed of 𝑣 ∥𝐹�̂� 𝜃 (𝑆
𝑙𝑘 𝑗
𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻)𝑤 (for 𝑙𝑘 𝑗 ∈ I𝑚 (𝑡), in the same

order), and the sequence Δ formed of E𝜋0 ,𝑆
𝑙𝑘 𝑗
𝑡 ,𝐴

𝑙𝑘 𝑗
𝑡

𝑣 ∥ �̄��̂� 𝜃 (𝑆𝑖)𝑤 −
〈
𝜑
𝑙𝑘 𝑗
𝑡 , 𝜃𝑡𝑖

〉
(for 𝑙𝑘 𝑗 ∈ I𝑚 (𝑡), in

the same order, for any 𝑣, 𝑤, �̂�, and 𝜃 as in the statement of this lemma). Then the sequences 𝐴, 𝑋 ,
and Δ satisfy the conditions of Lemma M.4 with a subgaussianity parameter 𝜎 = 2𝐻. Due to this
lemma, with probability at least 1 − 𝜁/(𝑚′max𝐻

2 |𝐶×𝜉 |), for any choice of 𝑣, 𝑤, �̂�, and 𝜃 (as above),

𝜃𝑡𝑖 − 𝜃𝑡𝑖𝑋𝑚𝑡
<
√
𝜆
𝜃𝑡𝑖2 + ∥Δ∥∞

√
|I𝑚 (𝑡) | + 2𝐻

√√√
2 log

(
𝑚′max𝐻2 |𝐶×𝜉 |

𝜁

)
+ log

(
det 𝑋𝑚𝑡

𝜆𝑑

)
(39)

where 𝜃𝑡𝑖 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡 𝑣⊤∥ 𝐹�̂� 𝜃 (𝑆

𝑙𝑘 𝑗
𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻)𝑤

A union bound over all 𝑚′ ∈ [𝑚′max], 𝑡, 𝑖, and 𝑦 ∈ 𝐶×𝜉 guarantees with probability at least 1 − 𝜁 ,
the above holds for all choice of these variables, any time beginning of any iteration (Line 5) is
executed. Note that we need the union bound over 𝑚 because the value of 𝑄 underlying the targets
of least-squares estimations can potentially change between iterations.

To finish the proof, under this high-probability event, take any 𝑚, 𝑡, 𝑖, �̂�, and 𝜃 as in the statement
of this lemma, and choose 𝑦 ∈ 𝐶×𝜉 as before, to satisfy Eq. (37). Combined with Eq. (38), this
immediately implies that the sequence Δ formed of quantities with absolute value

����� E
𝜋0 ,𝑆

𝑙𝑘 𝑗
𝑡 ,𝐴

𝑙𝑘 𝑗
𝑡

𝑣 ∥ �̄��̂� 𝜃 (𝑆𝑖)𝑤 −
〈
𝜑
𝑙𝑘 𝑗
𝑡 , 𝜃𝑡𝑖

〉�����
≤

����� E
𝜋0 ,𝑆

𝑙𝑘 𝑗
𝑡 ,𝐴

𝑙𝑘 𝑗
𝑡

𝑣 ∥ �̄��̂� 𝜃 (𝑆𝑖)𝑤 − 𝑎 ∥ �̄��̃� 𝜃 (𝑆𝑖)𝑏
����� + ���𝑎 ∥ �̄��̃� 𝜃 (𝑆𝑖)𝑏 −

〈
𝜑
𝑙𝑘 𝑗
𝑡 , 𝜃𝑡𝑖

〉���
≤ min{𝜀/(𝑑𝐻2𝜔), 1/

√
𝑚′max𝑛𝐻} − 𝜂0 + 𝜂0

(40)

satisfies ∥Δ∥∞ ≤ min{𝜀/(𝑑𝐻2𝜔), 1/
√
𝑚′max𝑛𝐻}. Take any (𝑠, 𝑎) ∈ S𝑡 × [A], and let 𝜃𝑡𝑖 and 𝜃𝑡𝑖 be

as above (in Eq. (39)) for 𝑣 ∥ , 𝑤, �̂�, and 𝜃. Note that

𝑣⊤∥ 𝜑(𝑠, 𝑎)
⊤𝜃𝑡𝑖

�̂� 𝜃
𝑤 =

〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉
,

22

By the triangle inequality, using Cauchy-Schwarz, and Eqs. (39) and (40),����𝑣⊤∥ (
𝜑(𝑠, 𝑎)⊤𝜃𝑡𝑖

�̂� 𝜃
− E

𝜋0 ,𝑠,𝑎
�̄��̂� 𝜃 (𝑆𝑖)

)
𝑤

����
≤

��〈𝜑(𝑠, 𝑎), 𝜃𝑡𝑖 − 𝜃𝑡𝑖〉�� + ���� E
𝜋0 ,𝑠,𝑎

𝑣⊤∥ �̄��̂� 𝜃 (𝑆𝑖)𝑤 −
〈〈
𝜑(𝑠, 𝑎), 𝜃𝑡𝑖

〉〉����
≤ ∥𝜑(𝑠, 𝑎)∥𝑋−1

𝑚𝑡

©«
√
𝜆
𝜃𝑡𝑖2 +

√
|I𝑚 (𝑡) |√
𝑚′max𝑛𝐻

+ 2𝐻

√√√
2 log

(
𝑚′max𝐻2 |𝐶×𝜉 |

𝜁

)
+ log

(
det 𝑋𝑚𝑡

𝜆𝑑

)ª®¬ + 𝜀

𝑑𝐻2𝜔

≤ ∥𝜑(𝑠, 𝑎)∥𝑋−1
𝑚𝑡

©«2 + 2𝐻

√
2𝑑𝐻 (𝑑0 + 1) log

12𝑑0𝐻𝐿2

𝛼𝜉
+ 2 log

𝑚′max𝐻2

𝜁
+ 𝑑 log

(
𝜆 + 𝑚′max𝑛𝐻𝐿2

1/𝑑
)ª®¬ + 𝜀

𝑑𝐻2𝜔

≤ ∥𝜑(𝑠, 𝑎)∥𝑋−1
𝑚𝑡

𝛽 + 𝜀

𝑑𝐻2𝜔
,

(41)

where in the fourth line we used that |I𝑚 (𝑡) | ≤ 𝑚′max𝑛𝐻, |𝐶×𝜉 | ≤ (12𝑑0𝐻𝐿2/(𝛼𝜉))𝑑𝐻 (𝑑0+1) , and

we used the inequality of arithmetic and geometric means to bound det 𝑋𝑚𝑡 ≤
(

1
𝑑 Tr 𝑋𝑚𝑡

)𝑑
≤(

Tr𝜆𝐼+|I𝑚 (𝑡) |𝐿2
1

𝑑

)𝑑
. □

Proof of Lemma E.3. Choose 𝑛 to satisfy

𝑛 =

⌈
64
(𝑑𝐻2𝜔)2

𝜀2 𝐻2
(
2𝑑 log

18𝑑𝐻3

𝜀
+ log

2𝑚′max𝐻
2

𝜁

)⌉
. (42)

This leads to 𝑛 = Õ(𝑑5𝐻6/𝜀2).
Similarly to the proof of Lemma E.2, we start with a covering argument. This time, as �̂� and 𝜃 are
fixed, we only consider 𝑣 and 𝑤, to cover 𝑣⊤∥ �̄�

(𝑗)
𝑡′ 𝑤 and 𝑣 ∥ �̂�

(𝑗)
𝑡′ 𝑤. Let 𝜉 ′ = 𝜀

12𝑑𝐻 3 . There is a set
𝐶+𝜉 ′ ⊂ B(1) ×B(1) with |𝐶𝜉 ′ | ≤ (3/𝜉 ′)2𝑑 such that for all 𝑣, 𝑤 ∈ B(1), there exists an (𝑎, 𝑏) ∈ 𝐶+𝜉 ′
with ∥𝑣 − 𝑎∥2 ≤ 𝜉 ′ (and therefore

𝑣 ∥ − 𝑎 ∥2 ≤ 𝜉 ′), and ∥𝑤 − 𝑏∥2 ≤ 𝜉 ′. Take such a choice of
(𝑎, 𝑏) for any (𝑣, 𝑤). As 𝐸 (·) ∈ [−2𝐻, 2𝐻] by Eq. (31), and

�̄�𝑄 (·)

2 ≤ 1, For 𝑖 ∈ [2 : 𝐻] and any
input, ���𝑣⊤∥ 𝐹 (𝑠𝑖�)𝑤 − 𝑎⊤∥ 𝐹 (𝑠𝑖�)𝑏��� ≤ 6𝐻𝜉 ′ =

𝜀

2𝑑𝐻2 ,

and therefore for any 𝑠 ∈ S \ S1,
���𝑣⊤∥ �̄� (𝑠)𝑤 − 𝑎⊤∥ �̄� (𝑠)𝑏��� ≤ 𝜀/(2𝑑𝐻2). For 𝑗 ∈ [𝑛] let

�̃�𝑘𝑖
𝑗 = E

𝜋0 ,𝑆
𝑚𝑘 𝑗
p(𝑘) ,𝐴

𝑚𝑘 𝑗
p(𝑘)

𝐹�̂� 𝜃 (𝑆
𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻) = E

𝜋0 ,𝑆
𝑚𝑘 𝑗
p(𝑘) ,𝐴

𝑚𝑘 𝑗
p(𝑘)

�̄��̂� 𝜃 (𝑆
𝑚𝑘 𝑗
𝑖)

By the triangle inequality, for any 𝑘 ∈ [𝐻 − 1], 𝑖 ∈ [𝑘 + 1 : 𝐻],���𝑣⊤∥ (
𝑦𝑘𝑖
�̂� 𝜃
− �̂�𝑘𝑖

�̂� 𝜃

)
𝑤
���

≤

������1𝑛 ∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖𝑣
⊤

(
𝜑
𝑚𝑘 𝑗
p(𝑘)

⊤
𝜃

p(𝑚𝑘 𝑗) ,𝑖
�̂� 𝜃

− �̃�𝑘𝑖
𝑗

)
𝑤

������ +
������1𝑛 ∑

𝑗∈[𝑛]
𝑐
𝑗
𝑘𝑖𝑣
⊤

(
�̃�𝑘𝑖
𝑗 − 𝐹�̂� 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻)

)
𝑤

������
≤ 1

𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖

𝜑𝑚𝑘 𝑗
p(𝑘)

𝑋−1
𝑚,p(𝑚𝑘 𝑗)

𝛽 + 𝜀

𝑑𝐻2𝜔
+ 𝜀

𝑑𝐻2𝜔
+

������1𝑛 ∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘𝑖𝑎
⊤

(
�̃�𝑘𝑖
𝑗 − 𝐹�̂� 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻)

)
𝑏

������ ,
(43)

where the second inequality uses Lemma E.2 and applies the triangle inequality twice again. Ob-
serve that for all 𝑗 ∈ [𝑛], given all the history of SKIPPYELEANOR interacting with the MDP

23

up to (and including) 𝑆
𝑚𝑘 𝑗
p(𝑘) , 𝐴

𝑚𝑘 𝑗
p(𝑘) (which also includes the value of 𝑐 𝑗

𝑘𝑖 for 𝑖 ∈ [𝐻 + 1]), the tra-

jectory 𝑆
𝑚𝑘 𝑗
p(𝑘)+1, 𝐴

𝑚𝑘 𝑗
p(𝑘)+1, . . . , 𝑅

𝑚𝑘 𝑗
𝐻 is an independent rollout with policy 𝜋0, with its law given by

P𝜋0 ,𝑆
𝑚𝑘 𝑗
p(𝑘) ,𝐴

𝑚𝑘 𝑗
p(𝑘)

. Therefore, for any fixed (𝑎, 𝑏) ∈ 𝐶+𝜉 ′ , 𝑐
𝑗
𝑘𝑖𝑎
⊤

(
�̃�𝑘𝑖
𝑗 − 𝐹�̂� 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻)

)
𝑏 are

independent zero-mean random variables with range [−4𝐻, 4𝐻]. Applying Hoeffding’s inequality
with a union bound over 𝑚′, 𝑘, 𝑖, 𝑎, and 𝑏, with probability at least 1− 𝜁 , for any of the 𝑚′ ∈ [𝑚′max]
times the beginning of the iteration (Line 5) is executed (this includes the entire execution of SKIP-
PYELEANOR),������1𝑛 ∑

𝑗∈[𝑛]
𝑐
𝑗
𝑘𝑖𝑎
⊤

(
�̃�𝑘𝑖
𝑗 − 𝐹�̂� 𝜃 (𝑆

𝑚𝑘 𝑗
𝑖 , . . . , 𝑅

𝑚𝑘 𝑗
𝐻)

)
𝑏

������ ≤ 8𝐻
√
𝑛

√
log

2𝑚′max𝐻2 |𝐶+𝜉 ′ |
𝜁

=
8𝐻
√
𝑛

√
2𝑑 log

18𝑑𝐻3

𝜀
+ log

2𝑚′max𝐻2

𝜁
≤ 𝜀

𝑑𝐻2𝜔
,

where we used Eq. (42). To finish, note that unless 𝑐 𝑗
𝑘𝑖 = 0,

𝜑𝑚𝑘 𝑗
p(𝑘)

𝑋−1
𝑚,p(𝑚𝑘 𝑗)

< 2(𝛽𝜔𝑑𝐻)−1, so we

can continue from Eq. (43) by bounding the average feature-norm by �̄�𝑚
𝑘 as���𝑣⊤∥ (

𝑦𝑘𝑖
�̂� 𝜃
− �̂�𝑘𝑖

�̂� 𝜃

)
𝑤
��� ≤ �̄�𝑚

𝑘 𝛽 + 3
𝜀

𝑑𝐻2𝜔
. □

Proof of Lemma E.4. Recall that (𝑘, 𝑖, 𝑣) are the arguments and 𝑥 the value of Optimization Prob-
lem 4.12. Throughout the proof we write 𝑄 to refer to its value just before Line 13 is executed. We
write •∥ for •∥ (𝑄,𝑖) , and •⊥ for •⊥(𝑄,𝑖) . Let M = 𝑦𝑘𝑖

�̂� 𝜃
− �̂�𝑘𝑖

�̂� 𝜃
. Therefore, 𝑣⊤M𝑣 = 𝑥 > �̄�𝑚

𝑘 𝛽𝜔+3 𝜀
𝑑𝐻 2 ,

and by Lemma E.1, 𝑤⊤M𝑤 > �̄�𝑚
𝑘 𝛽𝜔 + 2 𝜀

𝑑𝐻 2 .

Line 13 changes 𝑄𝑖 by appending 𝑄−1
𝑖 𝑤 to the sequence 𝐶𝑖 of vectors from which 𝑄 is calculated

according to Eq. (4). Eq. (5) lists the conditions on the new sequence 𝐶𝑖 that need to be satisfied for
𝑄 to stay a valid preconditioning. Consider the third condition, i.e.,

𝑄−1
𝑖 𝑤

2 ≤ 𝐿3. Observe that

𝑄−1
𝑖 Proj𝑍 (𝑄,𝑖) ⪯ 𝐿2

3𝐼 and ∥𝑣∥2 = 1, therefore
𝑄−1

𝑖 𝑤

2 =
𝑄−1

𝑖 Proj𝑍 (𝑄,𝑖) 𝑣

2 ≤ 𝐿3.

Now consider the second condition. To prove that it holds, we need to show that
𝑄𝑖𝑄

−1
𝑖 𝑤

2 =

∥𝑤∥2 ≥ 1
2 . Let 𝑥 = ∥𝑤∥−1

2 . Since 𝑣 was the argument of the optimization problem, and using
Lemma E.1,

𝑥2𝑤⊤M𝑤 ≤ 𝑣⊤M𝑣 ≤ 𝑤⊤M𝑤 + 𝜀

𝑑𝐻2𝜔
≤ 𝑤⊤M𝑤(1 + 1/2)

Therefore, ∥𝑤∥22 ≥ 2
3 . We immediately get that𝑄𝑖𝑄

−1
𝑖 𝑤

2
2 ≥

2
3
,

satisfying the second condition.

It remains to prove that the first condition also holds. First, noting that M is symmetric, we can
decompose 𝑤⊤M𝑤 as

𝑤⊤M𝑤 = 𝑤⊤∥M𝑤 + 𝑤⊤∥M𝑤⊥ + 𝑤⊤⊥M𝑤⊥ .

Applying Lemma E.3 on the first two terms,

𝑤⊤M𝑤 ≤ 2�̄�𝑚
𝑘 𝛽 + 6

𝜀

𝑑𝐻2𝜔
+ 𝑤⊤⊥M𝑤⊥ .

Due to 𝜔 > 3 and 𝑤⊤M𝑤 > �̄�𝑚
𝑘 𝛽𝜔 + 2 𝜀

𝑑𝐻 2 and the above, 𝑤⊥ ≠ 0. Let 𝑤′ = 𝑤⊥/∥𝑤⊥∥2. Since 𝑣

was the argument of the optimization problem, have that 𝑣⊤M𝑣 ≥ 𝑤′⊤M𝑤′. Putting this together,

∥𝑤⊥∥−2
2 𝑤⊤⊥M𝑤⊥ = 𝑤′⊤M𝑤′ ≤ 𝑣⊤M𝑣 ≤ 𝑤⊤M𝑤 + 𝜀

𝑑𝐻2𝜔
≤ 2�̄�𝑚

𝑘 𝛽 + 7
𝜀

𝑑𝐻2𝜔
+ 𝑤⊤⊥M𝑤⊥ ,

24

Since 𝑣⊤M𝑣 > �̄�𝑚
𝑘 𝛽𝜔 + 3 𝜀

𝑑𝐻 2 , 𝑤⊤⊥M𝑤⊥ ≥ (𝜔 − 7/3)
(
�̄�𝑚
𝑘 𝛽 + 3 𝜀

𝑑𝐻 2𝜔

)
> 0 and therefore dividing

the above by 𝑤⊤⊥M𝑤⊥,

∥𝑤⊥∥−2
2 ≤

7/3
𝜔 − 7/3 + 1

∥𝑤⊥∥22 ≥
1

1 + 𝑐 for 𝑐 =
7/3

𝜔 − 7/3𝑤 ∥2
2 ≤ 1 − 1

1 + 𝑐 as ∥𝑤∥2 ≤ 1 .

Now to prove that the first condition also holds,

sup
𝜃 ∈Θ𝑖

��〈𝜃, 𝑄−1
𝑖 𝑤

〉�� = sup
𝜃 ∈Θ𝑄

𝑖

|⟨𝜃, 𝑤⟩| ≤ sup
𝜃 ∈Θ𝑄

𝑖

∥𝜃∥2
𝑤 ∥2 + sup

𝜃 ∈Θ𝑄
𝑖

|⟨𝜃, 𝑤⊥⟩|

≤
√
𝑑1 + 1

√
1 − 1

1 + 𝑐 + sup
𝜃 ∈Θ𝑄

𝑖

∥𝜃∥
𝑉 (𝐺𝑄

ℎ
,𝜌𝑄

ℎ
)† ∥𝑤⊥∥𝑉 (𝐺𝑄

ℎ
,𝜌𝑄

ℎ
)

≤
√
𝑑1 + 1

√
1 − 1

1 + 𝑐 +
√

2𝑑𝑤⊤⊥ (𝛾𝐼)𝑤⊥

≤
√
𝑑1 + 1

√
1 − 1

1 + 𝑐 +
√

2𝑑𝛾 =
√
𝑑1 + 1

√
1 − 1

1 + 𝑐 +
1
2
,

where in the second line we used Lemma 4.3 to bound sup
𝜃 ∈Θ𝑄

𝑖
∥𝜃∥2, and for the second term we

used Eq. (26) with Cauchy-Schwarz. In the third line we used Eq. (24), and the definition of Proj⊥.
Finally in the last line we use that 𝑤⊥ is perpendicular to 𝑎𝑖 for 𝑖 ≤ 𝑑 ′ (by definition) and that 𝜆𝑖 ≤ 𝛾

for 𝑖 > 𝑑 ′. It is left to prove that
√
𝑑1 + 1

√
1 − 1

1+𝑐 ≤
1
2 . This holds if 𝑐 ≥ 1/(4(𝑑1 + 1) − 1), which

is satisfied as 𝑐 = 1/(3(𝑑1 + 1)), due to 𝜔 = 7(𝑑1 + 1) + 7/3 (Eq. (13)). □

I Deferred proofs for Appendix E.2

Proof of Lemma E.5. The features 𝜑𝑙𝑘 𝑗
p(𝑘) are observed by SKIPPYELEANOR in the order of increas-

ing 𝑙, within that increasing 𝑘 , and within that, increasing 𝑗 . Each time the next 𝜑𝑙𝑘 𝑗
p(𝑘) is observed,

we sum the elliptic potential as follows.

For 𝑖 ∈ [𝑚], 𝑟 ∈ [𝐻], 𝑢 ∈ [𝑛], 𝑡 ∈ [𝐻], let the set of indices observed before 𝜑𝑖𝑟𝑢
p(𝑟) whose Phase II

(rollout phase) starts at some stage 𝑡 be:

I𝑖𝑟𝑢 (𝑡) = {𝑙 ∈ [𝑖], 𝑘 ∈ [𝐻], 𝑗 ∈ [𝑛] : 𝑙𝐻𝑛 + 𝑘𝑛 + 𝑗 < 𝑖𝐻𝑛 + 𝑟𝑛 + 𝑢 and p(𝑙𝑘 𝑗) = 𝑡}
Let a version of this where only the whole iteration 𝑖’s data is included be

J𝑖 (𝑡) = {𝑙 = 𝑖, 𝑘 ∈ [𝐻], 𝑗 ∈ [𝑛] : p(𝑙𝑘 𝑗) = 𝑡}
Let

𝑋𝑖𝑟𝑢 (𝑡) = 𝜆𝐼 +
∑

𝑙𝑘 𝑗∈I𝑖𝑟𝑢 (𝑡)
𝜑
𝑙𝑘 𝑗
p(𝑘)𝜑

𝑙𝑘 𝑗
p(𝑘)

⊤

Observe that 𝑋𝑖𝑡 , defined in Optimization Problem 4.10, is the version of this that only updates at
the start of each iteration 𝑖, that is,

𝑋𝑖𝑡 = 𝑋𝑖11 (𝑡) .
The total elliptic potential, observed by the end of iteration 𝑚 is, writing 𝑘 = p(𝑖𝑟𝑢) on the left hand
side: ∑
𝑖∈[𝑚],𝑟 ∈[𝐻],𝑢∈[𝑛]

1 {𝑘 < 𝐻 + 1}min
{
1,

𝜑𝑖𝑟𝑢
𝑘

2
𝑋𝑖𝑟𝑢 (𝑘)−1

}
=

∑
𝑖∈[𝑚],𝑡 ∈[𝐻]

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)

min
{
1,

𝜑𝑙𝑘 𝑗
𝑡

2

𝑋𝑙𝑘 𝑗 (𝑡)−1

}
.

Applying the elliptical potential lemma (Lemma L.1) 𝐻 times for 𝑡 ∈ [𝐻], this can be bounded as∑
𝑡 ∈[𝐻],𝑖∈[𝑚]

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)

min
{
1,

𝜑𝑙𝑘 𝑗
𝑡

2

𝑋𝑙𝑘 𝑗 (𝑡)−1

}
≤ 2𝑑𝐻 log

(
1 +

𝐻𝑚𝑛𝐿2
1

𝑑𝜆

)

25

On the other hand, by Lemma L.2, then switching to an ℓ1-bound, then observing that by definition,∑
�̄�𝑖
𝑘 sums the same quantities but caps them by some threshold,∑

𝑡 ∈[𝐻],𝑖∈[𝑚]

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)

min
{
1,

𝜑𝑙𝑘 𝑗
𝑡

2

𝑋𝑙𝑘 𝑗 (𝑡)−1

}
≥

∑
𝑡 ∈[𝐻],𝑖∈[𝑚]

min
1,

1
2

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)

𝜑𝑙𝑘 𝑗
𝑡

2

𝑋−1
𝑖𝑡

≥

∑
𝑖∈[𝑚]

min
1,

1
2

∑
𝑡 ∈[𝐻]

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)

𝜑𝑙𝑘 𝑗
𝑡

2

𝑋−1
𝑖𝑡

≥

∑
𝑖∈[𝑚]

min
1,

1
2𝐻𝑛

©«
∑

𝑡 ∈[𝐻]

∑
𝑙𝑘 𝑗∈J𝑖 (𝑡)

𝜑𝑙𝑘 𝑗
𝑡

𝑋−1
𝑖𝑡

ª®¬
2

≥
∑
𝑖∈[𝑚]

min
1,

1
2𝐻𝑛

©«𝑛
∑

𝑘∈[𝐻]
�̄�𝑖
𝑘
ª®¬

2
Whenever an iteration finishes without returning in Line 17,

∑
𝑘∈[𝐻] �̄�

𝑚
𝑘 > 𝜀/(𝑑𝐻2𝛽𝜔). Therefore,

2𝑑𝐻 log

(
1 +

𝐻𝑚𝑛𝐿2
1

𝑑𝜆

)
≥

∑
𝑖∈[𝑚]

min
1,

1
2𝐻𝑛

©«𝑛
∑

𝑘∈[𝐻]
�̄�𝑖
𝑘
ª®¬

2
≥

∑
𝑖∈[𝑚]

min

{
1,

1
2𝐻

𝑛

(
𝜀

𝑑𝐻2𝛽𝜔

)2
}

≥
∑
𝑖∈[𝑚]

min
{
1, 𝐻𝑑/𝛽2} = 𝑚𝐻𝑑/𝛽2 ,

Therefore, even for the iteration that returns in Line 17,

𝑚 ≤ 𝛽2 log

(
1 +

𝐻𝑚𝑛𝐿2
1

𝑑𝜆

)
+ 1 = 𝑚max . □

J Deferred proofs for Appendix E.3

Proof of Lemma E.8. For notational simplicity we drop the subscripts (�̂�, 𝜃). We first use the usual
high-probability bounds on the least squares predictor and Hoeffding’s inequality on the empirical
mean quantities, to prove that with probability at least 1 − 3𝜁 , during the execution of SKIPPYE-
LEANOR whenever Line 16 is executed, for all 𝑘 ∈ [𝐻],

E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘)) ≤ E
𝜋𝑚𝑘 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 𝑐𝑘,𝐻+1𝐸→ (𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻) + 2�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 + 4

𝜀

𝐻
.

(44)
The proof of this is presented as Lemma J.1.

Next, to prove the statement for 𝑘 ∈ [𝐻], assume by induction that Eq. (22) holds for 𝑖 ∈ [𝑘 +1 : 𝐻].
Observe that SKIPPYPOLICY performs a rollout with policy 𝜋0 for the rest of the episode starting
from stage 𝑝(𝑘) + 1, that is, 1 = 𝐴𝑝 (𝑘)+1 = · · · = 𝐴𝐻 . Therefore, the law of the random vari-
ables 𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻 , given (𝑆𝑝 (𝑘) , 𝐴𝑝 (𝑘)) is fully determined by the dynamics of the MDP, and is
independent of the values of 𝑝(𝑘 + 1), . . . , 𝑝(𝐻). Therefore,

E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘+1,𝐻+1𝐶 (𝑆𝑝 (𝑘+1)) = E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘+1,𝐻+1𝐷 (𝑆𝑝 (𝑘+1) , . . . , 𝑅𝐻) +
𝐻∑

𝑢=𝑝 (𝑘+1)
𝑅𝑢

= E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝐸
→ (𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻) +

𝐻∑
𝑢=𝑝 (𝑘+1)

𝑅𝑢 ,

(45)

26

where we use Eq. (9), and that 𝜋𝑚𝑘 (SKIPPYPOLICY) is in phase II after stage 𝑝(𝑘), but defines the
the mapping 𝑝(·) independently of whether the policy is in phase I or phase II, in such a way that
for any 𝐻 ≥ 𝑗 > 𝑝(𝑘),

P
𝜋𝑚𝑘 ,𝑠1

[
𝑝(𝑘 + 1) = 𝑗

�� 𝑝(𝑘), 𝑆𝑝 (𝑘) , 𝐴𝑝 (𝑘)
]
= P

𝜋𝑚𝑘 ,𝑠1

𝜏(𝑆 𝑗)
𝑗−1∏

𝑗′=𝑝 (𝑘)+1
(1 − 𝜏(𝑆 𝑗′))

�� 𝑝(𝑘), 𝑆𝑝 (𝑘) , 𝐴𝑝 (𝑘)

 .

Combining Eq. (45) with Eq. (44),

E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘)) ≤ E
𝜋𝑚𝑘 ,𝑠1

𝑝 (𝑘+1)−1∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 𝑐𝑘+1,𝐻+1𝐶 (𝑆𝑝 (𝑘+1)) + 2�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 + 4

𝜀

𝐻
.

By Remark E.7, E𝜋𝑚𝑘 ,𝑠1 𝑐𝑘+1,𝐻+1𝐶 (𝑆𝑝 (𝑘+1)) = E𝜋𝑚,𝑘+1 ,𝑠1 𝑐𝑘+1,𝐻+1𝐶 (𝑆𝑝 (𝑘+1)) = �̄�𝑘+1 . Therefore,
combining with the inductive hypothesis,

E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘)) ≤ E
𝜋𝑚𝑘 ,𝑠1

𝑝 (𝑘+1)−1∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + �̄�𝑘+1 + 2�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 + 4

𝜀

𝐻

≤ E
𝜋𝑚𝑘 ,𝑠1

𝑝 (𝑘+1)−1∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + E
𝜋𝑚𝐻 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘+1)

𝑅𝑢 + 2
𝐻∑
𝑖=𝑘

�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 + 4(𝐻 − 𝑘 + 1) 𝜀

𝐻

= E
𝜋𝑚𝐻 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 2
𝐻∑
𝑖=𝑘

�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 + 4(𝐻 − 𝑘 + 1) 𝜀

𝐻

where the last equation uses Remark E.7 again, finishing the induction. □

Lemma J.1. Adopt the notation of Lemma E.8. With probability at least 1−3𝜁 , during the execution
of SKIPPYELEANOR, whenever Line 16 is executed, for all 𝑘 ∈ [𝐻],

E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘)) ≤ E
𝜋𝑚𝑘 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 𝑐𝑘,𝐻+1𝐸→ (𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻) + 2�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 + 4

𝜀

𝐻
.

Proof. We refer as 𝜃 to the value of the argument of Optimization Problem 4.10 recorded in Line 5.
For 𝑘 ∈ [𝐻], recall the definition of �̄�𝑚

𝑘 (Eq. (18)), along with the fact that unless 𝑐
𝑗
𝑘,𝐻+1 = 0,𝜑𝑚𝑘 𝑗

p(𝑘)

𝑋−1
𝑚,p(𝑚𝑘 𝑗)

< 2(𝛽𝜔𝑑𝐻)−1, we get a useful bound on the average norm of the features under

consideration:

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

𝜑𝑚𝑘 𝑗
p(𝑘)

𝑋−1
𝑚,p(𝑚𝑘 𝑗)

≤ �̄�𝑚
𝑘 . (46)

If Line 16 is executed, the consistency check passed, and therefore for all 𝑘 ∈ [𝐻−1], 𝑖 ∈ [𝑘+1 : 𝐻],

Tr
(
𝑦𝑘𝑖 − �̂�𝑘𝑖

)
≤ �̄�𝑚

𝑘 𝛽𝜔𝑑 + 3
𝜀

𝐻2 (47)

For 𝑡 ∈ [𝐻] let the least-squares predictor of rewards sums under the policy 𝜋0 be

𝜃𝑡 ,𝐻+1 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

𝐻∑
𝑢=𝑡

𝑅
𝑙𝑘 𝑗
𝑢 .

For 𝑘 ∈ [𝐻] and 𝑗 ∈ [𝑛] let us introduce the shorthand

𝑅
𝑚𝑘 𝑗
𝑘→ =

𝐻∑
𝑢=p(𝑚𝑘 𝑗)

𝑅
𝑚𝑘 𝑗
𝑢 ,

27

and similarly when the trajectory is clear from context: 𝑅𝑘→ =
∑𝐻

𝑢=𝑝 (𝑘) 𝑅𝑢 . For 𝑘 ∈ [𝐻] let

�̂� 𝑘 =
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

(
𝐸→ (𝑆𝑚𝑘 𝑗

p(𝑘)+1, . . . , 𝑅
𝑚𝑘 𝑗
𝐻) + 𝑅𝑚𝑘 𝑗

𝑘→

)
�̂�𝑘 =

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1𝐶 (𝑆

𝑚𝑘 𝑗
p(𝑘))

𝑦𝑘,𝐻+1 =
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃

p(𝑚𝑘 𝑗) ,𝐻+1
〉

𝑧𝑘,𝐻+1 =
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1𝑅

𝑚𝑘 𝑗
𝑘→

For 𝑡 ∈ [𝐻 − 1], 𝑖 ∈ [𝑡 + 1 : 𝐻], along with 𝜃𝑡 ,𝐻+1, let

𝜃𝑡𝑖 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡 Tr(𝐹 (𝑆𝑙𝑘 𝑗𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻)) = 𝑋−1

𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡 𝐸 (𝑆𝑙𝑘 𝑗𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻) ,

where the second equality is by Eq. (32). Observe that for any 𝑣 ∈ R𝑑 , Tr(𝑣⊤𝜃𝑡𝑖) =
〈
𝑣, 𝜃𝑡𝑖

〉
.

Therefore, for 𝑘 ∈ [𝐻],

𝑦𝑘,𝐻+1+
𝐻∑

𝑖=𝑘+1
Tr(𝑦𝑘𝑖) = 1

𝑛

∑
𝑗∈[𝑛]

𝐻+1∑
𝑖=𝑘+1

𝑐
𝑗
𝑘𝑖

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃

p(𝑚𝑘 𝑗) ,𝑖
〉
=

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) ,

𝐻+1∑
𝑖=p(𝑚𝑘 𝑗)+1

𝜃p(𝑚𝑘 𝑗) ,𝑖
〉

For any 𝑡 ∈ [𝐻], by the definitions,
𝐻+1∑
𝑖=𝑡+1

𝜃𝑡𝑖 = 𝑋−1
𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

(
𝐻∑

𝑖=𝑡+1
𝐸 (𝑆𝑙𝑘 𝑗𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻) +

𝐻∑
𝑢=𝑡

𝑅
𝑚𝑘 𝑗
𝑢

)
= 𝑋−1

𝑚𝑡

∑
𝑙𝑘 𝑗∈I𝑚 (𝑡)

𝜑
𝑙𝑘 𝑗
𝑡

(
𝐸→ (𝑆𝑙𝑘 𝑗𝑡+1, . . . , 𝑅

𝑙𝑘 𝑗
𝐻) +

𝐻∑
𝑢=𝑡

𝑅
𝑚𝑘 𝑗
𝑢

)
= 𝜃𝑡

Plugging this into the previous calculation,

𝑦𝑘,𝐻+1 +
𝐻∑

𝑖=𝑘+1
Tr(𝑦𝑘𝑖) = 1

𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
≥ 1

𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
− 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

𝜑𝑚𝑘 𝑗
p(𝑘)

𝑋−1
𝑚,p(𝑚𝑘 𝑗)

𝜃p(𝑚𝑘 𝑗) − 𝜃p(𝑚𝑘 𝑗)

𝑋𝑚,p(𝑚𝑘 𝑗)

≥ 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
− �̄�𝑚

𝑘 𝛽𝐻

≥ 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1 clip[0,𝐻]

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
− �̄�𝑚

𝑘 𝛽𝐻

=
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1𝐶 (𝑆

𝑚𝑘 𝑗
p(𝑘)) − �̄�

𝑚
𝑘 𝛽𝐻 = �̂�𝑘 − �̄�𝑚

𝑘 𝛽𝐻 ,

(48)

where the first inequality uses Cauchy-Schwarz. The second inequality bounds the average of the
first norm by Eq. (46), and the bound on the second norm (for any 𝑗) is by definition of Optimization
Problem 4.10. The third inequality relies on the fact that 𝑐 𝑗

𝑘,𝐻+1 = 0 if the clipped inner product is

negative, and the final equality is due to the definition of𝐶 along with the fact that 𝐴𝑚𝑘 𝑗
p(𝑘) = 𝜋+ (𝑆𝑚𝑘 𝑗

p(𝑘)),
as this is the last state in the trajectory where SKIPPYPOLICY takes the inner-product maximizing
action (𝜋+) before rolling out with 𝜋0.

28

By Eqs. (12) and (32), we have that

𝑧𝑘,𝐻+1 +
∑

𝑖∈[𝑘+1:𝐻]
Tr(�̂�𝑘𝑖) = 1

𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

©«
𝐻+1∑

𝑖=p(𝑚𝑘 𝑗)+1
𝐸 (𝑆𝑚𝑘 𝑗

𝑖 , . . . , 𝑅
𝑚𝑘 𝑗
𝐻) + 𝑅𝑚𝑘 𝑗

𝑘→
ª®¬

=
1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

(
𝐸→ (𝑆𝑚𝑘 𝑗

p(𝑘)+1, . . . , 𝑅
𝑚𝑘 𝑗
𝐻) + 𝑅𝑚𝑘 𝑗

𝑘→

)
= �̂� 𝑘

(49)

Combining Eqs. (48) and (49),

�̂�𝑘 − �̂� 𝑘 ≤ �̄�𝑚
𝑘 𝛽𝐻 +

(
𝑦𝑘,𝐻+1 − 𝑧𝑘,𝐻+1

)
+

∑
𝑖∈[𝑘+1:𝐻]

Tr(𝑦𝑘𝑖 − �̂�𝑘𝑖)

≤ �̄�𝑚
𝑘 𝛽𝐻 +

(���� E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝑅𝑘→ − 𝑧𝑘,𝐻+1
���� + ����𝑦𝑘,𝐻+1 − E

𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝑅𝑘→

����) + �̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 + 3

𝜀

𝐻
(50)

where the sum (last term) is bounded by Eq. (47), and we apply a triangle inequality on the second
term. To continue bounding this term, we apply Hoeffding’s inequality on the independent random
variables 𝑐

𝑗
𝑘,𝐻+1𝑅𝑘→ (for 𝑗 ∈ [𝑛]) that have range [0, 𝐻], along with a union bound over the

iteration 𝑚′ ∈ [𝑚′max] and 𝑘 ∈ [𝐻], to get that with probability at least 1 − 𝜁 ,���� E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝑅𝑘→ − 𝑧𝑘,𝐻+1
���� ≤ 𝐻
√
𝑛

√
log

2𝑚′max𝐻

𝜁
≤ 𝜀

𝑑𝐻2𝜔
. (51)

The remaining term
��𝑦𝑘,𝐻+1 − E𝜋𝑚𝑘 ,𝑠1 𝑐𝑘,𝐻+1𝑅𝑘→

�� is bounded using the realizability of 𝑞𝜋0
(Defi-

nition 3.2) as follows. Take any 𝑡 ∈ [𝐻]. By definition there exists 𝜃★𝑡 ∈ Θ𝑄
𝑡 ⊆ B(𝐿2), such that

for all 𝑠 ∈ S𝑡 and 𝑎 ∈ [A], 𝑞𝜋0 (𝑠, 𝑎) ≈𝜂
〈
𝜑(𝑠, 𝑎), 𝜃★𝑡

〉
. Take the sequence 𝐴 formed of 𝜑𝑙𝑘 𝑗

𝑡 (for
𝑙𝑘 𝑗 ∈ I𝑚 (𝑡), in the order that these random variables are observed), and the sequence 𝑋 formed of
𝑅
𝑚𝑘 𝑗
𝑘→ (for 𝑙𝑘 𝑗 ∈ I𝑚 (𝑡), in the same order), and the sequence Δ formed of 𝑞𝜋0 (𝑆𝑙𝑘 𝑗𝑡 , 𝐴

𝑙𝑘 𝑗
𝑡)−

〈
𝜑
𝑙𝑘 𝑗
𝑡 , 𝜃★𝑡

〉
(for 𝑙𝑘 𝑗 ∈ I𝑚 (𝑡), in the same order). Then the sequences 𝐴, 𝑋 , and Δ satisfy the conditions of
Lemma M.4 with a subgaussianity parameter 𝜎 = 𝐻. Due to this lemma, applied with a union
bound over 𝑚′ ∈ [𝑚′max] and 𝑡 ∈ [𝐻], with probability at least 1 − 𝜁 ,𝜃𝑡 ,𝐻+1 − 𝜃★𝑡 𝑋𝑚𝑡

<
√
𝜆
𝜃★𝑡 2 + ∥Δ∥∞

√
|I𝑚 (𝑡) | + 𝐻

√
2 log

(
𝑚′max𝐻

𝜁

)
+ log

(
det 𝑋𝑚𝑡

𝜆𝑑

)
≤ 2 + 𝐻

√
2 log

𝑚′max𝐻

𝜁
+ log

(
det 𝑋𝑚𝑡

𝜆𝑑

)
≤ 𝛽 ,

by Eq. (41). Therefore by Cauchy-Schwarz and Eq. (46),����𝑦𝑘,𝐻+1 − E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝑅𝑘→

���� ≤ 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

(𝜑𝑚𝑘 𝑗
p(𝑘)

𝑋−1
𝑚,p(𝑚𝑘 𝑗)

𝜃p(𝑚𝑘 𝑗) ,𝐻+1 − 𝜃★p(𝑚𝑘 𝑗)

𝑋𝑚𝑡

+ 𝜂
)

≤ �̄�𝑚
𝑘 𝛽 + 𝜂 ≤ �̄�𝑚

𝑘 𝛽 + 𝜀

𝑑𝐻2𝜔
.

Combining this with Eqs. (50) and (51),

�̂�𝑘 − �̂� 𝑘 ≤ 1.5�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 + 3

𝜀

𝐻
+ 2

𝜀

𝑑𝐻2𝜔
. (52)

We introduce the following notation for 𝑗 ∈ [𝑛], 𝑘 ∈ [𝐻 + 1], 𝑖 ∈ [𝐻 + 1]:

𝑐
𝑗
𝑘𝑖 = 1

{
p(𝑚𝑘 𝑗) < 𝑖 and

𝜑𝑚𝑘 𝑗
p(𝑘)

𝑋−1
𝑚,p(𝑚𝑘 𝑗)

≥ 2(𝛽𝜔𝑑𝐻)−1 and
〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
≥ 0

}
𝑐
𝑗
𝑘𝑖 = 1

{
p(𝑚𝑘 𝑗) < 𝑖 and

〈
𝜑
𝑚𝑘 𝑗
p(𝑘) , 𝜃p(𝑚𝑘 𝑗)

〉
< 0

}
,

29

such that for all 𝑗 ,

𝑐
𝑗
𝑘𝑖 = 𝑐

𝑗
𝑘𝑖 + 𝑐

𝑗
𝑘𝑖 + 𝑐

𝑗
𝑘𝑖 . (53)

Continuing from Eq. (52), as 𝐸→ (𝑠𝑖�) +∑𝐻
𝑢=𝑖 𝑟𝑢 ≥ 0 by Eq. (31), and if 𝑐 𝑗

𝑘,𝐻+1 = 1 then 𝐶 (𝑆𝑚𝑘 𝑗
p(𝑘)) =

0, we have that
1
𝑛

∑
𝑗∈[𝑛]
(𝑐 𝑗

𝑘,𝐻+1+𝑐
𝑗
𝑘,𝐻+1)

(
𝐶 (𝑆𝑚𝑘 𝑗

p(𝑘)) −
(
𝐸→ (𝑆𝑚𝑘 𝑗

p(𝑘)+1, . . . , 𝑅
𝑚𝑘 𝑗
𝐻) + 𝑅𝑚𝑘 𝑗

𝑘→

))
≤ 1.5�̄�𝑚

𝑘 𝛽𝜔𝑑𝐻+3 𝜀

𝐻
+2 𝜀

𝑑𝐻2𝜔
.

As (even if 𝑐 𝑗
𝑘,𝐻+1 = 1) 𝐶 (𝑆𝑚𝑘 𝑗

p(𝑘)) ≤ 𝐻,

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘)) ≤ 𝐻�̄�𝑚

𝑘 /(2(𝛽𝜔𝑑𝐻)
−1) = 1

2
�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 ,

which combined with the previous inequality and Eq. (53) yields

1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

(
𝐶 (𝑆𝑚𝑘 𝑗

p(𝑘)) −
(
𝐸→ (𝑆𝑚𝑘 𝑗

p(𝑘)+1, . . . , 𝑅
𝑚𝑘 𝑗
𝐻) + 𝑅𝑚𝑘 𝑗

𝑘→

))
≤ 2�̄�𝑚

𝑘 𝛽𝜔𝑑𝐻 + 3
𝜀

𝐻
+ 2

𝜀

𝑑𝐻2𝜔
.

Observe that the random variables 𝑐 𝑗
𝑘,𝐻+1

(
𝐶 (𝑆𝑚𝑘 𝑗

p(𝑘)) −
(
𝐸→ (𝑆𝑚𝑘 𝑗

p(𝑘)+1, . . . , 𝑅
𝑚𝑘 𝑗
𝐻) + 𝑅𝑚𝑘 𝑗

𝑘→

))
are inde-

pendent (for 𝑗 ∈ [𝑛]) with range [−2𝐻, 𝐻] (Eq. (31)). By Hoeffding’s inequality, with probability
at least 1 − 𝜁 , for all iteration 𝑚′ ∈ [𝑚′max] (this includes the entire execution of SKIPPYELEANOR)
and 𝑘 ∈ [𝐻], ����� E𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1
(
𝐶 (𝑆𝑝 (𝑘)) −

(
𝐸→ (𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻) + 𝑅𝑘→

))
− 1
𝑛

∑
𝑗∈[𝑛]

𝑐
𝑗
𝑘,𝐻+1

(
𝐶 (𝑆𝑚𝑘 𝑗

p(𝑘)) −
(
𝐸→ (𝑆𝑚𝑘 𝑗

p(𝑘)+1, . . . , 𝑅
𝑚𝑘 𝑗
𝐻) + 𝑅𝑚𝑘 𝑗

𝑘→

)) �����
≤ 4𝐻
√
𝑛

√
log

2𝑚′max𝐻

𝜁
≤ 𝜀

𝑑𝐻2𝜔
.

Combining with the previous bound, under the intersection of the high-probability events referred
to above, which by a union bound has a probability of at least 1 − 3𝜁 , we have that for all 𝑘 ∈ [𝐻],

E
𝜋𝑚𝑘 ,𝑠1

𝑐𝑘,𝐻+1𝐶 (𝑆𝑝 (𝑘)) ≤ E
𝜋𝑚𝑘 ,𝑠1

𝐻∑
𝑢=𝑝 (𝑘)

𝑅𝑢 + 𝑐𝑘,𝐻+1𝐸→ (𝑆𝑝 (𝑘)+1, . . . , 𝑅𝐻) + 2�̄�𝑚
𝑘 𝛽𝜔𝑑𝐻 + 4

𝜀

𝐻
. □

K Deferred proofs for Appendix E.4

Proof of Lemma E.10. Let 𝑚 be the current iteration. Unlike in previous lemmas, here we in-
troduce (�̂�, 𝜃) that does not refer to the outcome of Optimization Problem 4.10. Instead, let
�̂� = (𝜗𝑖

ℎ)ℎ∈[2:𝐻],𝑖∈[𝑑0] ∈ G be the correct guess. For ℎ = 𝐻, . . . , 1, 𝜃ℎ is defined in sequence
along with the behavior of a policy 𝜋 on stage ℎ.

For ℎ = 𝐻, . . . , 1, assuming that this process already defined 𝜃ℎ+1, . . . , 𝜃𝐻 (in Eq. (55)), let 𝜋 be
the policy that, for any 𝑡 > ℎ and 𝑠 ∈ S𝑡 , takes action on 𝑠 as 𝜋+

�̂� 𝜃
(𝑠) with probability 𝜏�̂� 𝜃 (𝑠), and

action 1 with probability 1 − 𝜏�̂� 𝜃 (𝑠) (𝜏 is defined in Eq. (8)). Simultaneously, using the second part
of Corollary 4.11, define 𝜃ℎ𝑖 ∈ B(4𝑑0𝐿2/𝛼) for 𝑖 ∈ [ℎ + 1 : 𝐻] to satisfy for all 𝑠 ∈ Sℎ , 𝑎 ∈ [A]:

E
𝜋0 ,𝑠,𝑎

Tr(�̄��̂� 𝜃 (𝑆𝑖)) ≈𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃ℎ𝑖

〉
.

We also define 𝜃ℎ,𝐻+1 ∈ B(𝐿2) to satisfy for all 𝑠 ∈ Sℎ , 𝑎 ∈ [A]:

E
𝜋0 ,𝑠,𝑎

𝐻∑
𝑢=ℎ

𝑅𝑢 ≈𝜂
〈
𝜑(𝑠, 𝑎), 𝜃ℎ,𝐻+1

〉
.

30

By Eq. (32),

E
𝜋0 ,𝑠,𝑎

∑
𝑖∈[ℎ+1:𝐻]

Tr(�̄��̂� 𝜃 (𝑆𝑖)) +
𝐻∑
𝑢=ℎ

𝑅𝑢 = E
𝜋0 ,𝑠,𝑎

𝐸→
�̂� 𝜃
(𝑆ℎ+1, . . . , 𝑅𝐻) +

𝐻∑
𝑢=ℎ

𝑅𝑢 ≈𝐻𝜂0

〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
,

(54)

where we define

𝜃ℎ =
∑

𝑖∈[ℎ+1:𝐻+1]
𝜃ℎ𝑖 . (55)

We first show that (�̂�, 𝜃) is feasible for Optimization Problem 4.10. Clearly,
𝜃ℎ2 ≤ 4𝑑0𝐻𝐿2/𝛼.

For any 𝑖 ∈ [ℎ + 1 : 𝐻], let

𝜃ℎ𝑖 = 𝑋−1
𝑚ℎ

∑
𝑙𝑘 𝑗∈I𝑚 (ℎ)

𝜑
𝑙𝑘 𝑗
ℎ Tr(𝐹�̂� 𝜃 (𝑆

𝑙𝑘 𝑗
ℎ+1, . . . , 𝑅

𝑙𝑘 𝑗
𝐻)) ,

and let

𝜃ℎ,𝐻+1 = 𝑋−1
𝑚ℎ

∑
𝑙𝑘 𝑗∈I𝑚 (ℎ)

𝜑
𝑙𝑘 𝑗
ℎ

𝐻∑
𝑢=ℎ

𝑅
𝑙𝑘 𝑗
𝑢 .

Then, 𝜃 of Optimization Problem 4.10 satisfies for all ℎ ∈ [𝐻], by Eq. (32),

𝜃ℎ =
∑

𝑖∈[ℎ+1:𝐻+1]
𝜃ℎ𝑖 .

To show that (�̂�, 𝜃) is feasible, it thus suffices to show for all ℎ ∈ [𝐻], 𝑖 ∈ [ℎ + 1 : 𝐻 + 1], that𝜃ℎ𝑖 − 𝜃ℎ𝑖𝑋𝑚ℎ
≤ 𝛽.

Fix any ℎ ∈ [𝐻] and 𝑖 ∈ [ℎ + 1 : 𝐻 + 1]. Take the sequence 𝐴 formed of 𝜑𝑙𝑘 𝑗
𝑡 (for 𝑙𝑘 𝑗 ∈ I𝑚 (ℎ),

in the order that these random variables are observed). For 𝑖 < 𝐻 + 1 take the sequence 𝑋 formed
of Tr(𝐹�̂� 𝜃 (𝑆

𝑙𝑘 𝑗
𝑖 , . . . , 𝑅

𝑙𝑘 𝑗
𝐻)) (for 𝑙𝑘 𝑗 ∈ I𝑚 (ℎ), in the same order), and the sequence Δ formed of

E𝜋0 ,𝑆
𝑙𝑘 𝑗
ℎ

,𝐴
𝑙𝑘 𝑗
ℎ

Tr(�̄��̂� 𝜃 (𝑆𝑖)) −
〈
𝜑
𝑙𝑘 𝑗
ℎ , 𝜃ℎ𝑖

〉
(for 𝑙𝑘 𝑗 ∈ I𝑚 (ℎ), in the same order). For 𝑖 = 𝐻 + 1, the

sequence 𝑋 is formed of
∑𝐻

𝑢=ℎ 𝑅
𝑙𝑘 𝑗
𝑢 , and Δ is formed of 𝑞𝜋0 (𝑆𝑙𝑘 𝑗ℎ , 𝐴

𝑙𝑘 𝑗
ℎ) −

〈
𝜑
𝑙𝑘 𝑗
ℎ , 𝜃ℎ𝑖

〉
. Then the

sequences 𝐴, 𝑋 , and Δ satisfy the conditions of Lemma M.4 with a subgaussianity parameter 𝜎 = 𝐻.
Due to this lemma, applied with a union bound over 𝑚′ ∈ [𝑚′max], 𝑡, and 𝑖, with probability at least
1 − 𝜁 ,

𝜃ℎ𝑖 − 𝜃ℎ𝑖𝑋𝑚ℎ
<
√
𝜆
𝜃ℎ𝑖2 + ∥Δ∥∞

√
|I𝑚 (𝑡) | + 𝐻

√
2 log

(
𝑚′max𝐻2

𝜁

)
+ log

(
det 𝑋𝑚𝑡

𝜆𝑑

)
≤ 2 + 𝐻

√
2 log

𝑚′max𝐻2

𝜁
+ log

(
det 𝑋𝑚𝑡

𝜆𝑑

)
≤ 𝛽 ,

by Eq. (41).

Next, we show that the resulting policy 𝜋 is near-optimal. Assume by induction on ℎ = 𝐻, . . . , 1,
that for all 𝑡 ∈ [ℎ + 1 : 𝐻], all 𝑠 ∈ S𝑡 and 𝑎 ∈ [A],

𝑣𝜋 (𝑠) ≥ 𝑣★(𝑠) − (𝐻 − 𝑡 + 1) (𝜀/𝐻 + 2𝐻2𝜂0) and (56)〈
𝜑(𝑠, 𝑎), 𝜃𝑡

〉
≈(𝐻−𝑡+1)𝐻𝜂0 𝑞𝜋 (𝑠, 𝑎) . (57)

To prove the above for 𝑡 = ℎ as well, take any 𝑠 ∈ Sℎ , 𝑎 ∈ [A]. Introduce the random variable 𝑃 that,
for a trajectory following P𝜋0 ,𝑠,𝑎, takes as its value the index of the first Bernoulli draw of 1 (starting
from index ℎ + 1), when the Bernoullis have means 𝜏�̂� 𝜃 (𝑆 𝑗) for 𝑗 ∈ [ℎ + 1 : 𝐻], and takes the value
𝐻 + 1 if all of these Bernoullis have outcome 0. Write E𝜋0 ,𝑠,𝑎,𝑃 [·] for E𝜋0 ,𝑠,𝑎 E𝑃 [· | 𝑆ℎ+1, . . . , 𝑅𝐻].

31

Then,

E
𝜋0 ,𝑠,𝑎

𝐸→
�̂� 𝜃
(𝑆ℎ+1, . . . , 𝑅𝐻) +

𝐻∑
𝑢=ℎ

𝑅𝑢 = E
𝜋0 ,𝑠,𝑎,𝑃

𝐷�̂� 𝜃 (𝑆𝑃 , . . . , 𝑅𝐻) +
𝐻∑
𝑢=ℎ

𝑅𝑢

= E
𝜋0 ,𝑠,𝑎,𝑃

𝑃−1∑
𝑢=ℎ

𝑅𝑢 + 1 {𝑃 < 𝐻 + 1}𝐶�̂� 𝜃 (𝑆𝑃)

where we use Eq. (9). Combining with Eq. (54),〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
≈𝐻𝜂0 E

𝜋0 ,𝑠,𝑎,𝑃

𝑃−1∑
𝑢=ℎ

𝑅𝑢 + 1 {𝑃 < 𝐻 + 1}𝐶�̂� 𝜃 (𝑆𝑃)

= E
𝜋0 ,𝑠,𝑎,𝑃

𝑃−1∑
𝑢=ℎ

𝑅𝑢 + 1 {𝑃 < 𝐻 + 1} clip[0,𝐻]
〈
𝜑(𝑆𝑃 , 𝜋+�̂� 𝜃

(𝑆𝑃)), 𝜃𝑃
〉

≈(𝐻−ℎ)𝐻𝜂0 E
𝜋0 ,𝑠,𝑎,𝑃

𝑃−1∑
𝑢=ℎ

𝑅𝑢 + 1 {𝑃 < 𝐻 + 1} 𝑞𝜋 (𝑆𝑃 , 𝜋+�̂� 𝜃
(𝑆𝑃)) ,

where we used the inductive assumption along with the fact that action-values are bounded in [0, 𝐻].
Observe also that

𝑞𝜋 (𝑠, 𝑎) = E
𝜋0 ,𝑠,𝑎,𝑃

𝑃−1∑
𝑢=ℎ

𝑅𝑢 + 1 {𝑃 < 𝐻 + 1} 𝑞𝜋 (𝑆𝑃 , 𝜋+�̂� 𝜃
(𝑆𝑃)) ,

and therefore 〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
≈(𝐻−ℎ+1)𝐻𝜂0 𝑞𝜋 (𝑠, 𝑎) ,

proving Eq. (57) of the inductive assumption for 𝑡 = ℎ.

To show Eq. (56) for 𝑡 = ℎ, by Eq. (57) for 𝑡 = ℎ and the inductive assumption for 𝑡 > ℎ,〈
𝜑(𝑠, 𝑎), 𝜃ℎ

〉
≈𝐻 2𝜂0 𝑞𝜋 (𝑠, 𝑎) ≥ 𝑞★(𝑠, 𝑎) − (𝐻 − ℎ) (𝜀/𝐻 + 2𝐻2𝜂0) .

Either 𝜋 chooses the action 𝑎′ maximizing the inner product above, for which

𝑞𝜋 (𝑠, 𝑎′) ≥ max
𝑎∈[A]

𝑞★(𝑠, 𝑎) − (𝐻 − ℎ)(𝜀/𝐻 +2𝐻2𝜂0) −2𝐻2𝜂0 ≥ 𝑣★(𝑠) − (𝐻 − ℎ+1) (𝜀/𝐻 +2𝐻2𝜂0) ,

or it chooses action 1. This can only happen with non-zero probability if 𝜏�̂� 𝜃 (𝑠) < 1, in which
case we have by definition that range�̂�𝑄 (𝑠) = range𝑄 (𝑠) ≤ 𝜀√

2𝑑𝐻
. Combining with Eq. (3) and

Proposition 4.5, range(𝑠) ≤ 𝜀
𝐻 , and therefore, using Eq. (56) for 𝑡 = ℎ + 1, in this case

𝑞𝜋 (𝑠, 1) ≥ 𝑞★(𝑠, 1) − (𝐻 − ℎ)(𝜀/𝐻 + 2𝐻2𝜂0)

≥ 𝑣★(𝑠) − 𝜀

𝐻
− 2𝜂 − (𝐻 − ℎ)(𝜀/𝐻 + 2𝐻2𝜂0) ≥ 𝑣★(𝑠) − (𝐻 − ℎ + 1) (𝜀/𝐻 + 2𝐻2𝜂0) .

Therefore for any choice of action 𝑎′ of policy 𝜋 in state 𝑠, 𝑞𝜋 (𝑠, 𝑎′) ≥ 𝑣★(𝑠) − (𝐻 − ℎ + 1)(𝜀/𝐻 +
2𝐻2𝜂0). Therefore

𝑣𝜋 (𝑠) ≥ 𝑣★(𝑠) − (𝐻 − ℎ + 1)(𝜀/𝐻 + 2𝐻2𝜂0) ,
finishing the induction.

We thus conclude that
𝑣𝜋 (𝑠1) ≥ 𝑣★(𝑠1) − 𝜀 − 2𝐻3𝜂0 .

Combined with Eq. (57) of the inductive assumption, the value of Optimization Problem 4.10 can
be bounded as

𝐶�̂� 𝜃 (𝑠1) = clip[0,𝐻]
〈
𝜑(𝑠1, 𝜋(𝑠1)), 𝜃1

〉
≥ 𝐻2𝜂0 + 𝑣𝜋 (𝑠1) ≥ 𝑣★(𝑠1) − 2𝜀 ,

by assumption on 𝜂 being relatively small (Eq. (21)). □

32

L Deferred lemmas

Lemma L.1 (Elliptical potential, Lemma 19.4 from Lattimore and Szepesvári [2020]). Let 𝑉0 ∈
R𝑑×𝑑 be positive definite and 𝑎1 . . . , 𝑎𝑛 ∈ R𝑑 be a sequence of vectors with ∥𝑎𝑡 ∥2 ≤ 𝐿 < ∞ for all
𝑡 ∈ [𝑛], 𝑉𝑡 = 𝑉0 +

∑
𝑠≤𝑡 𝑎𝑠𝑎

⊤
𝑠 . Then,

𝑛∑
𝑡=1

min
{
1, ∥𝑎𝑡 ∥2𝑉 −1

𝑡−1

}
≤ 2 log

(
det𝑉𝑛

det𝑉0

)
≤ 2𝑑 log

(
Tr𝑉0 + 𝑛𝐿2

𝑑 det(𝑉0)1/𝑑

)
.

Lemma L.2. Let 𝑉 ∈ R𝑑×𝑑 be a symmetric positive definite matrix and (𝑎𝑖)𝑖∈[𝑛] be a sequence of
𝑛 𝑑-dimensional real vectors. Let 𝑉𝑖 = 𝑉 +∑

𝑗∈[𝑖] 𝑎 𝑗𝑎
⊤
𝑗 . Then,

∑
𝑖∈[𝑛]
∥𝑎𝑖 ∥2𝑉 −1

𝑖
≥ min

1,
1
2

∑
𝑖∈[𝑛]
∥𝑎𝑖 ∥2𝑉 −1

Proof. If

∑
𝑖∈[𝑛] 𝑎𝑖𝑎

⊤
𝑖 ⪯ 𝑉 , then 𝑉𝑖 ⪯ 2𝑉 , and therefore∑

𝑖∈[𝑛]
∥𝑎𝑖 ∥2𝑉 −1

𝑖
≥

∑
𝑖∈[𝑛]
∥𝑎𝑖 ∥22𝑉 −1 =

1
2
∥𝑎𝑖 ∥𝑉 −1 .

Otherwise,
∑

𝑖∈[𝑛] 𝑎𝑖𝑎
⊤
𝑖 𝑉
−1 has an eigenvalue that is at least 1. As all the other eigenvalues are

non-negative (as 𝑉 is symmetric positive definite), we have that∑
𝑖∈[𝑛]
∥𝑎𝑖 ∥2𝑉 −1 = Tr ©«

∑
𝑖∈[𝑛]

𝑎𝑖𝑎
⊤
𝑖 𝑉
−1ª®¬ ≥ 1 . □

M Estimation error blow-up guarantees

We borrow Assumption M.1 and Theorem M.2 from Lattimore and Szepesvári [2020] and refer the
reader to the book for the corresponding proof.
Assumption M.1 (Prerequisites for Theorem M.2). Let 𝜆 > 0. For 𝑘 ∈ N+, let 𝐴𝑘 be random
variables taking values in R𝑑 . For some 𝜃★ ∈ R𝑑 , let 𝑋𝑘 = ⟨𝐴𝑘 , 𝜃★⟩ + 𝜂𝑘 for all 𝑘 ∈ N+. Here, 𝜂𝑘 is
a conditionally 1-subgaussian random variable (“noise”), ie. it satisfies:

for all 𝛼 ∈ R and 𝑡 ≥ 1, E[exp(𝛼𝜂𝑘) | F𝑘−1] ≤ exp
(
𝛼2

2

)
a.s.,

where F𝑘−1 is such that 𝐴1, 𝑋1, . . . , 𝐴𝑘−1, 𝑋𝑘−1, 𝐴𝑘 are F𝑘−1-measurable.

Theorem M.2 (Lattimore and Szepesvári [2020], Theorem 20.5). Let 𝜁 ∈ (0, 1). Under Assump-
tion M.1, with probability at least 1 − 𝜁 , it holds that for all 𝑘 ∈ N,𝜃𝑘 − 𝜃★𝑉𝑘 (𝜆) <

√
𝜆 ∥𝜃★∥2 +

√
2 log

(
1
𝜁

)
+ log

(
det𝑉𝑘 (𝜆)

𝜆𝑑

)
,

where for 𝑘 ∈ N,

𝑉𝑘 (𝜆) = 𝜆𝐼 +
𝑘∑

𝑠=1
𝐴𝑠𝐴

⊤
𝑠

𝜃𝑘 = 𝑉𝑘 (𝜆)−1
𝑘∑

𝑠=1
𝑋𝑠𝐴𝑠

We generalize this theorem to handle non-zero-mean noise with parametrized subgaussianity. To
handle non-zero-mean noise, we use [Zanette et al., 2020, Lemma 8]. We state the lemma here and
refer the reader to Zanette et al. [2020] for the proof:

33

Lemma M.3 (Zanette et al. [2020], Lemma 8). For 𝑛 ∈ 𝑁+, let {𝐴𝑖}𝑖=1,...,𝑛 be any sequence of
vectors in R𝑑 and {Δ𝑖}𝑖=1,...,𝑛 be any sequence of scalars such that |Δ𝑖 | ≤ 𝜉 ∈ R with 𝜉 ≥ 0. For
any 𝜆 ≥ 0 and 𝑉 (𝜆) = ∑𝑛

𝑖=1 𝐴𝑖𝐴
⊤
𝑖 + 𝜆𝐼 we have: 𝑛∑

𝑖=1
𝐴𝑖Δ𝑖

2

𝑉 (𝜆)−1

≤ 𝑛𝜉2

Lemma M.4. Let 𝜁 ∈ (0, 1), 𝜆 > 0, 𝜎 > 0, and 𝜉 ≥ 0. For 𝑘 ∈ N+, let 𝐴𝑘 be random variables
taking values in R𝑑 . For some 𝜃★ ∈ R𝑑 , let �̃�𝑘 = ⟨𝐴𝑘 , 𝜃★⟩ + 𝜂𝑘 for all 𝑘 ∈ N+. Here, 𝜂𝑘 is a
conditionally 𝜎-subgaussian random variable, ie. it satisfies:

for all 𝛼 ∈ R and 𝑡 ≥ 1, E[exp(𝛼𝜂𝑘) | F𝑘−1] ≤ exp
(
𝛼2𝜎2

2

)
a.s.,

where F𝑘−1 is such that 𝐴1, �̃�1, . . . , 𝐴𝑘−1, �̃�𝑘−1, 𝐴𝑘 are F𝑘−1-measurable. With probability at least
1 − 𝜁 , it holds that for any sequence {Δ𝑖}𝑖=1,... such that |Δ𝑖 | ≤ 𝜉, for all 𝑘 ∈ N,𝜃𝑘 − 𝜃★𝑉𝑘 (𝜆) <

√
𝜆 ∥𝜃★∥2 + 𝜉

√
𝑘 + 𝜎

√
2 log

(
1
𝜁

)
+ log

(
det𝑉𝑘 (𝜆)

𝜆𝑑

)
.

where for 𝑘 ∈ N,
𝑋𝑘 = �̃�𝑘 + Δ𝑘

𝑉𝑘 (𝜆) = 𝜆𝐼 +
𝑘∑

𝑠=1
𝐴𝑠𝐴

⊤
𝑠

𝜃𝑘 = 𝑉𝑘 (𝜆)−1
𝑘∑

𝑠=1
𝑋𝑠𝐴𝑠

Proof. Let 𝑋 ′𝑘 = (𝑋𝑘 −Δ𝑘)/𝜎𝑘 , 𝐴′𝑘 = 𝐴𝑘/𝜎𝑘 , 𝜆′ = 𝜆/𝜎2
𝑘 , and 𝜃 ′★ = 𝜃★, 𝑉 ′𝑘 (𝜆′) = 𝜆′𝐼 +∑𝑘

𝑠=1 𝐴
′
𝑠𝐴
′
𝑠
⊤,

and 𝜃 ′𝑘 = 𝑉 ′𝑘 (𝜆′)−1 ∑𝑘
𝑠=1 𝑋

′
𝑠𝐴
′
𝑠 . By assumption, 𝑋 ′𝑘 , 𝐴′𝑘 , 𝜆′ and 𝜃 ′★ then satisfy Assumption M.1.

Therefore by applying Theorem M.2, with probability at least 1 − 𝜁 , it holds that for all 𝑘 ∈ N,𝜃 ′𝑘 − 𝜃★𝑉 ′
𝑘
(𝜆′) <

√
𝜆′ ∥𝜃★∥2 +

√
2 log

(
1
𝜁

)
+ log

(det𝑉 ′𝑘 (𝜆′)
𝜆′𝑑

)
.

Under this high-probability event, since 𝑉 ′𝑘 (𝜆′) = 𝑉𝑘 (𝜆)/𝜎2, substituting into the previous display
yields 𝜃 ′𝑘 − 𝜃★𝑉𝑘 (𝜆) <

√
𝜆 ∥𝜃★∥2 + 𝜎

√
2 log

(
1
𝜁

)
+ log

(
det𝑉𝑘 (𝜆)

𝜆𝑑

)
. (58)

Take any sequence {Δ𝑖}𝑖=1,... such that |Δ𝑖 | ≤ 𝜉 and apply the triangle inequality:𝜃𝑘 − 𝜃★𝑉𝑘 (𝜆) ≤
𝜃 ′𝑘 − 𝜃★𝑉𝑘 (𝜆) +

𝜃 ′𝑘 − 𝜃𝑘𝑉𝑘 (𝜆) , (59)

so it remains to bound
𝜃 ′𝑘 − 𝜃𝑘𝑉𝑘 (𝜆) .𝜃 ′𝑘 − 𝜃𝑘𝑉𝑘 (𝜆) =

𝑉 ′𝑘 (𝜆′)−1
𝑘∑

𝑠=1
𝑋 ′𝑠𝐴

′
𝑠 −𝑉𝑘 (𝜆)−1

𝑘∑
𝑠=1

𝑋𝑠𝐴𝑠

𝑉𝑘 (𝜆)

=

𝑉𝑘 (𝜆)−1
𝑘∑

𝑠=1
(𝑋𝑠 − Δ𝑠)𝐴𝑠 −𝑉𝑘 (𝜆)−1

𝑘∑
𝑠=1

𝑋𝑠𝐴𝑠

𝑉𝑘 (𝜆)

=

𝑉𝑘 (𝜆)−1
𝑘∑

𝑠=1
Δ𝑠𝐴𝑠

𝑉𝑘 (𝜆)

=

 𝑘∑
𝑠=1

Δ𝑠𝐴𝑠

𝑉𝑘 (𝜆)−1

≤
√
𝑘𝜉 ,

(60)

where the final inequality uses Lemma M.3. The proof is finished by plugging in the bounds of
Eqs. (58) and (60) into the triangle inequality of Eq. (59). □

34

	Introduction
	Preliminaries
	From linear q-realizability to linear MDPs
	Algorithm
	Preconditioning: the enclosing ellipsoid
	Linearly realizable functions
	Least-squares targets and def:opt-problem
	Checking consistency

	Proof overview
	Future work
	Notation
	Parameters of alg:main
	Proof of prop:norange-linear-mdp
	Intuition behind our method and proof strategy from the perspective of Eleanor zanette2020learning
	Proof of thm:main
	Checking consistency
	Sample complexity bounds
	Performance guarantee
	Optimism of def:opt-problem

	Deferred definitions and proofs for sec:range
	Deferred proofs for sec:auxiliary-real
	Deferred proofs for sec:cons
	Deferred proofs for sec:sampcompbound
	Deferred proofs for sec:perf
	Deferred proofs for sec:optimism
	Deferred lemmas
	Estimation error blow-up guarantees

