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Abstract

Active confocal non-line-of-sight (NLOS) imaging has successfully enabled seeing
around corners relying on high-quality transient measurements. However, acquir-
ing spatial-dense transient measurement is time-consuming, raising the question of
how to reconstruct satisfactory results from under-scanning measurements (USM).
The existing solutions, involving the traditional algorithms, however, are hindered
by unsatisfactory results or long computing times. To this end, we propose the first
deep-learning-based approach to NLOS imaging from USM. Our proposed end-to-
end network is composed of two main components: the transient recovery network
(TRN) and the volume reconstruction network (VRN). Specifically, TRN takes the
under-scanning measurements as input, utilizes a multiple kernel feature extraction
module and a multiple feature fusion module, and outputs sufficient-scanning
measurements at the high-spatial resolution. Afterward, VRN incorporates the
linear physics prior of the light-path transport model and reconstructs the hidden
volume representation. Besides, we introduce regularized constraints that enhance
the perception of more local details while suppressing smoothing effects. The
proposed method achieves superior performance on both synthetic data and public
real-world data, as demonstrated by extensive experimental results with different
under-scanning grids. Moreover, the proposed method delivers impressive robust-
ness at an extremely low scanning grid (i.e., 8×8) and offers high-speed inference
(i.e., 50 times faster than the existing iterative solution). The code is available at
https://github.com/Depth2World/Under-scanning_NLOS.

1 Introduction

Non-line-of-sight (NLOS) imaging technology permits the detection of objects located behind
occluders, and has numerous real-world applications, such as autonomous driving, remote sensing,
and disaster rescue [1, 2, 3, 4, 5, 6, 7, 8, 9]. The widely-known time-of-flight confocal imaging
system, composed of a pulse laser, a Single Photon Avalanche Diode (SPAD), and a Time-Correlated
Single Photon Counting sensor (TCSPC), is favored for its ability to capture high-quality transient
measurements [10]. As illustrated in Fig. 1, the picosecond pulse laser illuminates the relay wall
at a certain location. The light scatters at the target object behind the wall and then re-scatters to
the relay wall, from which the photons are captured by the SPAD along with TCSPC, forming a
histogram. The transient measurement records the histograms of all raster-scanned locations and
can be used to derive the hidden object volume by the well-studied reconstruction algorithms such
as those developed in [5, 11, 12, 13, 14, 15]. However, the total acquisition time, which is directly
proportional to the number of scanning points and the exposure time of each scanning point, hinders
the real-time NLOS imaging process.
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Figure 1: Overview of the active confocal NLOS imaging. The red circles denote a sufficient-scanning
grid at the high-spatial resolution, and the blue triangles denote an under-scanning grid.

The time-consuming dilemma raises the question of how to reconstruct the hidden volume from the
under-scanning measurement (USM) without compromising the imaging quality. As shown in Fig. 1,
the spherical waves are scattered back by the illuminated object, which indicates that the temporal
histogram from each scanning point contains all the geometry information of the hidden object. As
a result, it is feasible to recover the high-spatial-resolution hidden volume from USM. Previous
studies [16, 17] explored NLOS imaging from USM using circular scanning or the compressed
sensing algorithm [18]. These solutions either produce unsatisfactory outcomes or require lengthy
numerical iterative computations, leaving a large room for improvement.

In this paper, we propose a new approach to NLOS reconstruction from USM, pioneering the
utilization of deep learning to achieve superior quality and swift inference. Specifically, our proposed
network consists of two main components: the transient recovery network (TRN) and the volume
reconstruction network (VRN). Given the under-scanning transient measurement, a multiple kernel
feature extraction module in TRN generates the features at different kernel scales to obtain the
pyramid receptive field. Then, the features are concatenated and aggregated by a multiple feature
fusion module to produce the high-spatial-resolution transient measurement which undergoes VRN
subsequently. The VRN consists of a feature extraction module, a feature propagation module, a
volume refinement module, and a projection reconstruction module. Inspired by [19, 5, 3, 6], we
integrate the linear physics prior [12] into the feature propagation module. Additionally, we introduce
the local similarity and total variation losses to regularize our network. The local similarity loss
assists with perceiving more local details, and the total variation loss aids in suppressing smoothing
effects. Our proposed network has an end-to-end architecture that necessitates only one forward pass
for reconstruction. The high-fidelity reconstruction in an extremely low scanning grid (i.e., 8×8) and
the high-speed inference (i.e., 50 times faster than the existing iterative solution) demonstrate the
superiority of our proposed method. The contributions are summarized as follows:

• We study the challenging task of NLOS imaging from USM and develop an end-to-end
network for high-quality and fast inference, which is the first of its kind.

• We exploit the multiple kernel mechanism in the transient recovery network to adapt transient
measurements with different under-scanning grids.

• Our proposed method achieves superior performance on both synthetic data and public
real-world data, as demonstrated by extensive experimental results.

2 Related Work

2.1 NLOS Imaging Algorithms

In recent years, transient-based NLOS imaging has garnered significant attention in the research
community. Despite the apparent progress made by direct reconstruction methods [11, 12, 13, 14,
15, 20, 21, 22, 23], these methods remain sensitive to exposure noise, data quality, and variations
in regions. Concurrently, iterative methods [2, 24, 25, 26, 27] can effectively reduce imaging
noise but suffer considerably from lengthy computation time. In contrast, deep-learning-based
techniques [28, 5, 3, 29] offer a balance between the imaging quality and inference time, making them
an attractive proposition for NLOS reconstruction. To this end, we approach NLOS reconstruction
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from a deep-learning perspective, leveraging its advantages of efficient inference and robustness to
noisy data.

2.2 NLOS Imaging From USM

The experiments conducted in [12, 17] indicated that the exposure time per scanning point is more
crucial than the number of scanning points for imaging quality. Subsampling the scanning points
can be a viable trade-off for reducing the total acquisition time. C2NLOS [16] advocated for circular
scanning methodology which improved the transient capturing efficiency, but the corresponding
reconstruction quality left much to be desired. CSA [17] investigated a compressed sensing algorithm
called SPITAL [18] for NLOS imaging from USM at a grid shape and demonstrated impressive results
at a low scanning ratio, however, its iterative computation required an extended time. In contrast, our
proposed method leverages deep-learning technology for NLOS imaging from USM, and necessitates
a single forward pass for inference. As a concurrent work, Wang et al. [30] utilized the learning-based
method and focused on recovering the high-spatial-resolution transient measurement, rather than
NLOS reconstruction from USM.

3 Problem Formulation

The travel time of the direct photons between the visible wall and the NLOS imaging system is
disregarded for simplicity. The transient measurement, which solely describes the indirect photon
bounces, is constructed via a 3D spatial-temporal (2D spatial and 1D temporal) representation.
Similar to the previous approaches [12, 16, 22], we assume that light scatters just once at the hidden
object in an isotropic manner, without any occlusions in the object. Given the illuminated point at t =
0, the object o and the scanning point s which is located at the same position as the illuminated point,
the active confocal NLOS imaging observation model can be expressed as follows:

τ(s, t) =

∫∫∫
Ω

ρ(o)
δ (2||s− o|| − c · t)

||s− o||4
dΩ, (1)

where τ denotes the transient measurement, Ω denotes the spherical waves of the scattered light,
ρ represents the volume of the albedo of the hidden object surface, δ models the light propagation
function, ||s - o||4 is the quartic radiance falloff of light transport between the relay wall and the object,
and c is the speed of the light. As discussed in [12, 16], Eq. 1 can be derived to a straightforward 3D
convolution form via variables changing. After discretized, the formation model can be regarded as a
linear model:

ρ = A−1τ , (2)

where A refers to the light transport matrix, the vectorized ρ ∈ Rhxwynz , the vectorized τ ∈ Rhxwynt ,
hx and wy are the number of the scanning points along the x and y axis, nt and nz are the length of
the discretized histogram bins along time t axis and depth bins along depth z axis. The determination
of ρ represents an inverse problem, involving 3D deconvolution procedures.

For NLOS imaging from USM, define the under-scanning transient measurement τu ∈ Rhxwynt

and the corresponding hidden volume ρu ∈ Rhxwynz , the sufficient-scanning transient measurement
τs ∈ RHxWynt and the corresponding hidden volume ρs ∈ RHxWynz , where Hx > hx and
Wy > wy . The NLOS imaging from USM is transformed into the following optimization problem:

θ̂T , θ̂V = argmin
θT ,θV

(L(τ ↑
u , τs) + L(ρ↑

u,ρs) + λϕ(θT , θV)), (3)

where τ ↑
u and ρ↑

u are the predicted high-spatial-resolution transient data and hidden volume through
the algorithms θT and θV respectively, L represents the loss function between the generated and
ground-truth one, ϕ is the regularization term, and λ is a parameter to weigh the regularization term.

4 Proposed Method

In this section, we present an end-to-end deep network for NLOS imaging from USM. The network
takes in under-scanning transient measurement and finally outputs the hidden volume and the intensity
image at a high-spatial resolution. The overall network comprises two stages: the Transient Recovery
Network (TRN) and the Volume Reconstruction Network (VRN). In the first stage, the TRN recovers
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Figure 2: (a) The pipeline of the proposed network. The network consists of a transient recovery
network (TRN) and a volume reconstruction network (VRN). (b) An overview of TRN. The blue
rectangular blocks denote 3D residual blocks with corresponding kernel sizes. The orange and
yellow rectangular blocks represent the 3D convolutions and 3D residual blocks, respectively. (c) An
overview of VRN. (d) A diagram for the multiple kernel feature extraction. (e) A diagram for the
regularized loss functions. The points on the objects always have similar values with the neighbors,
while points on the edges have different values from the outside.

the under-scanning transient data to the desired high-spatial resolution. In the second stage, the VRN
reconstructs the hidden volume and then generates the intensity image, as illustrated in Fig. 2(a).

4.1 Transient Recovery Network

Histograms captured from distinct scanning points all contain the complete hidden geometry infor-
mation. However, each histogram has unique characteristics due to the differences in traveling time.
Consequently, the data from even the adjacent scanning points can not be identical, but similar. To
explore this information and restore the transient measurement at the high-spatial resolution, we
design the transient recovery network (TRN) to recover sufficient-scanning transient measurement.

TRN consists of a Multiple Kernel Feature Extraction module (MKFE) and a Multiple Feature Fusion
module (MFF), as illustrated in Fig. 2(b). The MKFE module comprises four residual blocks with
different convolution kernels and an interpolation operator. Each residual block consists of two 3D
convolutions, two Leaky ReLU activation functions, and one residual connection. The kernel scales
in the residual blocks of the MKFE are arranged from large to small to perceive the entire geometry,
therefore providing a sizeable receptive field. As illustrated in Fig. 2(d), the scanning points in
the padded scanning grid are sparse and distant from each other. To exploit the feature connection
between the scanning points in one convolution operation directly, the size of the convolution kernel
is set to cover the farthest scanning point distance. The large kernel perceives the distant regions, and
the small kernel focuses on the local areas. Various under-scanning grids require different appropriate
kernel sizes. For a more general architecture, we further implement a multiple kernel mechanism
for TRN to adapt the different under-scanning transient measurements. The MFF module alternately
involves three 3D convolutions and three 3D residual blocks with fixed kernels.

Given the under-scanning transient measurement τu, we first pad the under-scanning transient
measurement to reach the desired high-spatial resolution. All histograms, except the initial position,
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are zeroed. Next, we pass the padded transient data through four residual blocks to obtain fine features.
Then, we utilize the nearest interpolation for the input under-scanning transient measurement to
get coarse features at the desired resolution, which facilitates stable training and fast convergence.
Afterward, the coarse and fine features are concatenated along the channel dimension. Then the
combined features are supplied to the fusion recovery decoder to generate the sufficient-scanning
transient measurement τs.

4.2 Volume Reconstruction Network

For the hidden volume reconstruction network (VRN), we borrow the idea from the previous works [5,
3] which incorporated the physics prior to feature propagation. Inspired by LFE [5], VRN is composed
of a feature extraction module, a feature transform module, a volume refinement module, and a
projection reconstruction module, as shown in Fig. 2(c). Different from LFE [5], we utilize the
physical model-based approach called LCT [12] to build the feature transform module. LCT [12]
adopts deconvolution operation and conducts efficient computation. Moreover, we design a volume
refinement module to enhance the 3D features for high fidelity. The module is constructed with three
3D convolutions and three interlaced residual layers. Each of these residual layers is composed of
two 3D convolutions, followed by a ReLU operation and a residual connection. This module has been
purposefully designed to proficiently accentuate essential features while amplifying the 3D volume.
The objective is to enhance fidelity, thereby avoiding a direct projection of the 3D volume onto 2D
planes which could potentially result in losing crucial inherent features.

Given the sufficient-scanning transient measurement τs which is recovered by TRN, we first extract
the intrinsic spatial-temporal features by the feature extraction module. Then the extracted features
are supplied to the feature transform module, where the 3D spatial-temporal features are transformed
into 3D spatial features. Afterward, the 3D spatial features proceed to the volume refinement module
to produce the reconstructed 3D volume ρ. For further optimizing the output intensity images, the 3D
volume representations are mapped to the 2D domain using maximum intensity projection along the
depth axis, and then the projected 2D features are convolved to generate the final intensity images I .

4.3 Regularized Training

Our proposed network is trained in an end-to-end supervised manner. The overall loss function
consists of four components: the measurement loss Lmea, the intensity loss Lint, the local similarity
loss Lls and the total variation loss Ltv . The total loss is formulated as follows:

Ltotal = Lmea + λ1 · Lint + λ2 · Lls + λ3 · Ltv , (4)
where λ1, λ2, and λ3 are the hyper-parameters that weigh the corresponding loss function.

To achieve end-to-end training, the L1 norms for the outputs from TRN and VRN are computed:
Lmea = ||τs − τ gt

s ||1, Lint = ||I − Igt||1, (5)
where τs and τ gt

s correspond to the predicted sufficient-scanning and the ground-truth transient
measurements, I and Igt refer to the predicted and ground-truth intensity images of the objects
hidden from view. The efficacy of Lmea is showcased in Sec 5.5.

Under conditions of fewer scanning points, two problems are encountered in deep learning methodol-
ogy. Firstly, the reduction of transient measurements causes difficulties in volume reconstruction,
making small or distant objects mostly unrecoverable or partially recovered. Secondly, effective
signal reduction or signal sparsity increase leads to network overfitting to the simulation data, thereby
impeding accurate real-world testing. To overcome these challenges, we incorporate regularized
constraints during the training process. Firstly, we leverage the local similarity of the natural volume
since the points on the hidden object are analogous to their neighbors. We employ a Gaussian window
to weigh the neighbors of the points, as [31, 32, 25]. The local similarity loss is formulated as follows:

Lls =
∑

x

∑
y

∑
z||ρ(x, y, z)− ρ̂(x, y, z, k) ·W ||1, (6)

where ρ(x, y, z) indicates the volume at position (x, y, z), ρ̂(x, y, z, k) represents the volume block
centered at (x, y, z) with size k, W refers to the Gaussian window with size k. As shown in Fig. 2(e),
when the local similarity loss function acts on the points located at the objects, it brings out more
local details. On the contrary, when it acts on the boundary points, it blurs and smoothens the edges.
Secondly, to suppress background noise and sharpen the edge boundary, we introduce the 3D total
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variation loss function, formulated as follows:
Ltv =

∑
x

∑
y

∑
z(||ρ(x+ 1, y, z)− ρ(x, y, z)||1 + ||ρ(x, y + 1, z)− ρ(x, y, z)||1

+ ||ρ(x, y, z + 1)− ρ(x, y, z)||1).
(7)

The effectiveness of the regularized loss functions Lls and Ltv is demonstrated in Sec 5.5.

5 Experiments

5.1 Datesets and Evaluation Metrics

We evaluate our method on both synthetic and real-world datasets. For the synthetic dataset, we
simulate the data using a transient renderer provided by [5], rendering 277 motorbikes from the
ShapeNet dataset [33]. The synthetic dataset is composed of 2712 training samples and 291 testing
samples. The scanning grid is with a size of 128×128 and the time resolution is 512 with a bin width
of 33ps. For the real-world scenes, we adopt the real-world dataset provided by [14] which contains
diverse objects. We conduct preprocessing to discard the direct bounce data and resize the data to
128×128×512. The total acquisition time of the real-world transient data is about 45min. We directly
extract the scanning points from the initial transient data to simulate the under-scanning process. A
32×32, 16×16, and 8×8 scanning grid represents the total acquisition time of 169s, 42s, and 11s
respectively. NLOS imaging from USM is able to expedite the data capturing by orders of magnitude.
Besides, we also adopt the real-world data from [29] to further validate the generalization capability
of our model.

For the intensity recovery results, we evaluate the performance with three metrics: Peak Signal-
to-Noise Ratio (PSNR), Structural SIMilarity (SSIM), and ACCuracy (ACC). We utilize ACC to
determine the foreground and background classification accuracy.

5.2 Implementation and Baseline Details

The proposed network is implemented in PyTorch. The optimizer is AdamW [34] with a learning
rate of 1×10−4 and a weight decay of 1×10−4. The models are trained on the synthetic dataset for
50 epochs with a batch size of 4, and directly tested on the real-world dataset, setting the high-spatial
resolution to 128×128. For the loss function, the hyperparameters λ1, λ2, and λ3 is 1, 1×10−5, and
1×10−6. All the experiments are conducted on a workstation equipped with 4 NVIDIA GeForce
A100 GPUs.

Our baseline methods include four traditional methods (FBP [11], LCT [12], FK [14], RSD [15]),
three deep-learning-based methods (UNet [28], NeTF [35], LFE [5]), and one iterative method
(CSA [17]). All methods, except CSA [17] perform non-iterative reconstruction. We find the
performance of these non-iterative methods, which upsample the input before reconstruction, is better
than that of the methods which reconstruct the volume before upsampling the output. Thus, for
these non-iterative baselines, we interpolate the input under-scanning data to the desired high-spatial
resolution using the nearest interpolation approach, as [17]. CSA [17] and NeTF [35] are fed with the
padded transient data (at the same spatial resolution as the desired transient data) and under-scanning
transient data, respectively.

5.3 Experimental Results

5.3.1 Transient Recovery

To validate the effectiveness of TRN, we compare the qualitative histograms of the recovered, direct
interpolated, and raw transient measurement which is from the real-world scene (Teaser [14]) at certain
scanning points. We select the transient data at three low scanning girds: 32×32, 16×16, and 8×8.
As illustrated in Fig. 3, our predicted results show greater similarity to the ground truth in terms of
curve trend and peak size. Specifically, under the 8×8 scanning condition, the interpolated histogram
consistently generates larger outliers, while our method delivers robust performance, indicating the
superiority of our proposed TRN and paving the way for subsequent volume reconstruction.
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Figure 3: Comparisons of the histograms from the recovered and the interpolated transient mea-
surement. The rows show the histograms from different recovered transient measurements with the
same scanning position. The green, blue, and red lines represent the interpolated, recovered, and
ground-truth histograms. The data is from the real-world scene (Teaser in [14]).

Table 1: Quantitative comparisons of intensity images from different methods under various scanning
grids on the synthetic test set. The output spatial resolution is 128×128. The best is in bold.
Points Metrics FBP [11] LCT [12] FK [14] RSD [15] UNet [28] NeTF [35] LFE [5] CSA [17] Ours

32×32

PSNR(dB) 21.12 22.07 24.59 25.44 26.71 22.85 27.94 23.22 28.64
ACC(%) 0.52 56.54 15.48 69.09 73.71 68.25 73.05 30.43 74.35

SSIM 0.2512 0.6314 0.4152 0.7847 0.8808 0.8691 0.8867 0.8223 0.8975

16×16

PSNR(dB) 15.69 20.27 18.02 23.53 26.64 19.14 27.04 22.62 28.00
ACC(%) 0.05 20.16 5.99 60.86 73.79 62.38 72.40 25.83 74.19

SSIM 0.0851 0.4335 0.2121 0.7102 0.8827 0.7977 0.8620 0.8064 0.8929

8×8

PSNR(dB) 12.31 15.85 17.20 19.77 26.28 17.03 26.10 21.46 27.30
ACC(%) 0.031 2.64 7.21 32.54 73.56 54.87 72.17 15.56 73.59

SSIM 0.0441 0.1981 0.2147 0.5131 0.8775 0.7639 0.8218 0.7976 0.8789

FBP LCT FK RSD Deep LFE Ours

3
2
*
3
2

6
4
*
6
4

1
6
*
1
6

8
*
8

GT

FBP LCT FK RSD UNet LFE Ours

3
2
*
3
2

1
6
*
1
6

8
*
8

GT

LCT FK RSD LFE Ours

3
2

×3
2

1
6

×1
6

8
×8

GTCSANeTF

Figure 4: Qualitative comparisons of intensity images from different methods under various scanning
grids on the synthetic test set. The final spatial resolution is 128×128.

5.3.2 Volume Reconstruction

Synthetic Results. The quantitative results on the synthetic test set are reported in Table 1. As the
number of scanning points reduces, the traditional methods’ metrics decrease significantly, while
the deep-learning-based methods except NeTF [35] perform more robustly. Moreover, our method
outperforms the deep methods under different scanning grids in terms of all metrics. The qualitative
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Figure 5: Real-world scenes captured by [14] through three different scanning grids are provided.
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Figure 6: Real-world scenes captured by [29] through three different scanning grids are provided.
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Table 2: The inference time and memory of different models. Note that only CSA and our method
are specifically designed for NLOS imaging from USM.

Method FBP [11] LCT [12] FK [14] RSD [15] UNet [28] NeTF [35] LFE [5] CSA [17] Ours
Time (s) 0.042 0.034 0.061 0.038 0.162 2h-24h 0.030 20 0.420

Memory (M) 6026 6016 8056 10344 5642 2G-23G 4692 5306 7130

results are presented in Fig. 4. The traditional methods fail to reconstruct the motorbike under low
scanning points, particularly under the 8×8 scanning grid. Alternatively, LFE [5] and CSA [17]
generate the overall structure with textureless information, whereas our method captures more details
even with few scanning points. See more qualitative results in the supplement.

Real-world Results. In Fig. 5 and Fig. 6, we provide qualitative results in the real-world scenes. We
exclude FBP [11] and UNet [28] from the results as they cannot perform well under under-scanning
conditions. Specifically, under the 32×32 and 16×16 scanning grids, the traditional methods,
LCT [12], FK [14], and RSD [15], support reconstruction with heavy noise. Meanwhile, NeTF [35]
fails under the 16×16 scanning grid. LFE [5] provides results with lower noise than traditional
methods but fails to capture several details such as the tail of the Dragon and the statue near the
bookshelf in Fig. 5. By contrast, CSA [17] and our proposed method produce complete and clear
results, with our method generally capturing more details and producing less noise, such as the
horns of the dragon and the torso of the statue. Under the 8×8 scanning grid, all baselines degrade
significantly. Nonetheless, both CSA and our method achieve satisfactory results. Our method
performs better than CSA [17] in most scenes and achieves comparable results to CSA about the
bookshelf. It is worth noting that our proposed method offers faster inference time than CSA, which
will be discussed in Sec 5.4. More qualitative results of real-world transient measurements, which are
captured by different imaging systems and under different total acquisition time, are reported in the
supplement.

5.4 Inference Time

We conduct experiments to evaluate the inference time and memory requirements of various methods.
Specifically, we utilize an NVIDIA GeForce A100 GPU for all testing experiments. Traditional
methods including FBP [11], LCT [12], FK [14], and RSD [15] are reimplemented using PyTorch.
To accommodate CSA [17], which was originally implemented in Matlab on the CPU, we modify the
code to enable computations on the GPU, resulting in a significant acceleration. Table 2 presents the
comprehensive results.

The traditional methods and LFE [5] achieve a real-time level of performance. NeTF [35] renders
each measurement and requires a huge computational time. However, these methods can not be
applied to NLOS reconstruction from USM well. CSA [17], the existing solution for NLOS imaging
from USM, suffers from iterative computing times and is not well-suited for practical use. By contrast,
our method leverages recent advancements in deep learning, enabling it to perform a single forward
pass that takes only 420ms (370ms for transient recovery and 50ms for volume reconstruction). This
is nearly 50 times faster than CSA [17]. Moreover, our method does not require iterative computing,
which is a significant advantage over CSA [17]. Additionally, our method has a reasonable inference
memory requirement, feasible for deployment on portable devices to explore real-world scenarios.

5.5 Ablation Study

In this section, we assess the effectiveness of the proposed TRN, VRN, and the regularized loss items:
Lls and Ltv , respectively. Additionally, we investigate the effectiveness of the kernel size of MKFE
in TRN. All the ablation experiments are conducted under the 16×16 scanning grid condition. We
quantitatively evaluate the results on a synthetic test set, while the qualitative results are tested on
real-world data.

Table 3 lists the ablation results of the proposed TRN, VRN, and the regularized loss items. Initially,
we combine the proposed TRN with LFE [5], and the metrics surpass the original LFE [5], which
demonstrates the effectiveness of TRN. Subsequently, we combine the interpolation operator and the
proposed VRN. The metrics surpass the original LFE again, which demonstrates the effectiveness
of VRN. When we integrate the proposed TRN and VRN, the metrics improve notably. Finally, we
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Table 3: Ablation study for TRN, VRN, and regu-
larized loss items. TR and VR denote the transient
recovery and volume reconstruction components.

TR VR Lls,tv PSNR SSIM ACC
(-) Interp LFE [5] × 27.04 0.8620 72.40
(a) TRN LFE [5] × 27.79 0.8692 72.75
(b) Interp VRN × 27.71 0.8646 72.85
(c) TRN VRN × 28.00 0.8899 73.44
(d) TRN VRN ✓ 28.00 0.8929 74.19

Table 4: Ablation study for the kernel size in mul-
tiple kernel feature extraction module of TRN.

Kernel Size PSNR SSIM ACC
3 27.80 0.8744 73.98
5 27.89 0.8791 73.87
9 27.92 0.8825 73.91

17 27.95 0.8696 73.85
3,5,9,17 28.00 0.8929 74.19

(a) (b) (c) (d) (a) (b) (c) (d)

Abcd: lfe lfe+vrn vrn trn+vrn

(a)

(a) (b)

Abcde: lfe TRN+lfe vrn trn+vrn trn+vrn+reg

(c) (d)

(a)

(a) (b) (c) (d)

Figure 7: Reconstructed intensity images of the models, whose indexes correspond to Table 3.

introduce the regularized loss items: Lls and Ltv . As a result, the SSIM and ACC metrics demonstrate
further improvement. Qualitative results corresponding to Table 3 can be seen in Fig. 7.

Table 4 presents the ablation results of various kernel sizes used in MKFE. It can be observed that the
PSNR metric tends to increase along with the kernel size, whereas the SSIM and ACC metrics do
not mirror that trend. This can be attributed to the fact that the larger kernel could recognize distant
regions, while the smaller one could focus on local areas. Notably, the multiple-kernel mechanism
results in the best performance across all metrics.

6 Conclusions and Limitations

Conclusions. In this paper, we study the challenging task of non-line-of-sight imaging from the
under-scanning measurement in the deep learning perspective. The elaborate network, which is
composed of two components: a transient recovery network and a volume reconstruction network,
is proposed to recover the transient measurement and reconstruct the hidden volume successfully.
Further, the regularized constraints are exploited to address overfitting and enhance more local details
while suppressing smoothing. Notably, our method runs 50 times faster than the existing iterative
solution. We believe that our method is a significant step forward in the field of non-line-of-sight
imaging and has the potential to unlock new possibilities for future research.

Limitations. Several limitations exist in our proposed method, which serve as subjects for future
work. Firstly, our forward model is constrained to a linear confocal system, our future work involves
generalizing the forward model. Secondly, our proposed method is fully supervised, which may
restrain the generalization ability for real-world data. Designing an unsupervised training method for
non-line-of-sight imaging is another future work.
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