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Abstract

The financial markets, which involve over $90 trillion market capitals, attract the
attention of innumerable profit-seeking investors globally. Recent explosion of
reinforcement learning in financial trading (RLFT) research has shown stellar
performance on many quantitative trading tasks. However, it is still challenging
to deploy reinforcement learning (RL) methods into real-world financial markets
due to the highly composite nature of this domain, which entails design choices
and interactions between components that collect financial data, conduct feature
engineering, build market environments, make investment decisions, evaluate
model behaviors and provides user interfaces. Despite the availability of abundant
financial data and advanced RL techniques, a remarkable gap still exists between
the potential and realized utilization of RL in financial trading. In particular,
orchestrating an RLFT project lifecycle poses challenges in engineering (i.e., hard
to build), benchmarking (i.e., hard to compare) and usability (i.e., hard to optimize,
maintain and use). To overcome these challenges, we introduce TradeMaster, a
holistic open-source RLFT platform that serves as a i) software toolkit, ii) empirical
benchmark, and iii) user interface. Our ultimate goal is to provide infrastructures
for transparent and reproducible RLFT research and facilitate their real-world
deployment with industry impact. TradeMaster will be updated continuously and
welcomes contributions from both RL and finance communities.

Software Repository: https://github.com/TradeMaster-NTU/TradeMaster

1 Introduction

Quantitative trading, which refers to the process of applying mathematical models and computer
algorithms to automatically identify trading opportunities [8], has been a popular research topic
for decades [3]. With the increasing accessibility of financial data [11] and the development of RL
techniques [63, 75, 12, 18], RLFT has made great strides in offering profitable financial trading
models [68] in recent years. From an algorithmic perspective, many RLFT algorithms are proposed
for core quantitative trading tasks such as portfolio management [77, 76, 80, 30], algorithmic trading
[13, 66, 42], and order execution [39, 17, 50], respectively. In addition, a plethora of research has
tried to address other key problems alongside the RLFT pipeline, including preprocessing financial
data [40, 71], alpha discovery [10, 82], market simulation [41, 60, 9], systematic evaluation [67] and
online deployment [11]. However, the vast majority of existing works are formulated, addressed and
implemented separately, resulting in a stylized range of methods with limited acknowledgement on
the complexities and interdependencies in the RLFT pipeline (as a composite). This leads to an often
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punishing translational barrier between state-of-the-art RLFT research and investors’ usage of RL
techniques to earn real financial benefits [29, 11, 68].

Three Challenges. To facilitate RLFT research and their industry deployments, we call for a holistic
platform for the design, development and evaluation of RLFT applications. Specifically, due to the
ever-changing nature of financial markets [49] and high performance variability of RL [25], managing
real-world RLFT workflows is non-trivial with the following three challenges:

• First and foremost, the engineering problem is that building sophisticated RLFT pipelines requires
significant upfront efforts. For an immature domain (e.g., RLFT), it is common to spend >90%
of work on implementation details and <10% of work on core technical questions [58]. As an
RLFT researcher, it is seldom the case that enough resources are available to build a high quality
code base of the complete RLFT workflow. As a result, a holistic platform that encapsulates all
major components of RLFT with comprehensive support of mainstream settings and state-of-the-art
algorithms is highly desirable for both academic researchers and industry practitioners.

• Second, the benchmarking problem is that the performance of any component depends on its context.
For instance, the profitability of an RLFT algorithm is intimately tied to the features used to train
RL agents [10] and the market status during evaluation [51]. However, existing works typically
examine the merits of each component individually and arbitrarily configure surrounding settings
for only ensuring "all else equal" conditions, which lead to inconsistent reporting of revenues
with no general consensus on the relative strength of popular RLFT methods [68]. A reproducible
empirical benchmark that honestly reflects interactions of RLFT components is urgently needed.

• Third, the usability problem is incurred by the complexities of RLFT, which requires extensive
interdisciplinary knowledge to be properly optimized and maintained in practice. Specifically, many
knobs (e.g., hyperparameters) need to be tuned for RLFT methods [33] and regular maintenance
(e.g., model retraining with up-to-date market data) is unavoidable due to the significant temporal
distribution shift of financial markets [35]. These difficulties are usually insurmountable obstacles
for non-expert users (e.g., individual investors) and hinder the wide utilization of RLFT methods. A
user-friendly platform where the whole process is highly automated with excellent user interfaces
is indispensable for this domain.

Contributions. TradeMaster is proposed to tackle the above three challenges in one unified RLFT
platform with the following contributions: i) As a software toolkit, it offers open-source imple-
mentations of the whole RLFT workflow including 13 real-world financial datasets, high-fidelity
RL environments for 6 mainstream quantitative trading tasks, 15 popular RLFT algorithms and
dozens of tools for systematic evaluation and visualization. This modular and composable structure
enables fast development and decrease the cost of collaboration and code-sharing. ii) As an empirical
benchmark, it provides rigorous comparison of state-of-the-art RLFT algorithms to determine their
effectiveness across different tasks, financial markets and evaluation metrics. The standardized
pipelines of TradeMaster ensure that the comparison is transparent, fair and reproducible. iii) As
a user interface, TradeMaster provides multiple options for practical use: an open-source Github
repository, a Python package, an online web service with graphical user interface (GUI), multiple
Jupyter Notebook tutorials and a cloud version using Colab. In addition, we customize advanced
AutoML techniques into TradeMaster to finish many key steps of RLFT (e.g., feature engineering
and hyperparameter tuning) in an automatic way. These efforts significantly improve the usability of
TradeMaster and make it accessible for users with various background and investment goals.

2 Quantitative Trading as a Markov Decision Process

Financial Market

Market Information
Profit

Investment Action

Investor

Figure 2: MDP formulation in RLFT

As shown in Figure 2, we formulate quantitative trading
tasks as a Markov Decision Process (MDP) following a
standard RL scenario, where an agent (investor) interacts
with an environment (the financial markets) in discrete
time to make actions (investment decision) and get re-
ward (profits). Formally, we define the MDP as a 6-tuple:
(S,A, P,R, γ,H). Specifically, S is a finite set of states.
A is a finite set of actions. P : S × A × S −→ [0, 1]
is s state transition function, which consists of a set
of conditional transition probabilities between states.
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Figure 1: Overview of the TradeMaster platform, which includes six key components for RLFT.

R : S × A −→ R is the reward function. γ ∈ [0, 1) is the discount factor and H is a time
horizon indicating the length of the trading period. A (stationary) policy πθ : S × A −→ [0, 1],
parameterized by θ, assigns each state s ∈ S a distribution over actions, where a ∈ A has prob-
ability π(a|s). During training, one episode corresponds to making investment decisions at each
time step through one whole trading period. The objective of the agent is to learn an optimal pol-
icy (investment strategy) that maximizes the expected sum of discounted reward (overall profit):
πθ∗ = argmaxπθ

Eπθ

[∑T
i=0 γ

irt+i | st = s
]
. We further describe details on the definition of S , A,

R and P in existing works as follows:

State Space (S): A state represents RL agents’ perception on market status. Specifically, price
information (e.g., open, high, low and close price), trading volume, technical indicators and snapshot
of limit order book are used in existing works for different trading tasks [76, 66, 17, 78]. In
addition, some works feed alternative data, i.e., financial news [56], prediction of future trend [80],
experts’ investment behaviors [14] and overall market status [77], into states to further improve the
performance of RL agents. Furthermore, trader’s personal information (e.g., holding position and
remaining cash) is also applied as private state in [48, 66, 50] to help investment decision making.

Action Space (A): At each time step, the action space represents all possible actions of RL agents’
investment decisions that vary under different trading tasks [68]. For single asset trading, the
actions are the number of shares to buy/sell or long/short the asset as used in [13, 42]. For portfolio
management, the actions represent the proportions of capitals allocated into each financial asset as in
[76, 77]. For order execution and market making, the actions correspond to a limit order that shows
traders’ desired price and quantity as in [17, 39].

Reward Function (R): Previous works [76, 42, 31] commonly apply the change of capitals (how
much money earned/losed) as the reward function, which is natural and easy to implement. Many
practical constraints such as commission fee and slippage are further included to be more realistic.
In addition, there are also several alternative options designed for specific settings including Sharpe
ratio in [77], the hindsight reward function in [66] and the binary sparse reward function in [39].

Transition Function (P ) is defined by the financial market progression following the investment
actions. The progression is defined by building realistic data-driven simulated environment based on
real-world financial data following the paradigm in [41, 53].

Examples of the MDP in RLFT. Considering a simple trading scenario with only one stock, we
obtain pct and pct+1, which denote the close price of the stock at time t and t+ 1, from historical data.
The action at time t is to buy k shares of the stock. Then, the reward rt at time t is the account profit
defined as k ∗ (pct+1 − pct). For state, we use historical market data to calculate technical indicators
as external state and investors’ private information such as remaining cash and current position is
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applied as internal state. Similar procedures to build RL environments with historical market data
have been applied in many RLFT work [40, 77, 80].

Further Clarification. We would like to highlight that the above descriptions on the MDP formulation
is a general version. As a holistic platform, TradeMaster covers a wide range of trading scenarios,
which is impossible to offer detailed MDP formulation for each scenario here due to page limit. For
readers unfamiliar with RLFT, Appendix A and this survey [66] offers a detailed introduction on
related terminologies and detailed MDP formulation of each RLFT task.

3 TradeMaster as a Software Toolkit

To provide a high-quality implementation of the complete RLFT workflow, we first introduce our
3 design principles [26, 29] based on our experience in prototyping and developing RLFT projects.
Then, we discuss details on the six component modules of TradeMaster as shown in Figure 1.

TradeMaster Design Principles
⋆ Pipeline First, Algorithms Second: Due to the strict "separation of concerns" produced by the
high-level API functions of each component, the goal of TradeMaster is to first enable the proper
pipeline functionality, while the intricacies and configurations of individual algorithm choices on
the back burner. ⋆ Be Minimal and Unintrusive: While workflow development needs to be unified
and systematic, we believe learning to use the platform needs to be easy and intuitive. Concretely,
this manifests in the clear code structure and user-friendly interfaces of TradeMaster that enables
easy usage and adoption for different users. ⋆ Encourage Extension: Since RLFT is an emerging
research direction with many novel methods proposed rapidly, the platform components should be
extensible for the incorporation of new methods. Concretely, TradeMaster encapsulates the design
of functions within each component module with support of easy extension.

Data Sources. We include 13 long-term real-world financial datasets that are highly diverse in
terms of financial assets (e.g., stock, FX, and Crypto), financial markets (e.g., US and China), data
granularity (e.g., day-level and minute-level) and dataset sizes (e.g., small, medium and large-scale).
We summarize statistics of these datasets in Table 1. We host all raw data and corresponding
datasheets [23] accessible for users to download on both Google Drive and Baidu Cloud. We further
offer scripts for calling API data providers, i.e., Yahoo Finance and AKShare, for users who desire
to build personalized datasets. We also plan to further expand our collection of datasets in future
updates. See Appendix D for more details on dataset description, collection, maintenance and usage.

Table 1: Dataset statistics of market, frequency, asset amounts, size, chronological period and source
Dataset Market Freq # of Assets Size From To Source

DJ30 US Stock 1 day 29 72994 12/01/03 21/12/31 Yahoo
SP500 US Stock 1 day 363 2009568 00/01/01 22/01/01 Yahoo
Russell US Stock 1 day 691 2391650 07/09/26 22/06/29 Yahoo
KDD17 US Stock 1 day 41 149407 07/09/26 22/06/29 Yahoo
ACL18 US Stock 1 day 74 264954 07/09/26 22/06/29 Yahoo
SSE50 China Stock 1 hour 26 134680 16/06/01 20/08/30 Yahoo
HSTech HK Stock 1day 30 60120 88/12/30 23/03/27 AKShare

HSI HK Stock 1 day 72 206866 07/09/27 22/06/29 AKShare
Future Future 5 min 20 20370 23/03/07 23/03/28 AKShare

FX FX 1 day 22 110330 00/01/01 19/12/31 Kaggle
USDCNY FX 1 day 1 5014 00/01/01 19/12/31 Kaggle

Crypto Crypto 1 day 1 2991 13/04/29 21/07/06 Kaggle
BTC Crypto 1 min 1 17113 21/04/07 21/04/19 Binance

Preprocessing. We follow the DataOps paradigm [16, 4, 41] in this component to implement an
efficient pipeline for financial data engineering. During data cleaning, we offer scripts to remove
duplicated data and merge data from different sources into one unified format. In addition, we apply
a conditional score-based diffusion model [71] to conduct data imputation for missing values. For
technical indicators, TradeMaster supports both a version of 13 features [81, 69] and Alpha 158 [79],
which are widely used for research papers [19, 67] and industry scenarios, respectively. Multiple data
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normalization methods are supported, where z-score serves as the default choice. In addition, users
can choose to pick a threshold that filters out valuable features with sufficiently large information
coefficient on the return for feature selection. After preprocessing, the raw data is converted into high
quality ready-to-use data that can be directly used to build realistic data-driven RL environments.

Environments. We build data-driven market environments with real-world financial data following
the de facto standard of OpenAI gym [6, 41] and the paradigm in [41, 53]. Each environment has
three functions: reset() function that resets the environment back to the initial state s0; step()
function that takes an action at of the agent and updates state from st to st+1; reward() function
computes the reward value generated by action at. To make the environments more realistic, we
incorporate many practical constraints (e.g.„ transaction costs, slippage and non-negative balance)
for different scenarios. There are also options for leveraging, short and loss stopping.

Specifically, the current version supports 6 mainstream quantitative trading tasks [68]: i) For Crypto
trading, investors continuously buy/sell cryptocurrencies (e.g., Bitcoin) to make profits. ii) For
portfolio management, investors hold a pool of different financial assets and reallocate the proportion
of capitals invested in each asset periodically to pursue stable long-term profits. iii) For intraday
trading, investors finish the buy/sell or long/short actions within the same trading day to capture the
fleeting intraday opportunities and all positions are sold out on market price at the end of the day to
avoid overnight risk. iv) Order execution is a micro-level trading task that finish the execution goal
within a fixed time horizon (e.g., selling 10 thousand shares of Apple stock in 20 minutes) and try to
minimize the costs at the same time. v) Market making focuses on providing liquidity of the market
by trading on both buy/sell sides at the same time. vi) High frequency trading utilizes micro-level
information and trades in a high-frequency to capture the tiny local price fluctuation.

Algorithms. Although there has been extensive works on RL algorithms for different trading
scenarios [66, 77, 17], only a tiny fraction of authors choose to make their code publicly available due
to the intense competitions and zero-sum game essence in financial markets [72]. As far as we know,
TradeMaster is the first open-source platform that offers standardized implementations of a wide range
of state-of-the-art RLFT algorithms. For algorithms with official source code, we convert the code
into TradeMaster’s code structures following the same networks, hyperparameters and other details.
This condition fits for SARL [80], DeepTrader [77] and OPD [17]. For other algorithms without
publicly available implementations, we reimplement them and try our best to maintain consistency
based on the original papers. Brief descriptions of RLFT algorithms implemented in TradeMaster are
as follows:

• SARL [80] proposes a state-augmented RL framework, which leverages the price movement
prediction as additional states, based on deterministic policy gradient [62] methods.

• DeepTrader (DT) [77] is a policy gradient based methods, which leverages both maximum
drawdown and return rate as reward functions to balance between risk and profit.

• EIIE [31] is considered as the first deep RLFT method with an ensemble of identical independent
evaluators topology, a portfolio vector memory, and an online stochastic learning scheme.

• Investor-Imitator (IMIT) [14] is an RL approach that imitates behaviors of different types of
investors using investor-specific reward functions with a set of logic descriptions.

• DeepScalper (DS) [66] is a risk-aware RL framework for intraday trading, which contains
both micro-level and macro-level market embedding, a hindsight reward function to capture
long-term trend, and a volatility prediction auxiliary task to model risk.

• ETEO [39] is designed based on the classic proximal policy optimization (PPO) algorithm for
order execution with a sparse reward function and a market encoder using LSTM.

• OPD [17] is developed based on ETEO [39] and further adds a policy distillation mechanism to
learn from teacher trained based on perfect market information.

Besides advanced RLFT algorithms, TradeMaster also includes 9 efficient customized implementa-
tions of classic RL algorithms based on the widely used RLib library [37] including PPO [57], A2C
[46], Rainbow [27], SAC [24], DDPG [38], DQN [45], DDQN [74], PG [70], TD3 [21] for various
quantitative trading tasks.

Evaluations. To provide a systematic evaluation, TradeMaster offers a plethora of evaluation
measures and visualization tools based on PRUDEX-Compass [67] to assess RLFT algorithms from
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5 axes: profitability, risk-control, universality, diversity and reliability. Specifically, we implement a
range of financial metrics including profit metrics (e.g., return rate), risk-adjusted profit metrics (e.g.,
Sharpe ratio [59]) and risk metrics (e.g., volatility and maximum drawdown). Besides evaluating on
regular point-wise financial metrics, we further provide many robust measures and evaluation tools to
pursue a comprehensive evaluation. For instance, the performance profile [15] and rank distribution
[1] plots are included as two unbiased and robust measures towards reliable RLFT methods. We
apply t-SNE [73] and heatmap to show data-level and decision-level diversity in different financial
markets. We also provide tools to evaluate RLFT methods under extreme market conditions with
black swan events. See Appendix E for more details.

Interfaces. TradeMaster provides multiple options for practical use. Specifically, we host an open-
source Github repository, build a Python package, serve an online web service with graphical user
interface (GUI) 1, offer dozens of hands-on Jupyter Notebook tutorials for quick start and develope
a cloud version using Colab to improve accessibility. More details on the usage of different user
interfaces are available in Section 5.

4 TradeMaster as an Empirical Benchmark

Evaluating any algorithm depends on its context. For instance, how well an RLFT algorithm
ultimately performs depends on the choices of many factors such as datasets, preprocessing and
evaluation measures. While current RLFT works typically seek to isolate individual gains through
"all-else-equal" configurations in experiments, there is often limited overlap in pipeline configurations
across different studies. To promote transparency and comparability, TradeMaster aims to serve as a
structured evaluation framework by providing a comprehensive RLFT empirical standard. Next, we
describe how we benchmark RLFT algorithms using TradeMaster with an demonstrative example
of portfolio management task on US stock markets. We first introduce experimental setup (Section
4.1) and analyze the performance of RLFT algorithms (Section 4.2). To offer a more comprehensive
analysis, we further report the results of an unbiased and robust measure called rank distribution plots
(Section 4.3) and performance on extreme market conditions with black swan events (Section 4.4).

4.1 Experimental Setup

We conduct reproducible experiments of the classic portfolio management task on a stock pool of
Dow Jones 30 index using the datasets in Table 1 to benchmark results of state-of-the-art RLFT
algorithms. Due to limited space, we briefly introduce the experimental setup in the following table
with red outlines. More details are available in Appendix F and the TradeMaster Github repository.

Table 2: Performance comparison (mean of 5 individual runs) on the US stock market of 8 RLFT
algorithms in terms of 8 financial metrics. Pink and green indicate best and second best results.

TR(%)↑ SR↑ CR↑ SoR↑ MDD(%)↓ VOL(%)↓ ENT↑ ENB↑
A2C 51.92 0.750 1.510 1.468 32.44 1.373 2.161 1.373

DDPG 56.95 0.800 1.614 1.562 32.37 1.372 2.667 1.265
EIIE 49.66 0.756 1.526 1.468 30.86 1.358 3.368 1.110
IMIT -4.95 0.102 0.240 0.234 50.52 2.078 1.460 2.149
SARL 52.13 0.752 1.544 1.490 32.23 1.420 2.758 1.192
TD3 57.15 0.804 1.616 1.564 32.36 1.373 2.608 1.214
PG 51.17 0.742 1.492 1.452 32.49 1.373 2.146 1.385

PPO 50.99 0.742 1.490 1.450 32.49 1.372 2.136 1.393

4.2 Performance Comparison

We report the overall performance of 8 methods in Table 2. TD3 achieves the best profitability
with highest values in TR, SR, CR and SoR, while DDPG is also a good option with slightly lower
performance. For RL algorithms designed for trading (e.g., EIIE, IMIT and SARL), they fail to
outperform properly tuned classic RL algorithms such as TD3 in terms of profitability. For risk-
control, EIIE shows best performance with the lowest MDD and VOL. For diversity measures, EIIE

1http://trademaster.ai
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and IMIT perform the best for ENT and ENB, respectively. The overall performance of IMIT is much
worse comparing to other methods. One possible reason is the lack of high-quality data of professional
investmentors’ behaviors [14]. Generally speaking, no existing algorithm achieves dominating results
on all financial metrics and there are still vast opportunities to improve in this filed. In addition, we
observe that classic RL algorithms (e.g., DDPG and TD3) still outperform RLFT trading algorithms
with proper hyperparameter tuning in terms of profit-related metrics (e.g., TR, SR, CR and SoR).
At the same time, RLFT algorithms (e.g., EIIE, IMIT and SARL) achieve portfolios with better
risk-control and diversity, which demonstrate the effectiveness of the risk-related components. We
hope the reproducible benchmark results from TradeMaster can help researchers easily notice the
relative strength of existing algorithms and inspire the design of new algorithms.

Experimental Setup of Portfolio Management on US Stock Markets

Dataset: We collect 10-year (2012-2021) historical prices of 29 influential stocks in the Dow Jones
30 index with top unit price as a strong assessment of the US stock market’s overall tendency from
Yahoo Finance.
Features: We generate 11 widely used temporal features based on historical price to describe the
stock markets following [81, 67, 69]. Detailed formulas are available in Appendix F.
Preprocessing: We conduct z-score normalization of each feature based on the mean and standard
deviation of train, validation and test set, respectively. Input missing values are imputed using
CSDI [71].
Training Setup: We perform all experiments on one RTX 3090 GPU. Each algorithm is trained for
10 epochs for each random seed. We report the average performance of 5 random seeds. It takes
about 1 hour to train, validate and test on the US stock market.
Algorithms: We compare the performance of 8 state-of-the-art algorithms including 5 classic
RL algorithms (A2C [46], DDPG [38], TD3 [21], PG [70] and PPO [57]) and 3 RL algorithms
designed for financial trading (EIIE [31], IMIT [14] and SARL [80]) .
Financial Metrics: We apply 8 financial metric including 1 profit metric: total return (TR), 3
risk-adjusted profit metrics: Sharpe ratio (SR) [59], Calmar ratio (CR) and Sortino ratio (SoR), 2
risk metrics: volatility (Vol) [61] and maximum drawdown (MDD) [43] and 2 diversity metrics:
entropy (ENT) [32] and effect number of bets (ENB) [34]. The mathematical definitions of these
metrics are in Appendix E.
Hyperparameters: We first select the values of hyperparamters following two conditions: i)
if there are authors’ official or open-source RLFT library implementations, we apply the same
hyperparameters for a fair comparison since they are tuned in financial domain. This condition
applies for A2C, DDPG, TD3, PG, PPO and SARL. ii) if there are no publicly available imple-
mentations, we reimplement the algorithms and try our best to maintain consistency based on the
original papers. This applies for EIIE and IMIT. Later on, we apply grid search on several key RL
hyperparameters based on the TradeMaster codebase to further improve performance. Specificially,
we try batch size in list [256, 512, 1024], hidden size in range [64, 128, 256] and learning rate in
[3e−4,5e−4,7e−4,9e−4] for both actor and critic. Adam is used as the optimizer. More details on
the hyperparamters are available in the TradeMaster GitHub repository.
Data Split: We follow the rolling data split
paradigm in [67] (see figure on the left). Phase
three uses the last year for test, penultimate year for
validation and the remaining of the dataset for train-
ing. For phase one and two, their validation/test
sets roll back one and two years.

Demonstration of Data Split:

End 

Test

Test

Test

Valid

Valid

Valid

Phase 1: Training

Phase 2: Training

Phase 3: Training

1 year 1 year 1 year 1 year 

Start Time 

Ph
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e 

4.3 Rank Distribution to Demonstrate the Rank of RLFT methods

In Figure 3, we plot the rank distribution plot [1] of 8 RLFT methods in terms of TR, SR, VOL
and Entropy across 3 test periods with results of 5 random seeds in each period. It is more robust
to outliers comparing to the widely-used mean performance, where the i-th column in the rank
distribution plot shows the probability that a given method is assigned rank i in the corresponding
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Figure 3: Rank distribution in terms of 4
financial metrics on the US stock market.

metrics. For x-axis, rank 1 and 8 indicate the best and
worst performance. For y-axis, the bar length of a given
method on a given metric with rank i corresponds to the
% fraction of rank i it achieves across the 3 test periods
and 5 random seeds (3 × 5 = 15 in total). For TR and
SR, TD3 slightly outperforms DDPG with 24% and 27%
probability to achieve the best performance. For Vol,
EIIE gets the overall best performance while TD3 goes
through higher volatility. For ENT, EIIE significantly out-
performs other methods with 100% probability for rank
1, which demonstrates its ability to construct portfolios
with enough diversity.

4.4 The Impact of Extreme Market Conditions

To further provide an evaluation of risk-control and reliability, we pick one extreme market
period with black swan events during testing. In this case, the period is September 1-30 in
2021, when the US stock market is violate and goes through the largest decrease after COVID-
19 due to the concern on interest rate increase and the congressional shutdown. In Figure 4,
we plot the bar chart of TR and SR during the period of extreme market conditions. The red
line indicates the market average. Classic RL methods (e.g., A2C, DDPG, TD3, PG, PPO)
achieves similar performance comparing to the market average as they have the tendency to keep

A2C DDPG EIIE IMIT SARL TD3 PG PPO
7

6

5

4

3

2

1

To
ta

l R
et

ur
n 

(%
)

Average
TR
SR

1.30

1.25

1.20

1.15

1.10

Sh
ar

pe
 R

at
io

Figure 4: Performance of RLFT methods
during extreme market conditions.

conservative during extreme market conditions. In con-
trast, radical methods such as EIIE and SARL are more
suitable options with better performance [44]. This analy-
sis on extreme market conditions can shed light on the de-
sign of RLFT methods, which is in line with economists’
efforts on understanding the financial markets. For in-
stance, researchers may incorporate volatility-aware aux-
iliary task [66] into the design of RLFT algorithms to
make them be aware of extreme market conditions in
advance and behave as a profit-seeking agents during
extreme market conditions.

Demonstrative Code of TradeMaster Platform
# Load Configuration File
args = parse_args()
cfg = Config.fromfile(args.config)

# Build Environments for Train/Valid/Test
dataset = build_dataset(cfg)
train_env = build_env(cfg, dataset,

default_args=dict(…, task="train"))
valid_env = build_env(cfg, dataset,

default_args=dict(…, task=”valid"))
test_env = build_env(cfg, dataset,

default_args=dict(…, task="test"))

# Setup Network and Optimizer
net = build_net(cfg.act)
optimizer = build_optimizer(cfg,

default_args=dict(…))

# Setup Loss and Transition Function
criterion = build_loss(cfg)
transition = build_transition(cfg)

# Build Reinforcement Learning Agent
agent = build_agent(cfg,default_args=dict(…))

# Build Trainer Based on Environments
trainer = build_trainer(cfg,default_args=dict(

train_env=train_env, valid_env=valid_env,
test_env=test_env, agent=agent))

# The Procedure of Training and Validation
trainer.train_and_valid()

# The Procedure of Testing
trainer.test()

5 TradeMaster as a User Interface

In this section, we introduce our efforts to make TradeMaster a great user interface. First, we show
the clean and extendable code structure of TradeMaster with a demonstrative example. Second, we
describe the multiple practical usage options for users from different background in TradeMaster.
Third, we discuss on the AutoML component to further improve usability.

Demonstrative Code. The code snippet above shows the code of the whole pipeline in TradeMaster
including 8 main steps (green code comments), which is simple, clean and easy to extend. We first load
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the configuration file and setup the environment, network, optimizer, loss and transition function based
on it. Then, we build RL agents and trainer, respectively. Later on, we call train_and_valid()
function for the training and validation of RL agents. Finally, we call test() function to test the
performance of RL agents on various financial metrics.

Multiple Options for Practical Use. We provide different ways to use TradeMaster for users with
different background and investment goals. First, we host a Github repository for TradeMaster
including source code, update log and supplementary materials. Second, we provide a Colab version
of TradeMaster for users who prefer using cloud computation resources that can run directly. Third,
we offer an online web GUI interface. Users can simply pick the settings they are interested in. By
clicking on the button, they can train and evaluate RLFT algorithms in a few minutes. This serve as
an accessible interface for users with no need on any expert knowledge. Fourth, we provide dozens
of Jupyter Notebook tutorials for educational purposes covering key features of TradeMaster.

Improving Usability with AutoML. To achieve decent performance, many knobs (e.g., features
and hyperparameters) need to be properly tuned for RLFT algorithms [68]. However, this requires
in-depth knowledge of RL and coding, which is an insurmountable obstacle for many users without
AI background. To make TradeMaster more accessible to these users, we implement an AutoML
component [28] to finish the RLFT pipeline in a more automatic way. We aim to provide an interface
that enables existing AutoML implementations to be conveniently plugged in. Specifically, we
support automatic feature generation and feature selection by customizing the OpenFE [83] library,
which firstly generates a set of new features by combining many useful operator (e.g., +, -, min,
max) of raw data and then efficiently filters out top-ranked features following a synergistic two-stage
evaluation module. In addition, we offer an automatic hyperparameter tuning interface based on
Optuna library [2] that enables automatic search for optimal values of learning rate, exploration rate
and hidden node amounts. More details are in Appendix G. We note that the current version based on
[83, 2] shows the effectiveness of AutoML for the RLFT pipeline and our unified interface design
enables easy extension with other advanced AutoML techniques.

6 Related Work and Uniqueness of TradeMaster

Quantitative Trading with Reinforcement Learning. In the early age, tabular RL is applied for
financial trading [47, 48]. Jiang et al. [31] make the first attempt of deep RL in financial markets.
FDDR [13] and iRDPG [42] are designed to learn financial trading signals and mimic behaviors
of professional traders for algorithmic trading, respectively. For portfolio management, deep RL
methods are proposed to account for the impact of market risk [77] and commission fee [76]. A
PPO-based framework [39] is proposed for order execution and a policy distillation mechanism is
added to bridge the gap between imperfect market states and optimal execution actions [17]. There
are also efforts on market making [65, 64], hedging [7], high frequency trading [5] and Crypto
trading [52].

Although many works have shown the potential of RL in financial trading, there is still a gap between
academic research and real-world deployment. We hope the release of TradeMaster can move one
step further toward deployment and facilitate the design of RLFT pipelines.

Trading Platforms. There has been many attempts on financial trading platforms. In the early
stages, many open-source libraries are proposed for traditional finance approaches [20], event-driven
backtesting [55] and portfolio risk analysis [54]. With the advent of AI, recent financial trading
platforms mostly focus on data-driven machine learning techniques. OLPS [36] presents a toolbox
for online portfolio selection that implements a collection of strategies powered by machine learning.
Qlib [79] proposes an AI-oriented quantitative investment platform with a focus on prediction-
based supervised learning settings. FinRL [40] makes the first attempt on developing an RL-based
quantitative trading platform. FinRL-Meta [41] offers a series of data-driven RL environments for
various trading scenarios.

However, due to the existence of alpha decay phenomenon [22], financial practitioners are never
keen to share source code of their algorithms and platforms [79] that achieve good performance in
real-world settings. TradeMaster is proposed to serve as a first-of-its-kind best-in-class platform with
a focus on RL into the family of open-source trading platforms.
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Uniqueness of TradeMaster. As shown in Table 3, we compare TradeMaster with existing trading
platforms [79, 40] to show its uniqueness as follows: i) while existing platforms claims support of
various markets, they only offers links to many data providers that users have to write scripts to
acquire data flexibly. TradeMaster prepares 13 well-processed datasets and serve them on Google
Drive to be downloaded directly. ii) TradeMaster covers a wide range of trading scenarios with
realistic simulation under practical constraints. As far as we know, many scenarios (e.g., intraday
trading and market making) are not covered by any existing platforms. iii) TradeMaster provides
high-quality implementations of 9 classic RL algorithms and 7 RL for trading algorithms, where
about half of them is not covered by existing platforms. iv) TradeMaster include a series of evaluation
measures and visualization toolkits to provide a systematic evaluation instead of pure financial metrics
in existing platforms. v) We build a GUI interface on the official TradeMaster website for users
without in-depth coding skills to explore the potential of RLFT. vi) We include an AutoML module
for automatic feature selection and hyperparameter tuning to further improve usability.

Table 3: Comparison of TradeMaster and existing trading platforms. # indicates "the number of".

Platform # financial
markets

# RLFT
algorithms

# trading
scenarios

# evaluation
metrics

# plot
toolkits

GUI
interface AutoML

Qlib [79] 2 1 1 4 - × ×
FinRL [40] 2 8 3 5 - × ×
TradeMaster 13 16 6 10 6

√ √

7 Discussion

Potential Impacts. We hope that TradeMaster can facilitate the development of the RLFT domain
with a broad impact on both academic researchers and financial practitioners. For RLFT researchers,
they can rapidly implement and compare their own methods with a focus on real scientific problems
instead of engineering details. For RL researchers, TradeMaster introduces many challenging trading
scenarios for the test of novel RL algorithms in financial markets. For finance researchers and
individual investors, we can have a taste on RL-based trading methods without in-depth knowledge
of AI and coding. For professional trading firms, TradeMaster can serve as the code base to enhance
their internal trading systems with advanced RL techniques.

Auxiliary Information. Due to space limitations, we include some auxiliary yet important infor-
mation in the Appendix. We introduce the software documents in Appendix C.2, dataset details in
Appendix D, official website in Appendix C.1, usage of online GUI in Appendix B, descriptions on
evaluation measures in Appendix E, usage of the AutoML component in Appendix G, setup details to
reproduce the benchmarking experiments in Appendix F, license and future plan in Appendix H.

Desiderata. Machines will never fully replace investors’ understanding of the complex economic
world, nor researchers’ effort on designing novel RL algorithms [29]. TradeMaster enables rapid
prototyping, benchmarking and deployment of RLFT procedures, so that investors concentrate on
discovering the essential laws of financial markets and researchers can spend more time on core
technical challenges. To help grease the wheels, we hope the release of TradeMaster can facilitate the
RLFT research and serve as a bridge between finance and AI for broader interdisciplinary impact.
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