
Supplementary Material
UE4-NeRF:Neural Radiance Field for Real-Time

Rendering of Large-Scale Scene

In order to further elaborate our proposed method, this supplementary file provides details about the
gradient and pseudo-depth computations, rendering of transparent objects, mesh compression, to
name a few. The visualizations of experimental results demonstrate the significance of our proposed
method.

A Large-Scale Scenes

In Figure 1, we showcase a top-down perspective of large-scale scenes rendered in real-time using
UE4-NeRF. The size and contours of the five scenes, with four of them mentioned in the main paper
and the fifth being the most recently captured, can be visually perceived in a straightforward manner.

Figure 1: Five large-scale scenes rendered in real-time using UE4-NeRF. We captured four scenes
with different textures and complex terrains using a drone, with three of them mentioned in the paper.
Each scene can be rendered in real-time using UE4-NeRF.

B Qualitative Comparison between MVS and proposed UE4-NeRF

In Figure 2, we have provided additional qualitative comparisons with MVS. Our experiments offer
comparisons in transparent objects as well as subtle details. MVS utilizes sparse reconstruction
to extract feature points, which are then expanded based on morphological and color differences
to generate a dense point cloud. This dense point cloud is further used for surface reconstruction,
resulting in triangulated meshes. However, due to the dynamic nature of water, the feature points
extracted from images taken at different moments and perspectives often lack consistent and mutual
matches. Consequently, when using MVS for reconstruction, water bodies may exhibit a substantial
number of gaps or holes. Additionally, surface reconstruction methods are not well-suited for
handling multiple surfaces, particularly situations involving multi-layered object surfaces due to
semi-transparency.

Supplementary Material.



Figure 2: Qualitative Comparison between MVS and proposed UE4-NeRF. Pay attention to
transparent objects and texture information.

Figure 3: Qualitative comparison of different methods in the final renderer. The final rendering
effect in the renderer can truly compare the advantages and disadvantages of the methods.

Within the principles of MVS, there exists a parameter controlling the neighborhood range. Generally,
the default neighborhood value prioritizes hole avoidance, which can result in suboptimal modeling
effects for object detail structures and smaller objects. In MVS modeling, textured models are
created by selecting an appropriate patch from all images to serve as the texture for a triangular face.
Consequently, the color observed for this triangular face remains consistent from any angle during
rendering. However, this approach works well only for objects that ideally adhere to the diffuse
reflection model, particularly those that are opaque. In reality, some objects exhibit highlights and
semi-transparency, and MVS-generated textures cannot accurately reflect these characteristics. As a
result, rendering visual effects can be subpar. Our approach does not encounter the issues mentioned
above.

C Qualitative comparison of different methods in the final renderer

In Figure!3, we can see that the results of UE4-NeRF in the renderer are much better than Mobile-
NeRF and Mega-NeRF. Mobile-NeRF finally uses webgl for real-time rendering. We speculate that
the poor rendering ability of webgl has a certain impact on the rendering quality. WebGL sorts objects
according to the coordinates of the center of the object instead of sorting according to the surface, and
there will be various strange interlacing. Real-time rendering results in Mega-nerf-viewer are weird.

2



D Storage overhead comparison during training

(Construction Site) Mega-NeRF Mobile-NeRF UE4-NeRF Picture

Temporary Files 158GB 3.5GB(1/32 scene) 19.2GB 20.3G
Table 1: Storage overhead comparison during training. Mega-NeRF generates a large number of
temporary files.

E Gradient

In the paper, we have mentioned that the final loss function of the photometric part is computed as
follows:

Lrgb =

5∑
l=1

βLpart1
rgb (θ, Vp) + (1− β)Lpart2

rgb (θ, Vp) (1)

The gradients obtained from the final backpropagation are used to update the weights (θ) of the
Encoder-Decoder network as well as the positions of the vertices Vp in the polygonal meshes. As in
Eq. 2, the gradients used to update the vertex positions are identical to the gradients obtained from
the backpropagation of the overall photometric loss.

∇rgb(Vp) = ∇Lrgb (2)

However, if all the gradients from different layers are initially used to update the network weights,
it may cause the sparse polygonal meshes of higher layers to adopt colors before they have moved
closer to the object surface. Furthermore, since the same network is used all the layers, it ultimately
results in the dense vertices of lower layers to be unable to approach the object surface. Taking
these factors into consideration, we set different weights (γ) between the gradients of the recent layer
and those of other layers.

∇rgb(θ) = (1− γ)∇Llevel−1
rgb + γ∇

5∑
l=2

Llevel−l
rgb (3)

γ =


0, ψ < 0,

ψ, 0 < ψ < 0.5

0.5, ψ > 0.5.

where ψ = ⌊epoch− 20000

10000
⌋ × 0.17 (4)

From Eq. 3 and Eq. 4, it can be observed that in the first 30,000 epochs, the gradients of all layers
except the first layer are not used to update the network weights. Afterward, as the number of epochs
increases, the weight parameter γ gradually increases but does not exceed 0.5.

3



Figure 4: Comparison between the usage and non-usage of pseudo-depth. The first and third
columns represent our results without incorporating pseudo-depth, while the second and fourth
columns represent the results with pseudo-depth.

F Pseudo-depth

How to speed up the convergence and improve the quality of radiation field reconstruction is one
of the most critical issue in NeRF. Instant-NGP shows that by using multi-resolution hash coding
and optimizing the sampling structure, the training time can be reduced to several minutes, and
the modeling scene can be rendered in real time using volume rendering. However, there are still
artifacts, floating objects and time-consuming issues in the scenes reconstructed by instant-NGP.
To tackle these, we propose to use the pseudo-depth as the supervision information of NeRF to
speed up the convergence speed and improve reconstruction quality of the radiation field. The use of
pseudo-depth supervision can increase the opacity (α) value of the sampling points on the surface
of the object, thereby greatly reducing the time required for rendering. As described in the main
paper, pseudo-depth is obtained by calculating the distance between the sparse point cloud and the
camera position.

Feature points are generally points with translation, rotation and certain scale and brightness invari-
ances. The feature points extracted from the image are very sparse. In addition, when estimating
the camera pose, only a small part of these feature points can satisfy the multi-view constraints
(reprojection error is less than the threshold), so the feature point cloud is very sparse. We find that
the feature points occupy about 1/3000 of the pixels of the whole picture. For deep supervision,
the more feature points the better, but it will greatly increase the preprocessing time. ln order to
solve the problem of unstable loss convergence and to ensure that the overhead calculation is not
increased, and low contribution of deep supervision due to the fact that the number of feature points
is too scarce, we sample pixels near feature points using the Gaussian distribution. Eq. (5) is the
Gaussian distribution function. Since the surface of the object is continuous, it can be assumed that
in most cases the distance between the point on the surface of the object near the feature point and
the camera changes. Therefore, the Gaussian distribution function that follows to this trend is used as
the confidence to describe a point that conforms to this assumption.

ωri = exp (− (x− xi)
2

2f
) exp (− (y − yi)

2

2f
) (5)

where ωri is the confidence of the pixel depth covered by a feature point. The threshold of ωri is 0.01.
When ωri ≤ 0.01, ωri = 0. f is the scaling factor, which ensures that the pixels in the area covered
by all feature points occupy about 6% of the entire image. It has been verified that the sampling
points occupying 6% of the entire picture can achieve a good supervision effect and the overhead is
very small. When the image pixels are 1600× 1600, f = 1. (xi, yi) is the coordinate of the feature
point.

ωr =



n∑
i=1

ωri,

n∑
i=1

ωri ≤ 1,

1,

n∑
i=1

ωri > 1.

(6)

4



D(r) =
ωr1Dr1 + ωr2Dr2 + · · ·+ ωrnDrn

ωr
(7)

where Dri is the pseudo-depth value of the feature point. For the cases where a pixel can be covered
by multiple feature points, we use Eq. (7) to weight the depth of each feature point and use Eq. (6)
to ensure that the sum of the weights of each depth does not exceed 1. D(r) is the final pixel
pseudo-depth value used for supervision.

We store pixel coordinates in 1D array, and store depth map (D(r)) and weight map (ωr) in a
HashMap. Compared with uncompressed storage (i.e., in a matrix method), storing in HashMap
can reduce the memory utilization by more than 90%.

LD =
∑
r∈G

ωr

∥∥∥D̂(r)−D(r)
∥∥∥2
2

(8)

Eq. (8) is the depth loss. Where G is the set of rays for which ωr is non-zero in each batch. The
predicted depth value is obtained by volume rendering:

D̂(r) =

N∑
i=1

Tiαiti, Ti =

i−1∏
j=0

(1− αj) (9)

where ti is the distance from the camera origin to the sampling point on the ray.

Qualitative comparison. Our pseudo-depth related experimental results are shown in Figure 4.
The images are sourced from the publicly available object-based datasets1. In the comparison of
depth maps, the pseudo-depth supervision significantly reduces the artifacts present in the depth maps
which are indicated by the areas highlighted with blue bounding boxes. Additionally, it effectively
mitigates the occurrence of floating objects in the scene, as indicated by the areas highlighted with red
bounding boxes. The use of pseudo-depth greatly enhances the quality of rendering, and computing
pseudo-depth does not incur significant additional computational costs.

G Illustration of some details

Figure 5: Illustration of some details. (a)Eight grids are merged into one to generate meshes for the
rough layer. (b)Acceleration grid is used to skip grid and reduce calculations. (c)A regular octahedron
has 20 faces in total, including the 8 exterior faces and 12 interior faces.

1nerf_real_360 dataset and 360_v2 dataset

5



H Transient Objects

Figure 6: Comparison between the usage and
non-usage of mask. The use of masks can enhance
the quality of rendering.

We employ a segmentation network to generate
masks for moving/dynamic objects and conduct
comparative experiments on the rendered scenes
before and after applying these masks. Figure
6 demonstrates the improvement in reconstruc-
tion quality achieved by using masks for moving
objects. The first row in Figure 6 presents a com-
parison of depth maps, revealing the presence
of holes in the depth map before using masks.
These holes are caused by moving vehicles on
the highway, resulting in inconsistent depth in-
formation on the road surface. After applying
masks, the road surface depth becomes smooth
and consistent. The second row in Figure 6 illus-
trates a comparison of the final rendering results.
In scenes without masks, there are artifacts such
as floating objects in certain perspectives.

I Transparent and Semi-transparent Objects

Figure 7: Our results for transparent objects. The transparent objects from different viewpoints
are presented.

We employed the alpha-dithered technique to achieve rendering of transparent objects. As illustrated
in Figure 7, we can perceive the objects located behind the transparent glasses which are annotated
with bounding boxes. However, upon observing the glass in the right portion of the first column in
Figure 7, it can be noticed that the transparency effect is not as prominent. This is due to the presence
of dirt on the glass surface.

Figure 8: Rendering of water. Realistic reflection
effects are achieved when rendering water.

Water. Water is one of the most common
transparent objects in nature, and rendering wa-
ter poses a challenging problem. In Figure 8, we
showcase the rendering of water, which achieves
high fidelity compared to the Ground Truth. Ad-
ditionally, upon closer examination of the water
surface, the rendering effectively captures the
reflection on the water surface. To reduce the
rendering cost of water, we only utilize the coars-
est mesh when rendering the portion of water
below the ground surface.

6



J Mesh Conformity

Figure 9 shows meshes of the ground plane in the scene. It can be noted that most of the meshes are
concentrated on the surface, while only a small portion of the meshes are present below the ground.
In the final rendered scene, the thickness of the ground surface is not very significant; it is merely a
thin layer. Figure 10 shows the internal structure of the building. The red line in the leftmost image
represents the direction of subsequent motion. The meshes show the interior of the building as empty,
with the meshes compressed onto the surface of objects. The loss function we designed and the
pre-rendering process effectively control the meshes used for rasterization to be within the objects
surface.This significantly reduces storage and computational costs.

Figure 9: Visualization of the ground plane of the scene terrain. The left side displays the final
rendered scene, while the right side shows the untextured mesh. It can be observed that below the
ground surface, there are no chaotic scenes.

Figure 10: Distribution of the meshes inside the buildings. The interior of the rendered scene as
well as the untextured meshes is empty. The meshes are compressed onto the surface of the objects.

7



K Mip-NeRF

By increasing the number of training iterations, we aim to assess whether the inadequate rendering
quality of Mip-NeRF is attributed to insufficient training epochs. As illustrated in Figure 11 the
horizontal axis represents the number of training epochs. We progressively increased the number
of training epochs from the original 80,000 to 160,000, 240,000, 400,000, 560,000, and finally
800,000. However, when compared to the ground truth, Mip-NeRF still suffers from significant
blurring artifacts. We also present the rendering results of UE4-NeRF after training for 80,000 epochs,
showcased in the last row.

Figure 11: The rendered outcomes vary with an increasing number of training epochs. Despite
increasing the training iterations of mipNeRF up to 800,000, the obtained results are still not
satisfactory or as desired.

8



L Societal Impacts

Utilizing UE4-NeRF for real-time rendering of large-scale scenes may introduce potential social
implications, including: 1) Digital privacy concerns. To enable real-time rendering of large-scale
scenes, a substantial amount of photo data needs to be collected through unmanned aerial vehicles
(UAVs) during the training process. This data may contain sensitive information, including facial
attributes and personal identities. In cases of data misuse or inadequate protection, the risks of privacy
breaches and potential exploitation increase, consequently amplifying the exposure of individuals’
privacy; 2) Unrealism and illusion. NeRF’s rendering capability can generate highly realistic 3D
scenes, but this can also lead to difficulties in discerning reality from fiction, thereby influencing
people’s judgment and decision-making. 3) Threat to real-world environments and cultural heritage.
Real-time rendering of large scenes enables the simulation and reconstruction of actual cities, build-
ings, and cultural heritage. However, this may result in reduced reliance on real-world environments
and weaken the preservation and inheritance of cultural heritage.

9


	Large-Scale Scenes
	Qualitative Comparison between MVS and proposed UE4-NeRF
	Qualitative comparison of different methods in the final renderer
	Storage overhead comparison during training
	Gradient
	Pseudo-depth
	Illustration of some details
	Transient Objects
	Transparent and Semi-transparent Objects
	Mesh Conformity
	Mip-NeRF
	Societal Impacts

