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Abstract

In this work, we study the low-rank MDPs with adversarially changed losses
in the full-information feedback setting. In particular, the unknown transition
probability kernel admits a low-rank matrix decomposition [Uehara et al., 2022],
and the loss functions may change adversarially but are revealed to the learner
at the end of each episode. We propose a policy optimization-based algorithm
POLO, and we prove that it attains the Õ(K5/6A1/2d ln(1 +M)/(1− γ)2) regret
guarantee, where d is rank of the transition kernel (and hence the dimension of
the unknown representations), A is the cardinality of the action space, M is the
cardinality of the model class that contains all the plausible representations, and
γ is the discounted factor. Notably, our algorithm is oracle-efficient and has a
regret guarantee with no dependence on the size of potentially arbitrarily large
state space. Furthermore, we also prove an Ω( γ2

1−γ

√
dAK) regret lower bound for

this problem, showing that low-rank MDPs are statistically more difficult to learn
than linear MDPs in the regret minimization setting. To the best of our knowledge,
we present the first algorithm that interleaves representation learning, exploration,
and exploitation to achieve the sublinear regret guarantee for RL with nonlinear
function approximation and adversarial losses.

1 Introduction

In reinforcement learning (RL), the goal is to learn a (near) optimal policy through the interactions
between the learner and the environment, which is typically modeled as the Markov decision processes
(MDPs) [Feinberg, 1996]. When the state and action spaces are finite, many works have established
the minimax (near) optimal regret guarantees for MDPs with finite horizon [Azar et al., 2017] and
MDPs with infinite horizon [Tossou et al., 2019, He et al., 2021b]. In real applications of RL,
however, the state and action spaces may be arbitrarily large and even infinite, which may lead to the
curse of dimensionality. To tackle this issue, a common approach is function approximation, which
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approximates the value functions of given policies with the leverage of feature mappings. Assuming
that the feature mapping which embeds the state-action pairs to a low dimensional embedding space
is known, RL with linear function approximation has been well studied recently. In particular, linear
mixture MDPs [Ayoub et al., 2020] and linear MDPs [Jin et al., 2020b] are the two models of
RL with linear function approximation that have been extensively studied. Notably, their (near)
optimal regret guarantees are established by Zhou et al. [2021] and He et al. [2023] respectively.
Nevertheless, in scenarios with complex and large-scale data, attaining the true underlying feature
mappings might be unrealistic, and thus representation learning is needed. Many empirical works
have shown that representation learning can accelerate the sample and computation efficiency of RL
[Silver et al., 2018, Laskin et al., 2020, Yang and Nachum, 2021, Stooke et al., 2021, Schwarzer
et al., 2021, Xie et al., 2022]. However, representation learning is provably more difficult in RL and
other sequential decision-making problems than in non-sequential and non-interactive problems (e.g.,
supervised learning) [Du et al., 2020, Wang et al., 2021a, Weisz et al., 2021, Uehara et al., 2022].
To pursue sample-efficient RL in the presence of representation learning, recent works have made
initial attempts to study the theoretical guarantees of representation learning in RL under the fixed or
stochastic loss functions [Uehara et al., 2022, Zhang et al., 2022].

In practice, however, it might be stringent to assume that the loss functions are stochastic. To tackle
this issue, Even-Dar et al. [2009] and Yu et al. [2009] propose the first algorithms with provably
theoretical guarantees that can handle adversarial MDPs, where the loss functions may change
adversarially in each episode. Subsequently, most of the works in this line of research focus on
learning tabular MDPs with adversarial loss functions [Neu et al., 2010a,b, 2012, Arora et al., 2012,
Zimin and Neu, 2013, Dekel and Hazan, 2013, Dick et al., 2014, Rosenberg and Mansour, 2019a,b,
Jin and Luo, 2020, Jin et al., 2020a, Shani et al., 2020b, Chen et al., 2021, Ghasemi et al., 2021,
Rosenberg and Mansour, 2021, Jin et al., 2021b, Dai et al., 2022, Chen et al., 2022]. To learn
adversarial MDPs with large state and action spaces, some recent works study RL with adversarial
loss functions and linear function approximation [Cai et al., 2020, Neu and Olkhovskaya, 2021, Luo
et al., 2021b,a, He et al., 2022, Zhao et al., 2023, Kong et al., 2023]. However, all these existing
works assume that the state-action feature representations are known. As aforementioned, in complex
and high-dimensional environments, the application of these algorithms may be still hindered due
to the potential difficulty of knowing the true feature mappings a priori. Therefore, the following
question naturally remains open:

Can we devise an algorithm to simultaneously tackle the representation learning and adversarially
changed loss functions in reinforcement learning?

In this work, we give an affirmative answer to the above question in the setting of adversarial low-
rank MDPs with full-information feedback. Specifically, in this problem, the unknown transition
probability kernel admits a low-rank matrix decomposition but the true representations regarding
the transitions are not known a priori. Meanwhile, the loss functions are arbitrarily chosen by an
adversary across episodes and are revealed to the learner after each episode.

To solve this problem, we propose a policy optimization-based algorithm, which we call Policy
Optimization for LOw-rank MDPs (POLO). Specifically, our POLO algorithm obtains an
Õ(K5/6A1/2d ln(1 + M)/(1 − γ)2) regret guarantee for adversarial low-rank MDPs in the full-
information feedback setting and is oracle-efficient. Algorithmically, POLO follows similar ideas of
optimistic policy optimization methods in that it first constructs optimistic value function estimates
and then runs online mirror descent (OMD) over the optimistic value estimates to deal with the
adversarially changed loss functions [Shani et al., 2020b, Cai et al., 2020, He et al., 2022, Chen et al.,
2022]. However, in the presence of representation learning, the exploration and exploitation needed
to learn the adversarial MDPs are more difficult than them in the tabular case [Shani et al., 2020b,
Chen et al., 2022] and in the linear case [Cai et al., 2020, He et al., 2022], where the exploration
and exploitation can be essentially well balanced by directly modifying the algorithms studying
stochastic MDPs in the tabular and linear cases. Concretely, to learn stochastic low-rank MDPs,
previous works perform maximum likelihood estimation (MLE) over the experienced transitions
[Agarwal et al., 2020, Uehara et al., 2022, Zhang et al., 2022]. Though the balance of representation
learning, exploration, and exploitation can be simultaneously handled by the algorithms in these
works, these algorithms intrinsically have no regret guarantees but only sample complexity guarantees
even in the stochastic case, since these algorithms need to take actions uniformly at certain steps
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Table 1: Comparisons of regret bounds with most related works studying adversarial RL with function
approximation under unknown transitions. K is the number of episodes, d is the ambient dimension
of the feature mapping, γ is the discounted factor for infinite-horizon MDPs, and S, A, and M are the
cardinality of the state space, action space, and model class, respectively. Note that the dependence
on γ is not strictly comparable since some works originally studying finite-horizon MDPs and these
results are translated into results for infinite-horizon MDPs by substituting horizon length H with
Θ(1/(1− γ)). The column of “unknown features” indicates whether the algorithm can work in the
case when no true feature mappings are known a priori.

Algorithm Model Feedback Regret Unknown
Features

OPPO
[Cai et al., 2020]

Linear Mixture
MDPs

Full-
information

Õ
(
d
√
K/(1− γ)2

)
✗

POWERS
[He et al., 2022]

Linear Mixture
MDPs

Full-
information

Õ
(
d
√
K/(1− γ)3/2

)
✗

LSUOB-REPS
Zhao et al. [2023]

Linear Mixture
MDPs

Bandit
Feedback

Õ
(
dS2

√
K +

√
SAK
(1−γ)

)
✗

Luo et al. [2021a] Linear MDPs Bandit
Feedback

Õ
(
d2K14/15/(1− γ)4

)
✗

Dai et al. [2023] Linear MDPs Bandit
Feedback

Õ
(

A
1/9d

2/3K
8/9

(1−γ)20/9

)
✗

PO-LSBE
Sherman et al.
[2023]

Linear MDPs Bandit
Feedback

Õ
(

dK
6/7

(1−γ)2 + d
3/2K

5/7

(1−γ)4

)
✗

GLAP
Kong et al. [2023]

Linear MDPs Bandit
Feedback

Õ
(
d7/5H12/5K4/5

)
✗

OPPO+
Zhong and Zhang
[2023]

Linear MDPs Full-
information

Õ
(

d
3/4K

3/4+d
5/2

√
K

(1−γ)2

)
✗

POLO
(Ours)

Low-rank
MDPs

Full-
information

Õ
(

K
5/6A

1/2d ln(1+M)
(1−γ)2

)
Ω
(

γ2

1−γ

√
dAK

) ✔

in each episode (cf., Lemma 9 of Uehara et al. [2022]).2 Hence, a straightforward adaption of their
methods from the stochastic setting to the adversarial setting will fail to learn adversarial low-rank
MDPs. To cope with this issue, we carefully devise an algorithm with a doubled exploration and
exploitation scheme, which interleaves (a) the exploration over transitions required in representation
learning; and (b) the exploration and exploitation suggested by the policy optimization. To this end,
our algorithm adopts a mixed roll-out policy, which consists of a uniformly explorative policy and a
policy optimized by OMD. Through carefully tuning the hyper-parameter of the mixing coefficient
used in our mixed policy, we can avoid pulling actions uniformly at random to conduct exploration
in each episode and only conduct uniform exploration at a certain fraction of all the episodes (see
Section 3.1 for details). Besides, unlike tabular and linear (mixture) MDPs, it is in general hard to
achieve the point-wise optimism for each state-action pair. Therefore, depart from previous methods
[Shani et al., 2020b, Cai et al., 2020, He et al., 2022] conducting policy optimization in the true
model (i.e., the transition kernel characterized by the true representation), our algorithm conducts
policy optimization in the fixed learned model with the epoch-based model update, which enables
a new analysis scheme that only requires a near optimism at the initial state s0 (see Section 3.2 for

2With the leverage of the common explore-then-commit (ETC) style conversion, the modified versions of
these algorithms can obtain sublinear regret in the setting of low-rank MDPs with stochastic loss functions, but
this conversion is still not able to deal with adversarial loss functions.

3



details). Also, we prove a regret lower bound of order Ω( γ2

1−γ

√
dAK) for low-rank MDPs with fixed

loss functions, which thus also serves as a regret lower bound for our problem and indicates that
low-rank MDPs are statistically more difficult to learn than linear MDPs in the regret minimization
setting. To the best of our knowledge, this work makes the first step to establish an algorithm with a
sublinear regret guarantee for adversarial low-rank MDPs, which permits RL with both nonlinear
function approximation and adversarial loss functions. The concrete comparisons between the results
of this work and those of previous works are summarized in Table 1.

1.1 Additional Related Works
RL with Function Approximation Significant advances have emerged in RL with function ap-
proximation to cope with the curse of dimensionality in arbitrarily large state space or action space.
In general, these results fall into two categories. The first category studies RL with linear function
approximation, including linear MDPs [Yang and Wang, 2019, Jin et al., 2020b, Du et al., 2020,
Zanette et al., 2020, Wang et al., 2020, 2021b, He et al., 2021a, Hu et al., 2022, He et al., 2023] and
linear mixture MDPs [Ayoub et al., 2020, Zhang et al., 2021, Zhou et al., 2021, He et al., 2021a, Zhou
and Gu, 2022, Wu et al., 2022, Min et al., 2022, Zhao et al., 2023]. Remarkably, He et al. [2023]
and Zhou et al. [2021] obtain the nearly minimax optimal regret Õ(d

√
H3K) in linear MDPs and

linear mixture MDPs respectively when the loss functions are fixed or stochastic. The other category
studies RL with general function approximation. Amongst these works, Jiang et al. [2017], Dann
et al. [2018], Sun et al. [2019], Du et al. [2019], and Jin et al. [2021a] study the MDPs satisfying the
low Bellman-rank assumption, which assumes the Bellman error matrix has a low-rank factorization.
Also, Du et al. [2021] consider a similar but slightly more general assumption termed as bounded
bilinear rank. Besides, Russo and Roy [2013], Wang et al. [2020], Jin et al. [2021a], and Ishfaq et al.
[2021] study low Eluder dimension assumption, which is originally proposed to characterize the
complexity of function classes for bandit problems.

Representation learning in RL arises when the feature mapping that embeds the state-action pairs
in RL with linear function approximation is no longer known a priori. Such a problem is typically
studied in the setting of low-rank MDPs, which does not assume the feature mapping of state-action
pairs is known. Consequently, the setting of low-rank MDPs strictly generalizes the setting of
linear MDPs, but at the cost of being more difficult to learn due to potential nonlinear function
approximation induced by representation learning. In this line of research, algorithms with provably
sample complexity guarantees have been developed in both model-based methods [Agarwal et al.,
2020, Ren et al., 2022, Uehara et al., 2022] and model-free methods [Modi et al., 2021, Zhang et al.,
2022], respectively. The model-based algorithms of Agarwal et al. [2020], Ren et al. [2022] and
Uehara et al. [2022] learn the representation from a given model class of transition probability kernels.
In contrast, the model-free methods do not require model learning but may bear some limitations.
In particular, Modi et al. [2021] assume the MDPs satisfying the minimal reachability assumption,
and the sample complexity of the algorithm of Zhang et al. [2022] only holds for a special class of
low-rank MDPs called block MDPs. Besides, representation learning in Markov games has also been
investigated recently [Ni et al., 2022].

RL with Adversarial Losses Recent years have witnessed significant advances in learning RL
with adversarial losses in the tabular case [Neu et al., 2010a,b, 2012, Arora et al., 2012, Zimin and
Neu, 2013, Dekel and Hazan, 2013, Dick et al., 2014, Rosenberg and Mansour, 2019a,b, Jin and Luo,
2020, Jin et al., 2020a, Shani et al., 2020b, Chen et al., 2021, Ghasemi et al., 2021, Rosenberg and
Mansour, 2021, Jin et al., 2021b, Dai et al., 2022, Chen et al., 2022]. When it comes to the setting of
linear function approximation, various policy optimization-based methods have been established to
solve adversarial linear mixture MDPs [Cai et al., 2020, He et al., 2022] and adversarial linear MDPs
[Luo et al., 2021a,b, Dai et al., 2023, Sherman et al., 2023, Zhong and Zhang, 2023]. The other
line of works studies RL with linear function approximation and adversarial losses using occupancy
measure-based methods [Neu and Olkhovskaya, 2021, Zhao et al., 2023, Kong et al., 2023]. To the
best of our knowledge, however, there are no works in existing literature studying RL with both
nonlinear function approximation and adversarial loss functions.

2 Preliminaries

We consider episodic infinite horizon low-rank MDPs with adversarial loss functions, the preliminaries
of which are introduced as follows.
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Episodic Infinite-horizon Adversarial MDPs An episodic infinite horizon adversarial MDP is
denoted by a tuple (S,A, P ⋆, {ℓk}Kk=1, γ, d0),

3 where S is the state space (with potentially infinitely
many states), A is the finite action space with cardinality |A| = A, P ⋆ : S ×A× S → [0, 1] is the
transition probability kernel such that P ⋆(s′ | s, a) is the probability of transferring to state s′ from
state s after executing action a, γ ∈ [0, 1) is the discount factor, d0 ∈ ∆(S) is the initial distribution
over the state space, and ℓk : S ×A → [0, 1] is the loss function of episode k chosen by the adversary.
For the ease of exposition, we assume d0 is known.

In this work, we consider a special class of MDPs called low-rank MDPs [Agarwal et al., 2020,
Uehara et al., 2022, Zhang et al., 2022]. Specifically, instead of assuming a known true feature
mapping, low-rank MDPs only assume that the transition probability kernel P ⋆ admits a low-rank
decomposition, with the formal definition given as follows.

Definition 2.1 (Low-rank MDPs). An MDP is a low-rank MDP if there exist two feature embedding
functions ϕ⋆ : S × A → Rd and µ⋆ : S → Rd such that for any (s, a, s′) ∈ S × A × S,
P ⋆ (s′ | s, a) = µ⋆ (s′)

⊤
ϕ⋆(s, a), where ∥ϕ⋆(s, a)∥2 ≤ 1 and for any function g : S →

[0, 1],
∥∥∫ µ⋆(s)g(s)d(s)

∥∥
2
≤

√
d.

Note that the regularity assumption imposed over ϕ⋆ and µ⋆ is only for the purpose of normalization.

Function Approximation When the state space is arbitrarily large, function approximation is
usually considered to permit sample-efficient learning for MDPs. Since the true feature mapping of
state-action pairs is not known a priori in the low-rank MDPs, to make this problem tractable, we
assume the access to a realizable model class as previous works [Agarwal et al., 2020, Uehara et al.,
2022], detailed in the following.

Assumption 2.1. There exists a known model class M = {(µ, ϕ) : µ ∈ Ψ, ϕ ∈ Φ} satisfying (a)
∥ϕ(s, a)∥2 ≤ 1 and

∫
µ⊤ (s′)ϕ(s, a)d (s′) = 1 for any (s, a, s′) ∈ S ×A× S , µ ∈ Ψ, ϕ ∈ Φ; and

(b)
∥∥∫ µ(s)g(s)d(s)

∥∥
2
≤

√
d for any function g : S → [0, 1]. Moreover, it holds that µ⋆ ∈ Ψ and

ϕ⋆ ∈ Φ.

Throughout this paper, for the sake of brevity, we assume that the cardinality of Ψ and Φ are finite,
meaning that M also has bounded cardinality M = |M|. However, note that extending the analyses
to the function classes with infinite cardinality but bounded statistical complexity (e.g., VC dimension)
is not technically difficult.

Interaction Protocol We now introduce the interaction protocol between the learner and the
environment. To begin with, denote by dπP (s, a) = (1 − γ)

∑∞
τ=0 γ

τdπP,τ (s, a) the state-action
occupancy distribution, where dπP,τ (s, a) is the probability of visiting (s, a) at step τ under policy π

and transition P . With a slight abuse of notation, let dπP (s) =
∑

a∈A dπP (s, a) be the state occupancy
distribution, denoting the probability of visiting state s under π and P .

Ahead of time, an MDP is decided by the environment, and only the state space S and the action
space A are revealed to the learner. Meanwhile, the adversary secretly chooses K loss functions
{ℓk}Kk=1, each of which will be used in one episode. The interaction will proceed in K episodes.
At the beginning of episode k, the learner chooses a stochastic policy πk : S × A → [0, 1], where
πk(a | s) is probability of taking a at state s. Starting from an initial state s0 ∼ d0, the learner
repeatedly executes policy πk until reaching the termination. After episode k is terminated, the
learner observes a trajectory {(sk,τ , ak,τ )}τ as well as the loss function ℓk.

For each episode k and each state-action pair (s, a), the state-action value Qπ
k (s, a) is defined

as Qπ
k (s, a) = E

[∑∞
τ=0 γ

τ ℓk(sk,τ , ak,τ )
∣∣∣π, P ⋆, (sk,0, ak,0) = (s, a)

]
. Also define V π

k (s) =

Ea∼π(·|s)[Q
π
k (s, a)] and V π

k = Es0∼d0 [V
π
k (s0)]. The learning objective is to minimize the pseudo

regret with respect to π⋆, defined as

RK = E

[
K∑

k=1

(
V πk

k − V π⋆

k

)]
,

3Though we focus on episodic infinite-horizon MDPs in this work, note that it is not technically difficult to
extend the analyses in this work to the case of episodic finite-horizon MDPs.
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where the expectation is taken over the potential randomness of the algorithm, π⋆ ∈
argminπ∈Π

∑K
k=1 V

π
k is the fixed optimal policy in hindsight and Π is the set of stochastic policies.

3 Algorithm
This section presents our POLO algorithm with the pseudocode illustrated in Algorithm 1. At a
high level, POLO leverages a mixed roll-out policy to conduct doubled exploration and exploitation,
i.e., (a) the exploration over transitions required by representation learning; and (b) the exploration
and exploitation over adversarially changed loss functions required by the policy optimization
(Section 3.1). To deal with the issue that only the near optimism at the initial state s0 is available in
low-rank MDPs, POLO conducts policy optimization in fixed learned models with the epoch-based
model update, which enables a new analysis scheme (Section 3.2).

3.1 Doubled Exploration and Exploitation

Let π̃k be the policy of episode k computed by policy optimization (cf., Eq. (3)). At the beginning of
episode k, our algorithm first collects a state sk ∼ dπ̃k

P⋆ (Line 6) by invoking a geometric sampling
roll-in procedure [Kakade and Langford, 2002, Agarwal et al., 2021, Uehara et al., 2022]. Starting
from an initial state s0 ∼ d0, at each step τ , this roll-in procedure will terminate and return state sτ
with probability 1− γ, and otherwise will take action aτ ∼ π̃k(· | sτ ) and transfer to the next state
sτ ∼ P ⋆(· | sτ , aτ ).
Then our algorithm will further interact with the environment in successive two steps after collecting
sk ∼ dπ̃k

P⋆ (Line 7 - Line 11) like previous works studying low-rank MDPs [Agarwal et al., 2020,
Uehara et al., 2022, Zhang et al., 2022]. One of the main differences between previous algorithms
and ours lies in how to deal with exploration and exploitation when interacting with the environment.
In the case of stochastic low-rank MDPs, the key in the analysis is to ensure the (near) optimism of
the optimal policy π⋆ in the learned model, which essentially requires to bound the performance gap
V̂ π⋆

k − V π⋆

k by relating it with the model error regarding π⋆, i.e., E(s,a)∼dπ⋆

P⋆
[∥P̂k(· | s, a)− P ⋆(· |

s, a)∥1], where P̂k is the MLE solution defined in Eq. (1). However, this model error is not directly
controllable, as the algorithm does not know the optimal policy π⋆ and can not collect data following
π⋆ to bound the model error. Fortunately, by empirical process theory [Geer, 2000, Zhang, 2006],
the model error E(s,a)∼ρk

[∥P̂k(· | s, a) − P ⋆(· | s, a)∥1] regarding the executed policies {π̃i}ki=1

is bounded, where ρk(s, a) =
1
k

∑k
i=1 d

π̃i

P⋆(s, a). Therefore, previous works [Agarwal et al., 2020,
Uehara et al., 2022, Zhang et al., 2022] ensure the optimism of the optimal policy π⋆ by applying
importance weighting to change the measure from dπ

⋆

P⋆ to ρk when bounding the model error. The
complication is that to control the ratio π⋆(a | s)/π̃i(a | s) for any (s, a) ∈ S × A and i ∈ [K] in
importance weighting, the algorithms in previous works take actions from the uniform distribution
U(A) over action space A, which intuitively can be seen as conducting exploration over transitions
required by representation learning. Consequently, though these algorithms enjoy excellent sample
complexities, they intrinsically do not have regret guarantees due to the uniform exploration over
action space, even in the stochastic setting. Moreover, to learn adversarial low-rank MDPs, it is
required to take actions adaptively according to the observed loss functions in previous episodes
instead of uniformly taking actions. To address this “conflict” so as to learn adversarial low-rank
MDPs, we propose to use a mixed roll-out policy to interleave (a) the exploration over transitions
required by representation learning; and (b) the exploration and exploitation over the adversarial
loss functions by policy optimization, which we call doubled exploration and exploitation and is
pivotal to achieving our regret bound as we will shortly see. Formally, our algorithm will conduct the
exploration over the transitions with probability ξ and execute policy π̃k optimized by OMD with
probability 1− ξ respectively, as shown in Line 7 - Line 11.

After interacting with the environment, the newly collected data in these two steps will be used to
update the datasets (Line 14), and the empirical transition P̂k will be updated by performing MLE
over the updated datasets by solving (Line 16)(

µ̂k, ϕ̂k

)
= argmax

(µ,ϕ)∈M
EDk∪D′

k

[
lnµ⊤ (s′)ϕ(s, a)

]
, (1)

where we denote ED [f (s, a, s′)] = 1
|D|
∑

(s,a,s′)∈D f (s, a, s′).
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Algorithm 1 Policy Optimization for Low-rank MDPs (POLO)
1: Input: Mixing coefficient ξ, epoch length L, regularization coefficients {λk}Kk=1, bonus coeffi-

cients {αk}Kk=1, model class M, number of episodes K, learning rate η.
2: Initialization: Set D0 = ∅, D′

0 = ∅.
3: for i = 1, 2, . . . , ⌈K/L⌉ do
4: Set ki = (i− 1)L+ 1 and π̃ki(· | s) to be uniform for any s ∈ S.
5: for k = ki, ki + 1, . . . , ki + L− 1 do
6: Sample sk from dπ̃k

P⋆ .
7: Sample ck ∼ Ber(1− ξ).
8: if ck = 1 then
9: Sample ak ∼ π̃k(· | sk), s′k ∼ P ⋆(· | sk, ak), a′k ∼ π̃k(· | s′k), s′′k ∼ P ⋆(· | s′k, a′k).

10: else
11: Sample ak ∼ U(A), s′k ∼ P ⋆(· | sk, ak), a′k ∼ U(A), s′′k ∼ P ⋆(· | s′k, a′k).
12: end if
13: Observe the loss function ℓk.
14: Update datasets Dk = Dk−1 ∪ {(sk, ak, s′k)}, D′

k = D′
k−1 ∪ {(s′k, a′k, s′′k)}.

15: if k = ki then
16: Set the empirical transition P̂k(s

′ | s, a) = µ̂k(s
′)⊤ϕ̂k(s, a), ∀(s, a, s′) ∈ S × A × S,

via solving Eq. (1).
17: Update the empirical covariance matrix Σ̂k =

∑
(s,a)∈Dk

ϕ̂k(s, a)ϕ̂k(s, a)
⊤ + λkI .

18: Set the bonus function b̂k(s, a) := min(αk∥ϕ̂k(s, a)∥Σ̂−1
k
, 2)/(1− γ), ∀(s, a) ∈ S ×A.

19: else
20: Set the empirical transition P̂k = P̂ki

and bonus function b̂k = b̂ki
.

21: end if
22: Compute Q̂π̃k

k (·, ·) = Policy-Evaluation(P̂k, ℓk − b̂k, π̃k).
23: Update policy π̃k+1(· | ·) ∝ π̃k(· | ·) exp(−ηQ̂π̃k

k (·, ·)).
24: end for
25: end for

3.2 Policy Optimization in Fixed Learned Models

It remains to compute the policy π̃k+1 to be used in the next episode. To this end, we resort
to the canonical OMD framework to perform policy optimization like previous methods [Shani
et al., 2020a, Cai et al., 2020, He et al., 2022]. However, previous OMD-based policy optimization
methods for tabular and linear (mixture) MDPs [Shani et al., 2020a, Cai et al., 2020, He et al.,
2022] critically depend on the point-wise optimism for each state-action pair, i.e., Q̂π̃k

k (s, a) ≤
ℓk(s, a) + γ[P ⋆V̂ π̃k

k ](s, a), to enable the decomposition (cf., Lemma 1 by Shani et al. [2020a])

V̂ π̃k

k (s0)− V π⋆

k (s0) = E

[ ∞∑
τ=0

γτ
〈
π̃k(· | sτ )− π⋆(· | sτ ), Q̂π̃k

k (sτ , ·)
〉 ∣∣∣∣∣π⋆, P ⋆, s0

]

+ E

[ ∞∑
τ=0

γτ
(
Q̂π̃k

k (sτ , aτ )− ℓk(sτ , aτ )− γ
[
P ⋆V̂ π̃k

k

]
(sτ , aτ )

) ∣∣∣∣∣π⋆, P ⋆, s0

]
,

where V̂ π̃k

k and Q̂π̃k

k are the state value and state-action value functions of π̃k on (P̂k, ℓk− b̂k) with b̂k
as some bonus function and the expectation is taken over the randomness of sampling aτ ∼ π⋆ (· | sτ )
and sτ+1 ∼ P ⋆ (· | sτ , aτ ). The summation of the first term in the above display is contributed
by competing with the optimal policy π⋆ in the true model P ⋆ and can be bounded by common
OMD analysis, which thus can be regarded as conducting policy optimization in the true model. The
point-wise optimism guarantees that the second term is less than or equal to 0.

Nevertheless, in low-rank MDPs, due to the unknown representation, it is generally hard to obtain the
above point-wise optimism, which leaves the second optimism term unbounded. To cope with this
issue, we instead consider the following decomposition:

V̂ π̃k

k (s0)− V π⋆

k (s0)
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=V̂ π̃k

k (s0)− V̂ π⋆

k (s0) + V̂ π⋆

k (s0)− V π⋆

k (s0)

=E

[ ∞∑
τ=0

γτ
〈
π̃k(· | sk,τ )− π⋆(· | sk,τ ), Q̂π̃k

k (sk,τ , ·)
〉 ∣∣∣∣∣π⋆, P̂k, s0

]
+ V̂ π⋆

k (s0)− V π⋆

k (s0) , (2)

where the first term is contributed by competing against the optimal policy π⋆ in the learned model
P̂k and can be seen as conducting policy optimization in learned models. This decomposition will be
amenable as long as we can achieve a near optimism at the initial state s0, i.e., V̂ π⋆

k (s0)−V π⋆

k (s0) ≲ 0,
which turns out to be feasible for low-rank MDPs [Uehara et al., 2022]. However, there remains
one more caveat. The first term in Eq. (2) is now no longer directly bounded by OMD analysis, due
to the local update nature of OMD-based policy optimization at each state and the state occupancy
distribution dπ

⋆

P̂k
now varies across different episodes. To address this issue, Algorithm 1 adopts an

epoch-based transition update, in which one epoch has L episodes and the model is only updated
at the first episode in one epoch (Line 15 - Line 20).4 Concretely, Algorithm 1 sets P̂k = P̂ki and
b̂k = b̂ki

, where ki is the first episode of the epoch to which the episode k belongs. In this manner, the
learned model is fixed in one epoch, and thus the regret of dealing with the adversarial loss functions
by competing against the optimal policy π⋆ can be bounded in one epoch. Subsequently, at the end of
episode k, our algorithm first computes the optimistic value estimate Q̂π̃k

k for current policy π̃k under
P̂k together with the bonus-enhanced loss functions ℓk − b̂k by policy evaluation (Line 22). Note that
this boils down to planning in the setting of linear MDPs for given features in the learned model and
this can be done computationally efficiently [Jin et al., 2020b]. Then the policy is updated by solving

π̃k+1(· | s) ∈ argmin
π(·|s)∈∆(A)

η
〈
π(· | s), Q̂π̃k

k (s, ·)
〉
+DF (π(· | s), π̃k(· | s)) , (3)

where η > 0 is the learning rate to be tuned later and DF (x, y) = F (x)−F (y)−⟨x− y,∇F (y)⟩ is
the Bregman divergence induced by the regularizer F . With F (π(· | s)) =

∑
a∈A π(a | s) lnπ(a | s)

as the negative entropy, the closed-form solution to the above display is shown in Line 23, which can
be regarded as a kind of soft policy improvement.

4 Analysis
4.1 Regret Upper Bound
The regret upper bound of our POLO algorithm for learning adversarial low-rank MDPs is guaranteed
by the following theorem.

Theorem 4.1. Suppose K > d6A3/(1 − γ)6. For any adversarial low-rank MDP satisfying
Definition 2.1, by setting the epoch length L = K1/2A−1/2d−1ξ(1 − γ), learning rate η = (1 −
γ)
√
lnA/(2L), bonus coefficient αk = O(

√
γ(A/ξ + d2) ln(Mk/δ)), regularization coefficient

λk = O(d ln(Mk/δ)), mixing coefficient ξ = K−1/6A1/2d/(1− γ), and δ = 1/K, then the regret of
Algorithm 1 is upper bounded by

RK = O

(
K

5
6A

1
2 d ln

(
1 +AMK2

)
(1− γ)

2

)
.

Remark 4.1. Ignoring the dependence on all logarithmic factors but M , the regret upper bound
can be simplified as Õ(K5/6A1/2d ln(1 +M)/(1 − γ)2). Comparing with the regret lower bound
Ω( γ2

1−γ

√
dAK) in Theorem 4.2, the regret upper bound in Theorem 4.1 matches in A up to a

logarithmic factor but looses in factors of K and d. Also, note that when K is large enough such
that ξ and L can be chosen as ξ = K−1/6A1/3d2/3/(1 − γ) and L = K1/2A−1d−2ξ(1 − γ) =
K1/3A−2/3d−4/3 ≥ 1, meaning that K ≥ d4A2, the regret upper bound can be further optimized to
Õ(K5/6A1/3d2/3 ln(1+M)/(1− γ)2). Note that this does not conflict with the regret lower bound in
Section 4.3 since the magnitude of this upper bound is still larger than that of the regret lower bound
as long as K ≥ A1/2d−1/2γ6(1− γ)3.

4Throughout this paper, we suppose for simplicity that the number of episodes K is divisible by the epoch
length L considered.
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4.2 Proof of Regret Upper Bound

We now present the proof of Theorem 4.1. To begin with, recall that in each episode k, after state
sk is sampled from dπ̃k

P⋆ , the actual roll-out policy will be πk(· | s) = ξ · U(A) + (1− ξ) · π̃k(· | s).
Therefore, it holds that

RK = E

[
K∑

k=1

(
V πk

k − V π⋆

k

)]

= E

[
K∑

k=1

I{ck = 1}
(
V πk

k − V π⋆

k

)
+ I{ck = 0}

(
V πk

k − V π⋆

k

)]

≤ E

[
K∑

k=1

(
V π̃k

k − V π⋆

k

)]
+

ξK

(1− γ)
, (4)

where the inequality is due to that
∑∞

τ=0 γ
τ ℓk (sτ , aτ ) ∈ [0, 1/(1− γ)] holds for any episode k and

any trajectory {(sτ , aτ )}∞τ=0. We now turn to bound the first term in Eq. (4) by decomposing it into
the following three terms

E

[
K∑

k=1

(
V π̃k

k − V π⋆

k

)]
= E


K∑

k=1

(
V π̃k

k − V̂ π̃k

k

)
︸ ︷︷ ︸
ESTIMATION BIAS TERM

+

K∑
k=1

(
V̂ π̃k

k − V̂ π⋆

k

)
︸ ︷︷ ︸

OMD REGRET TERM

+

K∑
k=1

(
V̂ π⋆

k − V π⋆

k

)
︸ ︷︷ ︸

OPTIMISM TERM

 .

(5)

Bounding OMD REGRET TERM The OMD REGRET TERM is contributed by competing against
π⋆ using π̃k with Q̂π̃k

k as loss function in the learned model P̂ki
. This term is thus bounded by

standard OMD analysis, detailed in the following lemma.

Lemma 4.1. By setting η = (1 − γ)
√

lnA/(2L), the OMD REGRET TERM is bounded as

E
[∑K

k=1

(
V̂ π̃k

k − V̂ π⋆

k

)]
≤ K

√
2 lnA√

L(1−γ)2
.

Bounding OPTIMISM TERM The OPTIMISM TERM is controlled by choosing appropriate bonus
coefficient αk. Note that different from tabular and linear cases, the bonus functions and coefficients
here are not devised to control the optimism for each state-action pair. Instead, they are devised to
provide a (near) optimism only at the initial state s0.

Lemma 4.2. By setting αk = O(
√
γ(A/ξ + d2) ln(Mk/δ)) and λk = O(d ln(Mk/δ)), with prob-

ability 1− δ , the OPTIMISM TERM is bounded as
∑K

k=1

(
V̂ π⋆

k − V π⋆

k

)
≤ (L+

√
K)
√

A ln(MN/δ)
ξ(1−γ)3 .

Bounding ESTIMATION BIAS TERM It remains to bound the ESTIMATION BIAS TERM, which
comes from the difference between the values of running the same policy π̃k in the true model (i.e.,
P ⋆ and ℓk) and the learned empirical model (i.e., P̂k and ℓk − b̂k), respectively. This term can be
translated into the error between the true model and the learned model using the common simulation
lemma, which is thus bounded by the summation of bonus functions. Note that since the empirical
features used to construct our bonus functions vary in each episode, we first relate the bonus functions
with the fixed true feature ϕ⋆ using the one-step trick [Uehara et al., 2022, Zhang et al., 2022], and
finally bound this term with the leverage of the canonical elliptical potential lemma. The result is
shown in the following lemma.

Lemma 4.3. By setting αk = O(
√
γ(A/ξ + d2) ln(Mk/δ)) and λk = O(d ln(Mk/δ)),

with probability 1 − δ, the ESTIMATION BIAS TERM is bounded as
∑K

k=1

(
V π̃k

k − V̂ π̃k

k

)
≤

O
(

d2A
√
KL

ξ(1−γ)3

√
ln(1 +K) ln(MK/δ)

)
.

We refer the readers to Appendix A for the proof of the above lemmas. The proof of Theorem 4.1
is now concluded by first combining Eq. (4), Eq. (5), Lemma 4.1, 4.2, and 4.3 and then choosing
L = K1/2A−1/2d−1ξ(1− γ), ξ = K−1/6A1/2d/(1− γ), and δ = 1/K.
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Intuitively, the epoch length L illustrates a trade-off between dealing with the adversarial losses
and the representation learning over the unknown transitions. When L is large, there will be fewer
restarts in the running of OMD and thus the learner will suffer less regret contributed by dealing
with the adversarial losses as shown by Lemma 4.1. In contrast, a smaller L enables more frequent
model updates, which leads to more accurate model estimation and less regret contributed by the
representation learning as shown by Lemma 4.2 and 4.3.

4.3 Regret Lower Bound

This section presents the regret lower bound for learning adversarial low-rank MDPs with fixed loss
functions in Theorem 4.2, which thus also serves as a regret lower bound for learning adversarial
low-rank MDPs with full-information feedback.

Theorem 4.2. Suppose d ≥ 8, S ≥ d+ 1, A ≥ d− 3, and K ≥ 2(d− 4)A. Then for any algorithm
Alg, there exists an episodic infinite-horizon low-rank MDP MAlg with fixed loss function such that
the regret for this MDP is lower bounded by Ω( γ2

1−γ

√
dAK).

Proof Sketch. At a high level, we construct dA hard-to-learn low-rank MDP instances, which are
difficult to distinguish in KL divergence but have very different optimal policies. In particular, all the
constructed low-rank MDP instances have three levels of states, in which the only state in the first
level is a fixed initial state and the states in the third level are absorbing states. Moreover, only one
unique absorbing state in the third level has the lowest loss, which is termed as the “good state”. In
the constructed low-rank MDP instance M(i⋆,a⋆), the learner can only take specific action to transfer
to state s2,i⋆ in the second level and then take the other specific action to transfer to the unique good
state. Due to the unknown representations of state-action pairs, the learner needs to distinguish all
these dA low-rank MDP instances, which is essentially equivalent to dealing with a bandit problem
with dA “arms”. The detailed proof of Theorem 4.2 is postponed to Appendix B.

Remark 4.2. Theorem 4.2, to the best of our knowledge, provides the first regret lower bound for
learning low-rank MDPs with fixed loss functions. We note that this regret lower bound can hold
when d ≪ S and d ≪ A, which thus means that this lower bound is non-trivial. Besides, the regret
upper bound in our Theorem 4.1 matches the regret lower bound in A up to a logarithmic factor
but looses a factor of Õ(K1/3d1/2/((1− γ)γ2)). Importantly, compared with the regret upper bound
Õ(d

√
K/(1− γ)3) of linear MDPs [He et al., 2023] (the finite horizon H is substituted by the

effective horizon Θ(1/(1− γ)) in our infinite-horizon setting for a fair comparison), the dependence
on A in the regret lower bound of low-rank MDP shows a clear separation between low-rank MDPs
and linear MDPs, which demonstrates that low-rank MDPs are statistically more difficult to learn
than linear MDPs in the regret minimization setting.

5 Conclusions
In this work, we study learning adversarial low-rank MDPs with unknown transition and full-
information feedback. We prove that our proposed algorithm POLO achieves the Õ(K5/6A1/2d ln(1+
M)/(1 − γ)2) regret, which is the first sublinear regret guarantee for this challenging problem.
The design of our proposed algorithm features (a) a doubled exploration and exploitation scheme
to simultaneously learn the transitions and adversarial loss functions; and (b) policy optimization
in the fixed learned models with epoch-based model update to enable a new analysis scheme that
only requires the near optimism at the initial state instead of the point-wise optimism. Also, we
prove an Ω( γ2

1−γ

√
dAK) regret lower bound for this problem, serving as the first regret lower bound

for learning low-rank MDPs in the regret minimization setting. Besides, there also remain several
interesting future directions to be explored. One natural question is whether it is possible to further
optimize the dependence of our regret guarantee on the number of episodes K. The other question
is how to also learn adversarial low-rank MDPs with only the bandit feedback available. This is
also challenging since the current occupancy measure-based methods and policy optimization-based
methods tackling adversarial MDPs with bandit feedback both depend on the point-wise optimism
provided by the true feature mapping, which seems not feasible in low-rank MDPs. We hope our
results may shed light on better understandings of RL with both nonlinear function approximation
and adversarial losses and we leave the above extensions as our future works.
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Limitations

We note that in general our algorithm is oracle-efficient (given access to the MLE computation
oracle in Eq. (1)) but may not be computationally efficient as previous works studying low-rank
MDPs [Agarwal et al., 2020, Uehara et al., 2022, Zhang et al., 2022, Ni et al., 2022]. However,
we also remark that in practice, these algorithms including ours are computationally feasible since
the computation of MLE is only a standard supervised learning problem and can be implemented
using gradient descent methods. The other limitation is that throughout this paper, we assume model
class M with bounded cardinality M and the regret upper bound of our algorithm has a logarithmic
dependence on M . We remark that similar assumptions and dependence have also appeared in
previous theoretical works studying RL with general function approximation [Jiang et al., 2017, Sun
et al., 2019]. Also, extending the analyses to an infinite hypothesis class is possible if the hypothesis
class has bounded statistical complexity [Agarwal et al., 2020].
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Appendix

A Omitted Analysis of The Regret Upper Bound

In this section, we first introduce some further notations and then present the detailed analysis of
Theorem 4.1. For the proofs in this section, we assume that K is divisible by the epoch length L
considered for simplicity.

To begin with, denote by ρk(s) = 1/k
∑k

i=1 d
π̃i

P⋆(s) the averaged state occupancy distribution
under {π̃i}ki=1 and P ⋆. Analogously, let ρ′k(s

′) =
∑

(s,a)∈S×A ρk(s)π̄k(a | s)P ⋆ (s′ | s, a) be
the average next-state occupancy distribution after s is sampled from dπ̃i

P⋆ , where π̄k(· | s) =

ξ · U(A) + (1 − ξ) · 1/k
∑k

i=1 π̃i(· | s) is the averaged mixed roll-out policy. Define fk(s, a) =∥∥∥P̂k(· | s, a)− P ⋆(· | s, a)
∥∥∥
1

as the ℓ1-error between the estimate transition kernel P̂k and P ⋆.
Further, we define the following feature covariance matrices:

• Σ̂k,ϕ = kE(s,a)∼Dk

[
ϕ(s, a)ϕ(s, a)⊤

]
+ λkI ,

• Σρk,ϕ = kE(s,a)∼ρk

[
ϕ(s, a)ϕ(s, a)⊤

]
+ λkI ,

• Σρk×π̄k,ϕ = kEs∼ρk,a∼π̄k

[
ϕ(s, a)ϕ(s, a)⊤

]
+ λkI .

For notational convenience, we abbreviate Σ̂k,ϕk
as Σ̂−1

k . Also, note that Σ̂k,ϕ is an unbiased estimate
of Σρk×π̄k,ϕ.

A.1 Bounding OMD REGRET TERM

We first present the proof of Lemma 4.1, which follows from the standard OMD analysis.

Proof of Lemma 4.1. We first consider fixed initial state s0. For some fixed i ∈ [N ], one can see that
the OMD regret in episode k ∈ {ki, ki + 1, . . . , ki + L− 1} can be written recursively as

V̂ π̃k

k (s0)− V̂ π⋆

k (s0)

=
〈
π̃k (· | s0) , Q̂π̃k

k (s0, ·)
〉
−
〈
π⋆ (· | s0) , Q̂π⋆

k (s0, ·)
〉

=
〈
π̃k (· | s0)− π⋆ (· | s0) , Q̂π̃k

k (s0, ·)
〉
+
〈
π⋆ (· | s0) , Q̂π̃k

k (s0, ·)− Q̂π⋆

k (s0, ·)
〉

=
〈
π̃k(· | s0)− π⋆(· | s0), Q̂π̃k

k (s0, ·)
〉
+
〈
π⋆(· | s0), γ

[
P̂ki

(
V̂ π̃k

k − V̂ π⋆

k

)]
(s0, ·)

〉
=E

[ ∞∑
τ=0

γτ
〈
π̃k(· | sk,τ )− π⋆(· | sk,τ ), Q̂π̃k

k (sk,τ , ·)
〉 ∣∣∣∣∣π⋆, P̂ki

, s0

]
,

where recall Q̂π
k (s, a) = E

[∑∞
τ=0 γ

t[ℓk − b̂k](sk,τ , ak,τ )
∣∣∣π, P̂ki , (sk,0, ak,0) = (s, a)

]
is the state-

action value of policy π under the empirical model (P̂ki
, ℓk−b̂ki

) and the expectation E[· | π⋆, P̂ki
, s0]

is taken over the randomness of the state-action sequence {(sk,τ , ak,τ )}∞τ=0 with ak,τ ∼ π⋆(· | sk,τ ),
sk,τ+1 ∼ P̂ki

(· | sk,τ , ak,τ ), and sk,0 = s0.

Taking summation of the above display over k ∈ {ki, ki + 1, . . . , ki +L− 1} and re-arranging show
that

E

[
ki+L−1∑
k=ki

(
V̂ π̃k

k (s0)− V̂ π⋆

k (s0)
)]

=E

[
E

[
ki+L−1∑
k=ki

∞∑
τ=0

γτ
〈
π̃k(· | sk,τ )− π⋆(· | sk,τ ), Q̂π̃k

k (sk,τ , ·)
〉 ∣∣∣∣∣π⋆, P̂ki

, s0

]]

=

∞∑
τ=0

γτE

[
E

[
ki+L−1∑
k=ki

〈
π̃k(· | sk,τ )− π⋆(· | sk,τ ), Q̂π̃k

k (sk,τ , ·)
〉 ∣∣∣∣∣π⋆, P̂ki , s0

]]
. (6)

18



Further, note that the update process of policy in Eq. (3) can be solved by the following two-step
procedure [Lattimore and Szepesvári, 2020]:

π̂k+1(· | s) ∈ argmin
π(·|s)∈RA

+

η
〈
π(· | s), Q̂π̃k

k (s, ·)
〉
+DF (π(· | s), π̃k(· | s)) and (7)

π̃k+1(· | s) ∈ argmin
π(·|s)∈∆(A)

DF (π(· | s), π̂k+1(· | s)) , (8)

for any s ∈ S. Eq. (7) combined with the first-order optimality condition implies that

Q̂π̃k

k (s, ·) = −1

η
(∇F (π̂k+1(· | s))−∇F (π̃k(· | s))) , (9)

for any s ∈ S. This display shows that π̂k+1(a | s) = π̃k(a | s) exp(−ηQ̂π̃k

k (s, ·)), and π̂k+1(a |
s) ≤ π̃k(a | s) since Q̂π̃k

k (s, a) ≥ 0, for any (s, a) ∈ S ×A.

Therefore, one can see that

E
[〈

π̃k(· | sk,τ )− π⋆(· | sk,τ ), Q̂π̃k

k (sk,τ , ·)
〉∣∣∣π⋆, P̂ki

, s0

]
=E

[
1

η
⟨π⋆(· | sk,τ )− π̃k(· | sk,τ ),∇F (π̂k+1(· | sk,τ ))−∇F (π̃k(· | sk,τ ))⟩

∣∣∣∣π⋆, P̂ki
, s0

]
=E

[
1

η
(DF (π

⋆(· | sk,τ ), π̃k(· | sk,τ )) +DF (π̃k(· | sk,τ ), π̂k+1(· | sk,τ ))

−DF (π
⋆(· | sk,τ ), π̂k+1(· | sk,τ )))

∣∣∣π⋆, P̂ki
, s0

]
≤E

[
1

η
(DF (π

⋆(· | sk,τ ), π̃k(· | sk,τ )) +DF (π̃k(· | sk,τ ), π̂k+1(· | sk,τ ))

−DF (π⋆(· | sk,τ ), π̃k+1(· | sk,τ )))
∣∣∣π⋆, P̂ki

, s0

]
, (10)

where the first equality comes from Eq. (9), the second equality is due to the three-point lemma, and
the last inequality follows the generalized Pythagorean theorem.

Taking summation of Eq. (10) over k ∈ {ki, ki + 1, . . . , ki + L− 1} leads to

E

[
ki+L−1∑
k=ki

〈
π̃k(· | sk,τ )− π⋆(· | sk,τ ), Q̂π̃k

k (sk,τ , ·)
〉∣∣∣∣∣π⋆, P̂ki

, s0

]

≤E

[
1

η

(
DF (π

⋆(· | ski,τ ), π̃ki(· | ski,τ )) +

ki+L−1∑
k=ki

DF (π̃k(· | sk,τ ), π̂k+1(· | sk,τ ))

)∣∣∣∣∣π⋆, P̂ki
, s0

]
.

(11)

The first term in Eq. (11) can be bounded as follows:

E
[
DF (π

⋆(· | ski,τ ), π̃ki(· | ski,τ ))
∣∣∣π⋆, P̂ki , s0

]
=E

[∑
a∈A

π⋆(a | ski,τ ) ln
π⋆(a | ski,τ )

π̃ki
(a | ski,τ )

∣∣∣∣∣π⋆, P̂ki
, s0

]

≤E

[∑
a∈A

π⋆(a | ski,τ ) lnA

∣∣∣∣∣π⋆, P̂ki , s0

]
= lnA , (12)

where the inequality is because we choose π̃ki(· | s) = U(A) for any s ∈ S in Algorithm 1.

It remains to bound E
[∑ki+L−1

k=ki
DF (π̃k(· | sk,τ ), π̂k+1(· | sk,τ ))

∣∣∣π⋆, P̂ki
, s0

]
in Eq. (11):

E

[
ki+L−1∑
k=ki

DF (π̃k(· | sk,τ ), π̂k+1(· | sk,τ ))

∣∣∣∣∣π⋆, P̂ki
, s0

]
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=E

[
ki+L−1∑
k=ki

(−DF (π̂k+1(· | sk,τ ), π̃k(· | sk,τ ))

+ ⟨∇F (π̃k(· | sk,τ ))−∇F (π̂k+1(· | sk,τ )), π̃k(· | sk,τ )− π̂k+1(· | sk,τ )⟩)
∣∣∣π⋆, P̂ki

, s0

]
≤E

[
ki+L−1∑
k=ki

(
−DF (π̂k+1(· | sk,τ ), π̃k(· | sk,τ )) +

1

2
∥∇F (π̃k(· | sk,τ ))−∇F (π̂k+1(· | sk,τ ))∥2∇−2F (zk(·|sk,τ ))

+
1

2
∥π̃k(· | sk,τ )− π̂k+1(· | sk,τ )∥2∇2F (zk(·|sk,τ ))

)∣∣∣∣π⋆, P̂ki
, s0

]
=E

[
ki+L−1∑
k=ki

(
−DF (π̂k+1(· | sk,τ ), π̃k(· | sk,τ )) +

1

2
∥ηQ̂π̃k

k (sk,τ , ·)∥2∇−2F (zk(·|sk,τ ))

+
1

2
∥π̃k(· | sk,τ )− π̂k+1(· | sk,τ )∥2∇2F (zk(·|sk,τ ))

)∣∣∣∣π⋆, P̂ki , s0

]
=E

[
ki+L−1∑
k=ki

(
−1

2
∥π̃k(· | sk,τ )− π̂k+1(· | sk,τ )∥2∇2F (ωk(·|sk,τ ))

+
1

2
∥ηQ̂π̃k

k (sk,τ , ·)∥2∇−2F (zk(·|sk,τ ))

+
1

2
∥π̃k(· | sk,τ )− π̂k+1(· | sk,τ )∥2∇2F (zk(·|sk,τ ))

)∣∣∣∣π⋆, P̂ki
, s0

]
=E

[
η2

2

ki+L−1∑
k=ki

∑
a∈A

zk(a | sk,τ )Q̂π̃k

k (sk,τ , a)
2

∣∣∣∣∣π⋆, P̂ki
, s0

]

≤E

[
η2

2

ki+L−1∑
k=ki

∑
a∈A

π̃k(a | sk,τ )Q̂π̃k

k (sk,τ , a)
2

∣∣∣∣∣π⋆, P̂ki , s0

]
≤2η2L/(1− γ)2 , (13)

where the second line comes from the Young-Fenchel inequality for all zk(· | sk,τ ) ∈ [π̂k+1(· |
sk,τ ), π̃k(· | sk,τ )] arbitrarily, the third line follows by the first-order optimality condition in Eq.
(9), the fourth line is by the mean value theorem of the second derivative for some fixed ωk(· |
sk,τ ) ∈ [π̂k+1(· | sk,τ ), π̃k(· | sk,τ )], the fifth line comes from fixing zk(· | sk,τ ) = ωk(· | sk,τ ),
the sixth line comes from the fact that zk(· | sk,τ ) ≤ π̃k(· | sk,τ ) and the last line is due to that
|Q̂π̃k

k (sk,τ , a)| ≤ 2/(1− γ).

Substituting Eq. (12) and Eq. (13) into Eq. (11), along with Eq. (6), shows that

E

[
K∑

k=1

(
V̂ π̃k

k − V̂ π⋆

k

)]

=E

[
Es0∼d0

[
K∑

k=1

(
V̂ π̃k

k (s0)− V̂ π⋆

k (s0)
)]]

=E

[
Es0∼d0

[
N∑
i=1

ki+L−1∑
k=ki

(
V̂ π̃k

k (s0)− V̂ π⋆

k (s0)
)]]

=

∞∑
τ=0

γτE

[
Es0∼d0

[
N∑
i=1

E

[
ki+L−1∑
k=ki

〈
π̃k(· | sk,τ )− π⋆(· | sk,τ ), Q̂π̃k

k (sk,τ , ·)
〉 ∣∣∣∣∣π⋆, P̂ki

, s0

]]]

≤
∞∑
τ=0

γτN · 1
η

(
lnA+ 2η2L/(1− γ)2

)
≤ K

√
2 lnA√

L(1− γ)2
,

which completes the proof.
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A.2 Bounding OPTIMISM TERM

We now turn to prove Lemma 4.2, which provides a (near) optimism at the initial state distribution.

Proof of Lemma 4.2. Recall fki
(s, a) =

∥∥∥P̂ki
(· | s, a)− P ⋆(· | s, a)

∥∥∥
1
. In the following, we condi-

tion on the good event

E =
{
∀i ∈ [N ],Es∼ρki

,a∼π̄ki

[
f2
ki
(s, a)

]
≤ ζki

,Es∼ρ′
ki

,a∼π̄ki

[
f2
ki
(s, a)

]
≤ ζki

;

∀i ∈ [N ],∀ϕ, ∥ϕ(s, a)∥Σ̂−1
ki,ϕ

= Θ

(
∥ϕ(s, a)∥Σ−1

ρki
×π̄ki

,ϕ

)}
,

which is guaranteed to hold with probability 1 − δ by using union bound with Lemma C.1 and
Lemma C.3.

We first consider fixed initial state s0. For some epoch i ∈ [N ] and episode k ∈ {ki, ki + 1, . . . , ki +
L− 1}, applying Eq. (32) in Lemma C.4 implies that

V̂ π⋆

k (s0)− V π⋆

k (s0)

=
1

1− γ
E(s,a)∼dπ⋆

P̂ki

[
−b̂ki

(s, a) + γ
(
P̂ki

(· | s, a)− P ⋆(· | s, a)
)⊤

V π⋆

k

]
≤ 1

1− γ
E(s,a)∼dπ⋆

P̂ki

[
−b̂ki

(s, a) +
γ

1− γ
fki

(s, a)

]

=
1

1− γ
E(s,a)∼dπ⋆

P̂ki

−min

αki

∥∥∥ϕ̂ki
(s, a)

∥∥∥
Σ−1

ρki
×π̄ki

,ϕ̂ki

, 2

 1

(1− γ)



+
γ

(1− γ)2

γE(s̃,ã)∼dπ⋆

P̂ki

,s∼P̂ki
(·|s̃,ã),a∼π⋆(s) [fki

(s, a)]︸ ︷︷ ︸
TERM1

+(1− γ)Es∼d0,a∼π⋆(s) [fki
(s, a)]︸ ︷︷ ︸

TERM2

 ,

(14)

where the inequality comes from the Cauchy–Schwarz inequality together with ∥V π⋆

k ∥∞ = 1/(1−γ),
and the second equality is due to the fact that Σ̂ki,ϕ̂ki

is an unbiased estimate of Σρki
×π̄ki

,ϕ̂ki
and

Lemma A.4.

We first bound TERM2 as follows:

(1− γ)Es∼d0,a∼π⋆(s) [fki
(s, a)] ≤

√
(1− γ)A

ξ
Es∼ρki

,a∼π̄ki

[
f2
ki
(s, a)

]
≤

√
(1− γ)Aζki

ξ
,

(15)

where the first inequality is due to Lemma A.1 and the second inequality is by the definition of event
E .

It remains to bound TERM1:
γE(s̃,ã)∼dπ⋆

P̂ki

,s∼P̂ki
(·|s̃,ã),a∼π⋆(s) [fki(s, a)]

≤γE(s̃,ã)∼dπ⋆

P̂ki

∥∥∥ϕ̂ki
(s̃, ã)

∥∥∥
Σ−1

ρki
×π̄ki

,ϕ̂ki

√kiA

ξ
Es∼ρ′

ki
,a∼π̄ki

[
f2
ki
(s, a)

]
+ 4λki

d+ 4kiζki

≤γE(s̃,ã)∼dπ⋆

P̂ki

∥∥∥ϕ̂ki
(s̃, ã)

∥∥∥
Σ−1

ρki
×π̄ki

,ϕ̂ki

√kiA

ξ
ζki

+ 4λki
d+ 4kiζki

≲αki
E(s̃,ã)∼dπ⋆

P̂ki

∥∥∥ϕ̂ki
(s̃, ã)

∥∥∥
Σ−1

ρki
×π̄ki

,ϕ̂ki

 , (16)
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where the first inequality follows by Lemma A.3 as well as ∥fki∥∞ ≤ 2, the second inequality is
again due to the definition of the good event E , and the last inequality comes from the definition of
αki .

Now substituting Eq. (15) and Eq. (16) into Eq. (14) shows that

K∑
k=1

(
V̂ π⋆

k − V π⋆

k

)
=Es0∼d0

[
K∑

k=1

(
V̂ π⋆

k (s0)− V π⋆

k (s0)
)]

=Es0∼d0

[
N∑
i=1

ki+L−1∑
k=ki

(
V̂ π⋆

k (s0)− V π⋆

k (s0)
)]

≤
N∑
i=1

ki+L−1∑
k=ki

1

(1− γ)2
E(s,a)∼dπ⋆

P̂ki

−min

αki

∥∥∥ϕ̂ki
(s, a)

∥∥∥
Σ−1

ρki
×π̄ki

,ϕ̂ki

, 2


+min

αki

∥∥∥ϕ̂ki
(s, a)

∥∥∥
Σ−1

ρki
×π̄ki

,ϕ̂ki

+

√
(1− γ)Aζki

ξ
, 2


≤

N∑
i=1

L

√
A ln(MN/δ)

ξ(1− γ)3ki

=

N∑
i=1

L

√
A ln(MN/δ)

ξ(1− γ)3((i− 1)L+ 1)

≤(L+
√
K)

√
A ln(MN/δ)

ξ(1− γ)3
,

where the first inequality follows by ∥fki∥∞ ≤ 2 for any i ∈ [N ] and the second inequality is due to
the definition of ζki in Lemma C.1.

A.3 Bounding ESTIMATION BIAS TERM

We now give the proof of Lemma 4.3, which controls the estimation bias term.

Proof of Lemma 4.3. Similar to the proof of Lemma 4.2, in what follows, we condition on the good
event

E =
{
∀i ∈ [N ],Es∼ρki

,a∼π̄ki

[
f2
ki
(s, a)

]
≤ ζki

,Es∼ρ′
ki

,a∼π̄ki

[
f2
ki
(s, a)

]
≤ ζki

;

∀i ∈ [N ],∀ϕ, ∥ϕ(s, a)∥Σ̂−1
ki,ϕ

= Θ

(
∥ϕ(s, a)∥Σ−1

ρki
×π̄ki

,ϕ

)}
.

We first consider fixed initial state s0. For some epoch i ∈ [N ] and episode k ∈ {ki, ki + 1, . . . , ki +
L− 1}, applying Lemma C.4 shows that

V π̃k

k (s0)− V̂ π̃k

k (s0) (17)

=(1− γ)−1E
(s,a)∼d

π̃k
P⋆

[
b̂ki(s, a)− γEP̂ki

(s′|s,a)

[
V̂ π̃k

k (s′)
]
+ γEP⋆(s′|s,a)

[
V̂ π̃k

k (s′)
]]

≤E
(s,a)∼d

π̃k
P⋆

[
1

1− γ
b̂ki

(s, a) +
2

(1− γ)3
fki

(s, a)

]
= γE

(s̃,ã)∼d
π̃k
P⋆ ,s∼P⋆(·|s̃,ã),a∼π̃k(s)

[
1

1− γ
b̂ki(s, a) +

2

(1− γ)3
fki(s, a)

]
︸ ︷︷ ︸

TERM1
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+ (1− γ)Es∼d0,a∼π̃k(s0)

[
1

1− γ
b̂ki

(s, a) +
2

(1− γ)3
fki

(s, a)

]
︸ ︷︷ ︸

TERM2

, (18)

where the inequality follows from the fact that ∥b̂ki
∥∞ ≤ 2/(1− γ) and ∥V̂ π̃k

ki
∥∞ ≤ 2/(1− γ)2 and

the second equality is due to Lemma A.4.

TERM2 can be bounded as follows:

TERM2 = Es∼d0,a∼π̃k(s0)

[
b̂ki(s, a) +

2

(1− γ)2
fki(s, a)

]
≤

√
A

(1− γ)ξ
Es∼ρki

,a∼π̄ki
(s)

[
b̂2ki

(s, a) +
4

(1− γ)4
f2
ki
(s, a)

]

≲

√
dAα2

ki

(1− γ)3kiξ
+

Aζki

(1− γ)5ξ

≤

√
dAα2

ki

(1− γ)3kiξ
+

√
Aζki

(1− γ)5ξ
, (19)

where the first inequality follows from Lemma A.1, and the second inequality comes from Lemma C.1
as well as the following inequality:

Es∼ρki
,a∼π̄ki

(s)

[
kib̂

2
ki
(s, a)

]
≤

kiα
2
ki

(1− γ)2
Es∼ρki

,a∼π̄ki
(s)

∥∥∥ϕ̂ki(s, a)
∥∥∥2
Σ−1

ρki
×π̄ki

,ϕ̂ki


=

kiα
2
ki

(1− γ)2
Tr

(
Es∼ρki

,a∼π̄ki

[
ϕ̂ki(s, a)ϕ̂ki(s, a)

⊤
]{

kiEs∼ρki
,a∼π̄ki

[
ϕ̂ki(s, a)ϕ̂ki(s, a)

⊤
]
+ λkiI

}−1
)

≤
α2
ki
d

(1− γ)2
, (20)

where the first inequality is because Σ̂ki,ϕki
is an unbiased estimate of Σρki

×π̄ki
,ϕki

and the second
inequality is by Tr(AB) ≥ Tr(AC) for positive semi-definite matrices A, B, C and B − C ⪰ 0.

To bound TERM1, we note that

E
(s̃,ã)∼d

π̃k
P⋆ ,s∼P⋆(·|s̃,ã),a∼π̃k(s)

[
b̂ki(s, a) +

2

(1− γ)2
fki(s, a)

]
≤E

(s̃,ã)∼d
π̃k
P⋆

[
∥ϕ⋆(s̃, ã)∥Σ−1

ρki
,ϕ⋆

]√
2kiA

ξγ
Es∼ρki

,a∼π̄ki
(s)

[
b̂2ki

(s, a) +
4

(1− γ)4
f2
ki
(s, a)

]
+ λki

d
36

(1− γ)4

≤E
(s̃,ã)∼d

π̃k
P⋆

[
∥ϕ⋆(s̃, ã)∥Σ−1

ρki
,ϕ⋆

]√√√√2kiA

ξγ

(
α2
ki
d

ki(1− γ)2
+

4

(1− γ)4
ζki

)
+ λki

d
36

(1− γ)4

≲E
(s̃,ã)∼d

π̃k
P⋆

[
∥ϕ⋆(s̃, ã)∥Σ−1

ρki
,ϕ⋆

]√
dAα2

ki

ξγ(1− γ)2
+ E

(s̃,ã)∼d
π̃k
P⋆

[
∥ϕ⋆(s̃, ã)∥Σ−1

ρki
,ϕ⋆

]√
kiAζki

ξγ(1− γ)4
+

λki
d

γ(1− γ)4
,

where the first inequality follows from Lemma A.2, the AM-GM inequality, ∥b̂ki∥∞ ≤ 2(1− γ), and
∥fki∥∞ ≤ 2 and the second inequality is due to Eq. (20).

The above display implies that TERM1 can be bounded as follows:

γE
(s̃,ã)∼d

π̃k
P⋆ ,s∼P⋆(·|s̃,ã),a∼π̃k(s)

[
1

1− γ
b̂ki

(s, a) +
2

(1− γ)3
fki

(s, a)

]

≲
1

(1− γ)2
E
(s̃,ã)∼d

π̃k
P⋆

[
∥ϕ⋆(s̃, ã)∥Σ−1

ρki
,ϕ⋆

]√
γ
dAα2

ki

ξ
+

1

(1− γ)3
E
(s̃,ã)∼d

π̃k
P⋆

[
∥ϕ⋆(s̃, ã)∥Σ−1

ρki
,ϕ⋆

]
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·

√
γ

(
kiAζki

ξ
+ λki

d

)

≤ 1

(1− γ)2
E
(s̃,ã)∼d

π̃k
P⋆

[
∥ϕ⋆(s̃, ã)∥Σ−1

ρki
,ϕ⋆

]√
dAα2

K

ξ
+

1

(1− γ)3
E
(s̃,ã)∼d

π̃k
P⋆

[
∥ϕ⋆(s̃, ã)∥Σ−1

ρki
,ϕ⋆

αK

]

≲
1

(1− γ)3
E
(s̃,ã)∼d

π̃k
P⋆

[
∥ϕ⋆(s̃, ã)∥Σ−1

ρki
,ϕ⋆

]√
dAα2

K

ξ
, (21)

where the second inequality is due to that αk = O(
√
γ(A/ξ + d2) ln(Mk/δ)) =

O(
√
γ(A/ξ + d2)kζk) = O(

√
γ(Akζk/ξ + λkd)) = O(

√
γ(Akζk/ξ + λkd+ kζk)).

Substituting Eq. (19) and Eq. (21) into Eq. (17), and taking summation over k ∈ [K] leads to

K∑
k=1

(
V π̃k

k − V̂ π̃k

k

)
=Es0∼d0

[
K∑

k=1

(
V π̃k

k (s0)− V̂ π̃k

k (s0)
)]

≲
N∑
i=1

ki+L−1∑
k=ki

 1

(1− γ)3
E
(s,a)∼d

π̃k
P⋆

[
∥ϕ⋆(s, a)∥Σ−1

ρki
,ϕ⋆

]√
dAα2

K

ξ
+

√
dAα2

K

(1− γ)3kiξ
+

√
Aζki

(1− γ)5ξ


≲

αK

(1− γ)3

√
dA

ξ
·

N∑
i=1

ki+L−1∑
k=ki

E
(s,a)∼d

π̃k
P⋆

[
∥ϕ⋆(s, a)∥Σ−1

ρki
,ϕ⋆

]

≤ αK

(1− γ)3

√
dA

ξ
·

√√√√K

N∑
i=1

ki+L−1∑
k=ki

E
(s,a)∼d

π̃k
P⋆

[
∥ϕ⋆(s, a)∥2Σ−1

ρki
,ϕ⋆

]

=
αK

(1− γ)3

√
dA

ξ
·

√√√√K

N∑
i=1

ki+L−1∑
k=ki

Tr
(
E
(s,a)∼d

π̃k
P⋆

[ϕ⋆(s, a)ϕ⋆(s, a)⊤] Σ−1
ρki

,ϕ⋆

)

=
αK

(1− γ)3

√
dA

ξ
·

√√√√K

L∑
j=1

N∑
i=1

Tr

(
E
(s,a)∼d

π̃(i−1)L+j

P⋆

[ϕ⋆(s, a)ϕ⋆(s, a)⊤] Σ−1
ρki

,ϕ⋆

)

≤ αK

(1− γ)3

√
dA

ξ

·

√√√√√K

L∑
j=1

N∑
i=1

Tr

E
(s,a)∼d

π̃(i−1)L+j

P⋆

[ϕ⋆(s, a)ϕ⋆(s, a)⊤]

(
i−1∑
q=1

E
(s,a)∼d

π̃(q−1)L+j

P⋆

[ϕ⋆(s, a)ϕ⋆(s, a)⊤] + λ1I

)−1


≲
αK

(1− γ)3

√
dA

ξ
·

√√√√K

L∑
j=1

d ln

(
1 +

N

dλ1

)

≲
αK

(1− γ)3

√
dA

ξ
·

√
dLK ln

(
1 +

K

dλ1

)
≲
d2A

√
KL

ξ(1− γ)3

√
ln(1 +K) ln(MK/δ) ,

where the third inequality follows from Cauchy–Schwarz inequality together with Jensen’s inequality,
the fourth inequality is by Tr(AB) ≥ Tr(AC) for positive semi-definite matrices A, B, C and
B − C ⪰ 0, and the fifth inequality is due to Lemma C.2. The proof is now completed.
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A.4 One-step-back Inequalities

We first present the following lemma, which bounds the quantity under the initial state distribution,
for any policy π. Note that this lemma holds for any k ∈ [K].
Lemma A.1. For any g : S ×A → R such that ∥g∥∞ ≤ B and any policy π, it holds that

Es∼d0,a∼π(s0) [g(s, a)] ≤

√
A

(1− γ)ξ
Es∼ρk,a∼π̄k

[g2(s, a)] .

Proof.

Es∼d0,a∼π(s0) [g(s, a)] ≤
√
Es∼d0,a∼π(s0) [g

2(s, a)]

≤

√
max

(s,a)∈S×A

d0(s)π(a|s)
ρk(s)π̄k(a|s)

Es∼ρk,a∼π̄k
[g2(s, a)]

≤

√
max

(s,a)∈S×A

d0(s)π(a|s)
(1− γ)d0(s)π̄k(a|s)

Es∼ρk,a∼π̄k
[g2(s, a)]

≤

√
max

(s,a)∈S×A

1

(1− γ)ξ · U(a)
Es∼ρk,a∼π̄k

[g2(s, a)]

≤

√
A

(1− γ)ξ
Es∼ρk,a∼π̄k

[g2(s, a)] ,

where the first inequality follows from Jensen’s inequality, the second inequality is by importance
sampling, and the fourth inequality is due to the definition of π̄k.

The following lemma shows that

E
(s,a)∼d

π̃k
P⋆

[g(s, a)] ≲ E
(s,a)∼d

π̃k
P⋆

[
∥ϕ⋆(s, a)∥Σ−1

ρk,ϕ⋆

]
,

if Es∼ρk,a∼π̄k

[
g2(s, a)

]
is upper bounded.

Lemma A.2 (One-step-back inequality in the true model). For any g : S × A → R such that
∥g∥∞ ≤ B, any epoch i ∈ [N ] and any episode k ∈ {ki, . . . , ki + L− 1}, it holds that

E
(s̃,ã)∼d

π̃k
P⋆ ,s∼P⋆(·|s̃,ã),a∼π̃k(s)

[g(s, a)]

≤E
(s̃,ã)∼d

π̃k
P⋆

[
∥ϕ⋆(s̃, ã)∥Σ−1

ρki
,ϕ⋆

]√
kiA

ξγ
Es∼ρki

,a∼π̄ki
[g2(s, a)] + λkidB

2 .

Proof. To begin with, applying the Cauchy–Schwarz inequality shows that

E
(s̃,ã)∼d

π̃k
P⋆ ,s∼P⋆(·|s̃,ã),a∼π̃k(s)

[g(s, a)]

=E
(s̃,ã)∼d

π̃k
P⋆

[
ϕ⋆(s̃, ã)⊤

∫ ∑
a

µ⋆(s)π̃k(a | s)g(s, a)d(s)

]

≤E
(s̃,ã)∼d

π̃k
P⋆

∥ϕ⋆(s̃, ã)∥Σ−1
ρki

,ϕ⋆

∥∥∥∥∥
∫ ∑

a

µ⋆(s)π̃k(a | s)g(s, a)d(s)

∥∥∥∥∥
Σρki

,ϕ⋆

 . (22)

We bound the second quadratic form w.r.t. Σρki
,ϕ⋆ in Eq. (22) as follows:∥∥∥∥∥

∫ ∑
a

µ⋆(s)π̃k(a | s)g(s, a)d(s)

∥∥∥∥∥
2

Σρki
,ϕ⋆
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=

[∫ ∑
a

µ⋆(s)π̃k(a | s)g(s, a)d(s)

]⊤ {
kiE(s,a)∼ρki

[
ϕ⋆(s, a)ϕ⋆(s, a)⊤

]
+ λkI

}
[∫ ∑

a

µ⋆(s)π̃k(a | s)g(s, a)d(s)

]

≤kiE(s̃,ã)∼ρki


[∫ ∑

a

µ⋆(s)⊤ϕ⋆(s̃, ã)π̃k(a | s)g(s, a)d(s)

]2+ λki
dB2

=kiE(s̃,ã)∼ρki

{
Es∼P⋆(·|s̃,ã),a∼π̃k(s) [g(s, a)]

2
}
+ λkidB

2

≤kiE(s̃,ã)∼ρki
,s∼P⋆(·|s̃,ã),a∼π̃k(s)

[
g2(s, a)

]
+ λki

dB2 , (23)

where the first inequality comes from ∥g(s, a)∥∞ ≤ B together with the regularity condition in
Assumption 2.1 that

∥∥∫ µ⋆(s)h(s)d(s)
∥∥
2
≤

√
d for any h : S → [0, 1], and the last inequality

follows from the Jensen’s inequality.

By importance sampling, it is clear that
kiE(s̃,ã)∼ρki

,s∼P⋆(·|s̃,ã),a∼π̃k(s)

[
g2(s, a)

]
+ λkidB

2

≤ki
γ
Es∼ρki

,a∼π̃k(s)

[
g2(s, a)

]
+ λki

dB2

≤ max
(s,a)∈S×A

ki
γ

π̃k(a | s)
π̄ki(a | s)

Es∼ρki
,a∼π̄ki

(s)

[
g2(s, a)

]
+ λki

dB2

≤kiA

ξγ
Es∼ρki

,a∼π̄ki
(s)

[
g2(s, a)

]
+ λki

dB2 , (24)

where the third inequality is due to the definition of π̄k, and the first inequality is because
γE(s̃,ã)∼ρki

,s∼P⋆(·|s̃,ã),a∼π̃k(s)

[
g2(s, a)

]
≤γE(s̃,ã)∼ρki

,s∼P⋆(·|s̃,ã),a∼π̃k(s)

[
g2(s, a)

]
+ (1− γ)Es0∼d0,a∼π̃k(s)

[
g2(s, a)

]
=Es∼ρki

,a∼π̃k(s)

[
g2(s, a)

]
,

which comes from Lemma A.4.

The proof is concluded by substituting Eq. (23) and Eq. (24) into Eq. (22).

The following lemma is a counterpart of Lemma A.2, which shows that

E(s,a)∼dπ
P̂k

[g(s, a)] ≲ E(s,a)∼dπ
P̂k

[∥∥∥ϕ̂k(s, a)
∥∥∥
Σ−1

ρk×π̄k,ϕ̂k

]
,

if Es∼ρ′
k,a∼π̄k

[
g2(s, a)

]
is upper bounded. Note that compared with Lemma A.2, this lemma

additionally needs to condition on the event that the MLE guarantee (cf., Lemma C.1) holds.
Lemma A.3 (One-step-back inequality in the learned model). Conditioned on the event where the
MLE guarantee in Lemma C.1 holds, i.e., Es∼ρki

,a∼π̄ki

[
fki(s, a)

2
]
≲ ζki , for any epoch i ∈ [N ].

Then for any g : S ×A → R such that ∥g∥∞ ≤ B, any epoch i ∈ [N ] and any policy π, it holds that
E(s̃,ã)∼dπ

P̂ki

,s∼P̂ki
(·|s̃,ã),a∼π(s) [g(s, a)]

≤E(s̃,ã)∼dπ
P̂ki

∥∥∥ϕ̂ki
(s̃, ã)

∥∥∥
Σ−1

ρki
×π̄ki

,ϕ̂ki

√kiA

ξ
Es∼ρ′

ki
,a∼π̄ki

[g2(s, a)] +B2λki
d+ kiB2ζki

,

where recall that π̄k(· | s) = ξ · U(A) + (1− ξ) · 1/k
∑k

j=1 π̃j(· | s).

Proof. The proof of this lemma is generally similar to that of Lemma A.2. We start by applying the
Cauchy–Schwarz inequality:

E(s̃,ã)∼dπ
P̂ki

,s∼P̂ki
(·|s̃,ã),a∼π(s) [g(s, a)]
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=E(s̃,ã)∼dπ
P̂ki

[
ϕ̂ki(s̃, ã)

⊤
∫ ∑

a

µ̂ki(s)π(a | s)g(s, a)d(s)

]

≤E(s̃,ã)∼dπ
P̂ki

∥∥∥ϕ̂ki(s̃, ã)
∥∥∥
Σ−1

ρki
×π̄ki

,ϕ̂ki

∥∥∥∥∥
∫ ∑

a

µ̂ki(s)π(a | s)g(s, a)d(s)

∥∥∥∥∥
Σ

ρki
×π̄ki

,ϕ̂ki

 . (25)

We now bound the second quadratic form w.r.t. Σρki
×π̄ki

,ϕ̂ki
in Eq. (25) as follows:∥∥∥∥∥

∫ ∑
a

µ̂ki
(s)π(a | s)g(s, a)d(s)

∥∥∥∥∥
2

Σ
ρki

×π̄ki
,ϕ̂ki

=

[∫ ∑
a

µ̂ki
(s)π(a | s)g(s, a)d(s)

]⊤
·
{
kiEs∼ρki

,a∼π̄ki

[
ϕ̂ki

(s, a)ϕ̂ki
(s, a)⊤

]
+ λki

I
}

·

[∫ ∑
a

µ̂ki
(s)π(a | s)g(s, a)d(s)

]

≤kiEs̃∼ρki
,ã∼π̄ki


[∫ ∑

a

µ̂ki
(s)⊤ϕ̂ki

(s̃, ã)π(a | s)g(s, a)d(s)

]2+B2λki
d

=kiEs̃∼ρki
,ã∼π̄ki

{
Es∼P̂ki

(·|s̃,ã),a∼π(s)[g(s, a)]
2
}
+B2λkid , (26)

where the first inequality is because ∥g(s, a)∥∞ ≤ B as well as the regularity condition in Assump-
tion 2.1 that

∥∥∫ µ(s)h(s)d(s)
∥∥
2
≤

√
d for any h : S → [0, 1] and any µ ∈ Ψ.

Moreover, using the MLE guarantee in Lemma C.1, we have that

kiEs̃∼ρki
,ã∼π̄ki

{
Es∼P̂ki

(·|s̃,ã),a∼π(s)[g(s, a)]
2
}
+B2λki

d

≤kiEs̃∼ρki
,ã∼π̄ki

{
Es∼P⋆(·|s̃,ã),a∼π(s)[g(s, a)]

2
}
+B2λkid+ kiB

2ζki

≤kiEs̃∼ρki
,ã∼π̄ki

,s∼P⋆(·|s̃,ã),a∼π(s)

[
g2(s, a)

]
+B2λki

d+B2kiζki

≤kiA

ξ
Es̃∼ρki

,ã∼π̄ki
,s∼P⋆(·|s̃,ã),a∼π̄ki

[
g2(s, a)

]
+B2λkid+B2kiζki

≤kiA

ξ
Es∼ρ′

ki
,a∼π̄ki

[
g2(s, a)

]
+B2λki

d+B2kiζki
, (27)

where the second inequality follows by Jensen’s inequality, the third inequality comes from importance
sampling and the definition of π̄ki , and the last inequality is due to the definition of ρ′ki

.

The proof is now concluded by substituting Eq. (26) and Eq. (27) into Eq. (25).

The following lemma shows that the expectation of any state-action function g : S ×A → R w.r.t.
dπ1

P and π2 can be decomposed into (a) the one-step-back expectation of g w.r.t. dπ1

P and π2; and (b)
the expectation of g w.r.t. d0 and π2.
Lemma A.4. For any P , and any policy π1 and π2, it holds that

Es∼d
π1
P ,a∼π2(·|s)[g(s, a)]

=γE(s̃,ã)∼d
π1
P ,s∼P (·|s̃,ã),a∼π2(·|s)[g(s, a)] + (1− γ)Es∼d0,a∼π2(·|s0)[g(s, a)] .

Proof.

Es∼d
π1
P ,a∼π2(·|s)[g(s, a)]

=

∞∑
t=1

(1− γ)γtEs∼d
π1
P,t,a∼π2(·|s)[g(s, a)] + (1− γ)Es∼d

π1
P,0,a∼π2(·|s)[g(s, a)]

27



=γ

∞∑
t=0

(1− γ)γtEs∼d
π1
P,t+1,a∼π2(·|s)[g(s, a)] + (1− γ)Es∼d0,a∼π2(·|s0)[g(s, a)]

=γ

∞∑
t=0

(1− γ)γtE(s̃,ã)∼d
π1
P,t,s∼P (·|s̃,ã),a∼π2(·|s)[g(s, a)] + (1− γ)Es∼d0,a∼π2(·|s0)[g(s, a)]

=γE(s̃,ã)∼d
π1
P ,s∼P (·|s̃,ã),a∼π2(·|s)[g(s, a)] + (1− γ)Es∼d0,a∼π2(·|s0)[g(s, a)] .

B Omitted Analysis of The Regret Lower Bound

In this section, we provide the proof of Theorem 4.2. For the remainder of this section, we switch
from loss functions to reward functions for convenience since we now consider MDPs with fixed loss
functions.

B.1 Construction of Hard-to-learn MDP Instances

s1,1

s2,1 s2,i⋆ s2,d−4 so

sg sb

1
2

1
2

1
2 + ε 1

2 − ε

1 1
r(sg, a) = 1 r(sb, a) = 0

so1 soj soS−d

r(so1, a) =
1
2

1
S−d

1
S−d

1
S−d

Figure 1: The class of the hard-to-learn low-rank MDP instances used in the proof of Theorem 4.2.

To prove our regret lower bound in Theorem 4.2, we construct a class of hard-to-learn low-rank MDP
instances, as shown in Figure 1. Note that similar hard MDP instances are first introduced to prove
the regret lower bounds for tabular MDPs [Lattimore and Szepesvári, 2020, Domingues et al., 2021]
and are recently also used to prove the lower bound of sample complexity for learning low-rank
MDPs by Cheng et al. [2023].

To begin with, we first introduce the reference low-rank MDP M0, with its elements detailed as
follows:

• State space: S = {s1,1, s2,1, s2,2, . . . , s2,d−4}∪{sg, sb}∪{so}∪SO, where SO = {soi }
S−d
i=1

denotes the set of “outlier states”, sg denotes the “good state”, and sb denotes the “bad
state”.

• Action space: A = {a1, a2, . . . , aA}.

• Reward function: r(s, a) = I{s = sg}+ 1
2 I{s ∈ SO}.
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• Transitions:
– For the initial state s1,1, the learner will deterministically transit to state s2,i if

taking action ai, ∀i ∈ [d − 4], and will transit to state so otherwise. Formally,
P ⋆ (s2,i | s1,1, ai) = 1, ∀i ∈ [d− 4], and P ⋆ (so | s1,1, ai) = 1, ∀i ∈ [A] \ [d− 4].

– For state s2,i ∈ {s2,1, s2,2, . . . , s2,d−4}, the learner will transit to good state sg and bad
state sb uniformly at random, no matter what action it takes, i.e., P ⋆ (sg | s2,i, a) =
P ⋆
(
sb | s2,i, a

)
= 1

2 , ∀i ∈ [d− 4] and a ∈ A.
– For states so and soi ∈ SO, the learner will uniformly transit to a state soj ∈ SO,

no matter what action it takes. Formally, P ⋆
(
soj | so, a

)
= P ⋆

(
soj | soi , a

)
= 1

S−d ,
∀soi , soj ∈ SO and a ∈ A.

– For states sg and sb, the learner will stay at the current state no matter what action it
takes, which means that P ⋆ (sg | sg, a) = P ⋆

(
sb | sb, a

)
= 1.

Further, the transitions of the above MDP can be realized by P ⋆(s′ | s, a) = ⟨ϕ⋆(s, a), µ⋆(s′)⟩, with
the following features, which thus implies that this MDP is indeed a low-rank MDP:
ϕ⋆(s1,1, ai) = ei, µ⋆(s2,i) = ei, ∀i ∈ [d− 4], µ⋆(s1,1) = 0

ϕ⋆(s1,1, ai) = (0, . . . , 0, 1, 0), ∀i ∈ [A] \ [d− 4], µ⋆(so) = (0, . . . , 0, 1, 0)

ϕ⋆ (s2,j , a) = (0, . . . , 0,
1

2
,
1

2
, 0, 0), ∀a ∈ A, µ⋆(sg) = (0, . . . , 0, 1, 0, 0, 0), µ⋆(sb) = (0, . . . , 0, 0, 1, 0, 0)

ϕ⋆(so, a) = ϕ⋆(soj , a) = (0, . . . , 0,
1

S − d
), ∀a ∈ A, µ⋆(soj) = (0, . . . , 0, 1)

ϕ⋆(sg, a) = µ⋆(sg), ϕ⋆(sb, a) = µ⋆(sb), ∀a ∈ A .

Based on the reference MDP M0, we define other low-rank MDP instances M(i⋆,a⋆), ∀(i⋆, a⋆) ∈
[d − 4] × A. In specific, the only difference between M(i⋆,a⋆) and M0 is that ϕ⋆(s2,i⋆ , a

⋆) =

(0, . . . , 0, 1
2 + ε, 1

2 − ε, 0, 0), such that P ⋆ (sg | s2,i⋆ , a⋆) = 1
2 + ε, and P ⋆ (sb | s2,i⋆ , a⋆) = 1

2 − ε,
for some ε > 0 to be defined later.

B.2 Proof of Theorem 4.2

Based on the class of hard-to-learn low-rank MDP instances constructed above, we are now ready to
prove the regret lower bound in Theorem 4.2.

Proof of Theorem 4.2. In what follows, we denote by P(i⋆,a⋆) := PAlg,M(i⋆,a⋆)
the probability

measure over the outcomes induced by the interaction between Alg and M(i⋆,a⋆), and by E(i⋆,a⋆) :=
EAlg,M(i⋆,a⋆)

the expectation with respect to P(i⋆,a⋆).

Regret of Alg in M(i⋆,a⋆) For some M(i⋆,a⋆), its optimal policy π⋆
(i⋆,a⋆) : S → A satisfies that

π⋆
(i⋆,a⋆)(s1,1) = ai⋆ and π⋆

(i⋆,a⋆)(s2,i⋆) = a⋆, with the optimal value function

V ⋆
0 (s1,1) = E

[
+∞∑
τ=0

γτr(sτ , aτ ) | π⋆
(i⋆,a⋆), P

⋆
(i⋆,a⋆), s0 = s1,1

]
=

+∞∑
τ=2

γτ

(
1

2
+ ε

)
=

γ2

1− γ

(
1

2
+ ε

)
.

(28)
For some policy π, it is also clear that its value function satisfies

V π
0 (s1,1) =

γ2

1− γ

(
1

2
+ εP(i⋆,a⋆) ((s2, a2) = (s2,i⋆ , a

⋆))

)
. (29)

Combining Eq. (28) and (29) shows that the regret of Alg in M(i⋆,a⋆) satisfies

RK(Alg,M(i⋆,a⋆)) =
γ2ε

1− γ
K

(
1− 1

K
E(i⋆,a⋆)

[
K∑

k=1

I{(sk2 , ak2) = (s2,i⋆ , a
⋆)}

])

=
γ2ε

1− γ
K

(
1− 1

K
E(i⋆,a⋆)

[
NK

(i⋆,a⋆)

])
,

where we define NK
(i⋆,a⋆)

:=
∑K

k=1 I{(sk2 , ak2) = (s2,i⋆ , a
⋆)}.
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Maximum Regret of Alg over All Possible M(i⋆,a⋆) With RK(Alg,M(i⋆,a⋆)) in the above
equation, we can deduce that

max
(i⋆,a⋆)

RK(Alg,M(i⋆,a⋆)) ≥
1

(d− 4)A

∑
(i⋆,a⋆)

RK(Alg,M(i⋆,a⋆))

≥ γ2ε

1− γ
K

1− 1

K(d− 4)A

∑
(i⋆,a⋆)

E(i⋆,a⋆)

[
NK

(i⋆,a⋆)

] . (30)

To lower bound the above display, it remains to upper bound
∑

(i⋆,a⋆) E(i⋆,a⋆)

[
NK

(i⋆,a⋆)

]
. To this

end, by Lemma 1 in the work of Garivier et al. [2019] together with the fact that NK
(i⋆,a⋆)/K ∈ [0, 1],

it holds that

KL

(
Ber

(
1

K
E0

[
NK

(i⋆,a⋆)

])
,Ber

(
1

K
E(i⋆,a⋆)

[
NK

(i⋆,a⋆)

]))
≤ KL

(
P0,P(i⋆,a⋆)

)
.

This implies that

1

K
E(i⋆,a⋆)

[
NK

(i⋆,a⋆)

]
≤ 1

K
E0

[
NK

(i⋆,a⋆)

]
+

√
1

2
KL
(
P0,P(i⋆,a⋆)

)
=

1

K
E0

[
NK

(i⋆,a⋆)

]
+ ε

√
2

√
E0

[
NK

(i⋆,a⋆)

]
,

where the inequality is due to Pinsker’s inequality that (p − q)2 ≤ 1
2 KL(Ber(p),Ber(q)), for

p, q ∈ [0, 1], and the equality comes from Lemma 15.1 of Lattimore and Szepesvári [2020] and
Lemma 14 of Domingues et al. [2021] as well as assuming 0 ≤ ε ≤ 1

4 .

Based on this, one can see that

1

K

∑
(i⋆,a⋆)

E(i⋆,a⋆)

[
NK

(i⋆,a⋆)

]
≤ 1

K

∑
(i⋆,a⋆)

E0

[
NK

(i⋆,a⋆)

]
+ ε

√
2
∑

(i⋆,a⋆)

√
E0

[
NK

(i⋆,a⋆)

]
≤ 1 + ε

√
2
√

(d− 4)AK , (31)

where the second inequality follows from using the Cauchy-Schwartz inequality together with the
fact that NK

(i⋆,a⋆) ≤ K.

Optimizing ε to Lower Bound the Maximum Regret Substituting Eq. (31) into Eq. (30) leads to

max
(i⋆,a⋆)

RK(Alg,M(i⋆,a⋆)) ≥
γ2ε

1− γ
K

(
1− 1

(d− 4)A
− ε

√
2

√
K

(d− 4)A

)

≥ 1

4
√
2
· γ2

1− γ

(
1− 1

(d− 4)A

)2√
(d− 4)AK

≥ 361

1600
√
2
· γ2

1− γ

√
(d− 4)AK ,

where the second inequality comes from by choosing ε = 1
2
√
2

(
1− 1

(d−4)A

)√
(d−4)A

K and the last

inequality is due to d ≥ 8 and A ≥ d−3. Finally, note that ε ≤ 1
4 is guaranteed when K ≥ 2(d−4)A.

The proof is thus concluded.

C Auxiliary Lemmas

We first introduce the concentration of MLE, the i.i.d. version of which at least dates back to Chapter
7 of Geer [2000] and the non-i.i.d. version of which is first proved by Agarwal et al. [2020] and also
appears in the analysis of Uehara et al. [2022].

30



Lemma C.1 (MLE guarantee). For some fixed epoch i ∈ [N ], with probability 1− δ, it holds that

E
s∼

{
0.5ρki

+0.5ρ′
ki

}
,a∼π̄ki

(s)

[∥∥∥P̂ki
(· | s, a)− P ⋆(· | s, a)

∥∥∥2
1

]
≲ ζ , ζ :=

ln(M/δ)

ki
.

Therefore, simultaneously for all epoch i ∈ [N ], with probability 1− δ, it holds that

E
s∼

{
0.5ρki

+0.5ρ′
ki

}
,a∼π̄ki

(s)

[∥∥∥P̂ki(· | s, a)− P ⋆(· | s, a)
∥∥∥2
1

]
≲ ζki , ζki

:=
ln(MN/δ)

ki
.

The following lemma is the canonical elliptical potential lemma.
Lemma C.2 (Lemma 19.4, Lattimore and Szepesvári [2020]). Let M0 = λ0I ∈ Rd×d with λ0 > 0
and Mk = Mk−1 +Gk, where Gk is positive definite with the maximum eigenvalue λmax(Gk) ≤ 1
and Tr(Gk) ≤ B2. Then

K∑
k=1

Tr(GkM
−1
k−1) ≤ 2 ln det(MK)− 2 ln det(M0) ≤ 2d ln

(
1 +

KB2

dλ0

)
.

The following lemma guarantees the concentration of the empirical feature covariance matrix and
the version for fixed feature mapping ϕ(·) is first proved by Zanette et al. [2021]. The proof of this
lemma can be readily obtained by taking a union bound over any ϕ ∈ Φ in the proof of Lemma 39 of
Zanette et al. [2021].
Lemma C.3. Let λki

= Θ(d ln(ki|Φ|/δ)) = Θ(d ln(kiM/δ)),∀i ∈ [N ]. Then simultaneously for
all i ∈ [N ] and all ϕ ∈ Φ, with probability 1− δ, it holds that

∥ϕ(s, a)∥Σ̂−1
ki,ϕ

= Θ

(
∥ϕ(s, a)∥Σ−1

ρki
×π̄ki

,ϕ

)
.

The following is the canonical simulation lemma, which bounds the difference between the perfor-
mance of the same policy π under two different environments and dates back at least to Abbeel and
Ng [2005].
Lemma C.4 (Simulation lemma). Given two MDP models (P ′, ℓ− b) and (P, ℓ), for any policy π, it
holds that

V π
P ′,ℓ−b − V π

P,ℓ =
1

1− γ
E(s,a)∼dπ

P ′

[
−b(s, a) + γ (P ′ (· | s, a)− P (· | s, a))⊤ V π

P,ℓ

]
, (32)

and

V π
P ′,ℓ−b − V π

P,ℓ =
1

1− γ
E(s,a)∼dπ

P

[
−b(s, a) + γ (P ′ (· | s, a)− P (· | s, a))⊤ V π

P ′,ℓ−b

]
. (33)
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