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Abstract

We provide new algorithms and conditional hardness for the problem of estimating
effective resistances in n-node m-edge undirected, expander graphs. We provide
an rOpm✏´1q-time algorithm that produces with high probability, an rOpn✏´1q-
bit sketch from which the effective resistance between any pair of nodes can
be estimated, to p1 ˘ ✏q-multiplicative accuracy, in rOp1q-time. Consequently,
we obtain an rOpm✏´1q-time algorithm for estimating the effective resistance of
all edges in such graphs, improving (for sparse graphs) on the previous fastest
runtimes of rOpm✏´3{2q [Chu et. al. 2018] and rOpn2✏´1q [Jambulapati, Sidford
2018] for general graphs and rOpm ` n✏´2q for expanders [Li, Sachdeva 2022].
We complement this result by showing a conditional lower bound that a broad set
of algorithms for computing such estimates of the effective resistances between
all pairs of nodes require r⌦pn2✏´1{2q-time, improving upon the previous best such
lower bound of r⌦pn2✏´1{13q [Musco et. al. 2017]. Further, we leverage the tools
underlying these results to obtain improved algorithms and conditional hardness
for more general problems of sketching the pseudoinverse of positive semidefinite
matrices and estimating functions of their eigenvalues.

1 Introduction

In a weighted, undirected graph G the effective resistance between a pair of vertices a and b, denoted
rGpa, bq, is defined as the energy of a unit of electric current sent from a to b in the natural resistor
network induced by G. Effective resistances arise for a broad set of graph processing tasks and
have multiple equivalent definitions. For example, rGpa, bq is proportional to the expected roundtrip
commute time between a and b in the natural random walk induced on the graph and when ta, bu is
an edge in the graph, it is proportional to the probability that the edge is in a random spanning tree.

Effective resistances also form a particular class of metrics on the vertices [1,2] and are a key measure
of proximity between vertex pairs. Correspondingly, effective resistances can arise in a variety of
data analysis tasks. For example, effective resistances have been used in social network analysis for
measuring edge centrality in social networks [3] as well as for measuring chemical distances [4].

Effective resistances have a broad range of algorithmic implications. Sampling edges of a graph using
effective resistance is known to efficiently produce cut and spectral sparsifiers (sparse graphs which
approximately preserve cuts, random walk properties, and more) [5–7]. Effective resistance-based
graph sparsifiers have also been applied to develop fast graph attention neural networks [8], to
design graph convolutional neural networks for action recognition [9], to sample from Gaussian
graphical models [10], and beyond [11, 12]. Effective resistances have also been used in algorithms
for maximum flow problems, [13–16, 16–18], sampling random spanning trees [19–21], and graph
partitioning [22, 23]. More recently, effective resistances have also been used to analyze the problem
of oversquashing in GNNs and in designing algorithms to alleviate oversquashing [24–26] and have
been applied to increase expressivity when incorporated as edge features into certain GNNs [27].
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Algorithms. Given the broad utility of effective resistances, there have been many methods for
estimating and approximately compressing them [5, 28–31]. In this paper, our main focus is the
following effective resistance estimation problem. (We use x «✏ y as shorthand for p1 ´ ✏qy § x §
p1` ✏qy and assume all edge weights in graphs are positive. See Section 2 for notation more broadly).
Definition 1 (Effective Resistance Estimation Problem). In the effective resistance estimation problem
we are given an undirected, weighted graph G “ pV,E,wq, a set of vertex pairs S Ñ V ˆ V , and

✏ P p0, 1q and must output r̃ P RS
such that with high probability (whp.), r̃pa,bq «✏ rGpa, bq for all

pa, bq P S.

The state-of-the-art runtimes for solving the effective resistance estimation problem on n-node,
m-edge graphs are given in Table 2. To contextualize these results, consider the special case of
estimating the effective resistance of a graph’s edges, i.e., when S “ E. This special case appears in
many of the aforementioned applications, e.g., [13–15, 19, 20]. The state-of-the-art runtimes for this
problem are rOpn2✏´1q due to [28] and rOpm✏´1.5q due to [30]. A major open problem is whether
improved runtimes, e.g., rOpm✏´1q (which would subsume prior work), are attainable.

One of the main results of this paper is resolving this open problem in the case of well-connected
graphs, i.e., expanders. Expanders are a non-trivial, previously studied, special case that is often
the first step or a key component for developing more general algorithms [32]. In particular
we provide an rOpm✏´1s pGqq time algorithm where s is a measure of the graph’s connectivity.
Previously, the only non-trivial improvement in this setting was an independently obtained runtime of
rOpm ` n✏´2ps pGqq3{2q for graphs with s pGq “ rOp1q [29]. We improve upon the result of [29] for
sparse enough graphs and, as we explain in Section 1.1, we can almost match the result of [29] (up to
an mop1q factor) in dense graphs. 1

Interestingly, we obtain our main result by providing new effective resistance sketch algorithms.
Definition 2 (Effective Resistance Sketch). We call a randomized algorithm an pTs, Tq, sq-effective
resistance sketch algorithm if given an input n-node, m-edge undirected, weighted graph G “
pV,E,wq and ✏ P p0, 1q in time OpTspG, ✏qq it creates a binary string of length OpspG, ✏qq from

which when queried with any a, b P V , it outputs r̃a,b «✏ rGpa, bq whp. in time OpTqpG, ✏qq.

Effective resistance sketching algorithms immediately imply algorithms for the effective resistance
estimation problem. We obtain our result by obtaining an p rOpm✏´1q, rOp1q, rOpn✏´1qq-effective
resistance sketch algorithm for expanders (see Section 1.1 for a comparison to prior work).

Lower Bounds. Given the central role of effective resistance estimation and the challenging open-
problem of determining its complexity, previous work has sought complexity theoretic lower bounds
for the problem. [33] showed a conditional lower bound of ⌦pn2✏´1{13q for the problem by showing
that an algorithm that computes effective resistances in pn2✏´1{13`�q for some � ° 0 time could be
used to obtain a subcubic algorithm for the triangle detection problem, that we define below.
Definition 3 (Triangle Detection Problem). Given an n-node undirected unweighted graph G “
pV,Eq, determine whether there are distinct a, b, c P V with ta, bu P E, tb, cu P E and tc, au P E.

Currently, the only known subcubic algorithms for the triangle detection problem leverage fast matrix
multiplication (FMM) and therefore their practical utility (in the worst case) is questionable.
Theorem 1 (Informal, [34]). Given an algorithm which solves the triangle detection problem in

subcubic time, we can produce a subcubic algorithm, which only performs combinatorial operations

and uses the triangle detection algorithm, for Boolean matrix multiplication (BMM) and additional

problems which currently are not known to be solvable subcubicly without FMM.

This theorem implies that any subcubic algorithm for triangle detection that doesn’t use FMM implies
a subcubic BMM algorithm that doesn’t use FMM. Consequently, subcubic triangle detection is a
common hardness assumption used to illustrate barriers towards improving non-FMM based methods,
e.g., the effective resistance estimation algorithms of this paper.

1While our algorithms for the effective resistance estimation problem (Definition 1) were obtained
indpendently, our writing and discussion of effective resistance sketch algorithms (Definition 1) was informed
by their paper. We provide a more complete comparison of our work with prior results in Table 1.
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In this paper we take a key step towards closing the gap between the best known running times
for effective resistance estimation and lower bounds by improving the conditional lower bound of
⌦pn2✏´1{13q to r⌦pn2✏´1{2q for randomized algorithms. We show this lower bound holds even for

expander graphs, and hence our effective resistance estimation algorithm (as well as [28]) are optimal
up to an ✏´1{2-factor among non-FMM based algorithms, barring a major breakthrough in BMM.

Broader Linear Algebraic Tools. The effective resistance between vertex a and vertex b in a graph
G has a natural linear algebraic formulation. For all a, b P V it is known that rGpa, bq “ ~�a,bL

:
G
~�a,b,

where LG P RV ˆV is a natural matrix associated with G known as the Laplacian matrix and
~�a,b “ ea ´ eb (see Section 2 for notation). Thus, sketching effective resistances can be viewed as
problems of preserving information about subsets of entries of the pseudoinverse of a Laplacian.

Both our algorithms and lower bounds develop more general tools for handling related problems for
more general (not-necessarily Laplacian) matrices. On the algorithmic side, we show our techniques
can also lead to algorithms and data structures for computing certain quadratic forms involving
well-conditioned SDD and PSD matrices. On the hardness side, we show our techniques also improve
triangle detection hardness bounds for estimating various properties of the singular values of a matrix.

Paper Organization. In the remainder of the introduction we provide a more precise statement
and comparison of our results in Section 1.1. In the remainder of the paper we cover preliminaries in
Section 2, present upper bounds in Section 3, and present lower bounds in Section 4. Omitted proofs
and additional discussion of related proofs are deferred to the supplementary material.

1.1 Our Results

Algorithms. Here we outline our main algorithmic results pertaining to effective resistance
sketching and estimation, and in Section 3 we describe a extensions of our work to broader linear
algebraic problems involving SDD and PSD matrices. Our main algorithmic result is a new efficient
effective resistance sketch for expanders, a term which is used to refer to graphs with r⌦p1q-expansion.
Definition 4 (Expander). For ↵ ° 0, we say that a graph G “ pV,E,wq has ↵-expansion if

↵ § �pGq, where �pGq denotes the conductance of G and is defined as

�pGq :“ min
SÑV,SRt0,V u

∞
tu,vu:uPS,vPV zS wu,v

min
´∞

uPS du,
∞

vPV zS du
¯ , where du :“

ÿ

tu,vuPE
wu.

Theorem 2. There is an p rOpm✏´1q, rOp1q, rOpn✏´1qq-effective resistance sketch algorithm for graphs

with r⌦p1q-expansion.

Table 1 summarizes and compares our Theorem 2 to previous work on effective resistance sketches,
including naive algorithms to explicitly compute the pseudoinverse of the Laplacian of G, which can
be computed in Opn!q time using FMM or rOpmnq time using a Laplacian system solver (labeled
Solver). 2 A pTs, Tq, sq effective-resistance sketch algorithm implies an OpTs ` |S|Tqq algorithm for
the effective resistance estimation problem. Hence, Theorem 2 implies the following.

Theorem 3 (Effective Resistance Estimation on Expanders). There is an rOpm✏´1 ` |S|q time

algorithm which solves the effective resistance estimation problem for graphs with r⌦p1q-expansion.

Effective resistance sketches are a common approach to solving the effective resistance estimation
problem; but there are also approaches to the problem that do not explicitly construct effective
resistance sketches. Table 2 summarizes prior work on effective resistance estimation more broadly.

There has been a long line of research on the problem of computing sketches and sparsifiers of graph
Laplacians [5,28,30,36] (i.e., computing a sparse graph G1 such that quadratic forms in the Laplacian
of G1 approximately preserves quadratic forms in the Laplacian of G). Building on this work, [30]
showed there is an algorithm which processes a graph G on n nodes and m edges in Opm1`op1qq
time and produces a sparse sketch graph H with only rOpn✏´1q edges such that rGpa, bq « rHpa, bq

2
! § n

2.37188 [35] denotes the fast matrix multiplication constant.
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for all a, b P V . Consequently, any algorithm which runs in rOpm✏´cq on expanders can be improved
to run in rOpm1`op1q ` n✏´pc`1qq on expanders simply by running the algorithm on H instead of G.

Table 1: Effective Resistance Sketch
Citation Tp Tq s

FMM n! 1 n2

Solver nm 1 n2

[5] m✏´2 ✏´2 n✏´2

[28] n2✏´1 1 n✏´1

[29] m ` n✏´2 1 n✏´1

This Paper m✏´1 1 n✏´1

Table 2: Effective Resistance Estimation
Citation Runtime S Restrictions

FMM n! ` |S| None
Solver nm ` |S| None

[5] n2✏´2 S “ V ˆ V
[28] n2✏´1 S “ V ˆ V
[19] m ` pn ` |S|q✏´2 None
[37] m ` |S| ✏´2 None
[30] m✏´1.5 S “ E
[29] m ` n✏´2 ` |S| None

This Paper m✏´1 ` |S| None

Summary of prior work on Effective Resistance Sketch (Table 1) and Effective Resistance Estimation
(Table 2) algorithms on n-node, m-edge expanders. All time and space complexities are reported
up to to rOp¨q. The methods of This Paper and [29] apply only to expanders; however, the remaining
works apply to general graphs. As discussed, when m1`op1q ` n✏´pc`1q “ opm✏´cq, any runtime
dependence on m✏´c in the table can be improved to a dependence on mop1q`1 ` n✏´pc`1q.

Lower Bounds For the effective resistance estimation problem, [33] showed that any combinatorial
algorithm (i.e., an algorithm that uses only combinatorial operations in the sense of Theorem 1)
which solves the effective resistance estimation problem for S “ V ˆ V in rOpn2✏´1{13`�q for some
� ° 0, would imply a combinatorial subcubic deterministic algorithm which detects a triangle in an
n-node undirected unweighted graph. We improve on their result, as follows.
Theorem 4. Given a combinatorial algorithm which solves the effective resistance estimation problem

for S “ V ˆ V on graphs with r⌦p1q-expansion in rOpn2✏´1{2`�q time for � ° 0, we can produce

a randomized combinatorial algorithm which solves the triangle detection problem on an n-node

graph in rOpn3´2�q time whp.

Theorem 4 implies an r⌦pn2✏´1{2q randomized conditional lower bound for the problem of estimating
effective resistances of all pairs of nodes in an undirected unweighted expander graph, while [33]
shows only an ⌦pn2✏´1{13q lower bound. As we show in Section 4, by a simple reduction we
can extend any r⌦pn2✏´cq lower bound for the all-pairs effective resistance problem to a r⌦pm✏´cq
lower bound for the all-edges effective resistance problem. Consequently, our result also yields a
r⌦pm✏´1{2q randomized lower bound for the problem of estimating effective resistances of all edges
in an undirected expander graph.

In addition to conditional lower bounds for effective resistance estimation, we also improve on
existing conditional lower bounds for the problem of estimating spectral sums that we define below.
Definition 5 (Spectral Sum). For f : R` Ñ R`

and A P Rnˆn
with singular values �1pAq §

�2pAq § ¨ ¨ ¨ § �npAq, we define the spectral sum Sf : Rnˆn Ñ R`
as Sf pAq :“ ∞n

i“1 fp�ipAqq.

[33] showed that for several spectral sums Sf , any combinatorial algorithm that outputs Y «✏ Sf pAq
in pn�✏´cq time on an n ˆ n PSD matrix would imply an Opn�`↵cq time combinatorial algorithm
which solves the triangle detection problem, where the scaling ↵ varies depending on the specific Sf

(see Table 3). We build on their results to show improved randomized conditional lower bounds for
several spectral sum estimation problems, as presented in Theorem 5 below.
Theorem 5. Given a combinatorial algorithm which on input B P Rnˆn

outputs a spectral sum

estimate Y «✏ Sf pBq in O pn�✏´cq time with � • 2 for the spectral sums in Table 3, we can

produce a randomized combinatorial algorithm that can detect a triangle in an n-node graph whp. in

rO pn�`↵cq time, where ↵ is a scaling that depends on properties of the function f (see Table 3 for

values of ↵ for several spectral sums.)
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[33] This Paper

Spectral Sum TD Runtime Lower Bound TD Runtime Lower Bound

Schatten 3-norm n�`4c n2✏´1{4 n�`5c{2 n2✏´2{5

Schatten p-norm, p ‰ 1, 2, n�`13c n2✏´1{13 n�`10c n2✏´1{10

SVD Entropy n�`6c n2✏´1{6 n�`5c n2✏´1{5

Log Determinant n�`6c n2✏´1{6 n�`5c n2✏´1{5

Trace of Exponential n�`13c n2✏´1{13 n�`10c n2✏´1{10

Table 3: Runtimes for the triangle detection (TD) problem in an n-node graph using algorithms
that produce p1 ˘ ✏q multiplicative approximations to various spectral sums in Opn�✏´cq time. The
second columns contain the best achievable runtimes for � “ 2 that do not use FMM, barring a
breakthrough in subcubic triangle detection. All runtimes are reported up to rOp¨q.

2 Preliminaries

General notation. We use Ai,j to denote the pi, jq-th entry of A. For A P Rnˆn we use � pAq
for its spectrum, �ipAq and �ipAq for its i-th smallest eigenvalue and singular value respectively,
and ⇢pAq :“ |�npAq| for its spectral radius. } ¨ }p denotes the `p-norm. When A is PSD, �minpAq
denotes its smallest nonzero eigenvalue and pAq :“ �npAq{�minpAq denotes its pseudo-condition
number. We use x¨, ¨y for the Euclidean inner product, for the all ones vector, and ei for the i-th
standard basis vector. We define ~�i,j :“ ei ´ ej and rks :“ t1, ..., ku. We use x «✏ y as shorthand
for p1 ´ ✏qy § x § p1 ` ✏qy. For v P Rn, we use vri : js for the sub-vector from index i to j. We
use v K w to indicate that v, w P Rn are orthogonal (i.e., vJw “ 0).

Graphs. We use G “ pV,E,wq to denote a weighted undirected graph on V with edges E and
edge weights w P RE

°0 (or G “ pV,Eq if unweighted). We use AG to denote its (weighted)
adjacency matrix pAGqu,v “ wu,v for u, v P V ˆV and DG to denote its diagonal (weighted) degree
matrix pDGqu “ ∞

tu,vuPE wu,v for u P V (treated as wu,v “ 1 if G is unweighted). We define
LG :“ DG ´ AG as its graph Laplacian. dmaxpGq and dminpGq refer to the max and min diagonal
entry in DG. We may drop the argument or subscript G if it is clear from context. The effective
resistance between nodes i, j P V is denoted rGpi, jq “ ~�J

i,jL
:
G
~�i,j . We assume all input graphs are

connected, as effective resistances can be computed separately on connected components. We use
BG to denote the E ˆ V edge-incidence matrix of G, where pBGqe,u “ 1 and pBGqe,v “ ´1 for all
e P E, and e “ tu, vu, with BGe,l “ 0 for all l ‰ u and l ‰ v.

Symmetric Diagonally Dominant (SDD) Matrices A matrix M P Rnˆn is SDD if it can be
decomposed as M “ DM ´ AM, where the DM is a diagonal matrix with non-negative entries and
AM is a matrix with zeros on the diagonal such that di,i ° ∞n

j“1 |ai,j |. We define the normalization

of M as NM :“ D´1{2
M MD´1{2

M . Throughout this paper, we assume, without loss of generality that
DM has strictly positive entries on the diagonal (otherwise, we can simply remove an entire row and
column of zeros). We use dmaxpMq and dminpMq to denote the max and min entry in the diagonal
of DM respectively. We may drop the argument or subscript M if it is clear from context.

Spectral Graph Theory. Our results leverage well-known spectral graph theory results. In
particular, our algorithm complexities are parameterized by the normalized pseudo condition number
of a graph (or SDD matrix).
Definition 6 (Normalized (pseudo-)condition number). We define the normalized (pseudo-)condition
number of an SDD matrix M P Rn

as s pMq :“ �npNM q{�minpNM q.

To connect the normalized condition number to expander graphs, we can apply Cheeger’s
inequality, which guarantees that if G has ↵-expansion for some ↵ “ ⌦̃p1q, then s pLGq “
�npNLGq{�2pNLGq § 4{↵2 “ rOp1q.
Theorem 6 (Cheeger’s Inequality [38]). Let G “ pV,E,wq be an undirected graph. Then,

1
2�2pNLq § �pGq §

a
2�2pNLq.
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In addition, we leverage the fact that effective resistances can be expressed in several equivalent
expressions. In particular, it is known that:

rGpi, jq “ ~�J
i,jL

:
G
~�i,j “ ~�i,jD

´1{2NG
:D´1{2~�i,j “ pW1{2

G BGL
:
G
~�i,jqJpW1{2

G BGL
:
G
~�i,jq,

where WG P REˆE is the diagonal matrix of weights in G [5].

Runtimes and Space Complexities. In our algorithmic results and analysis, when clear from
context, we use rOp¨q (resp., r⌦p¨q) notation to hide polylogarithmic factors (resp., inverse
polylogarithmic factors) in the number of vertices, the number of edges, the size of the matrix,
the number of nonzero entries in a matrix, the maximum and minimum diagonal element of a
matrix, the maximum and minimum weighted degree of a graph, ✏, the condition number, and the
normalized psuedo-condition number of a matrix. We say event E occurs with high probability in
t if P rEs • 1 ´ t´c, where c ° 0 can be controlled by appropriately configuring the algorithm
parameters. We may simply say that an event occurs “with high probability” or “whp.” if it occurs
with high probability in the size of a matrix or number of nodes in a graph.

3 Algorithmic Results

In this section, we present our main algorithmic results. Section 3.1 outlines our approach to effective
resistance sketches and estimation; we defer discussion of our approach to SDD and PSD extensions
to the supplementary material. Section 3.2, presents our original results on effective resistance
sketching and estimation and generalizations to SDD matrices. Section 3.3 extends our techniques to
yield an interesting data structure for estimating quadratic forms of PSD matrices.

3.1 Our Approach

Approach in prior work: Johnson Lindenstrauss sketches. Our starting inspiration is a classic
result of [5], which obtains an ( rOpm✏´2q, rOp✏´2q, rOpn✏´2q)-effective resistance sketch by using the
Johnson Lindenstrauss Lemma (JL) [39] and its algorithmic instantiations [40].
Lemma 1 (Johnson-Lindenstrauss Lemma [40]). Given fixed vectors v1, ..., vn P Rd

and ✏ P p0, 1q,

let J be an independently sampled random matrix in t˘1{
?
kukˆd

. For k “ rOplogpnq✏´2q, whp. in

n, }Jvi}2 «✏ }vi}2 for all i P rns.

[5] observe that rGpi, jq “ pW1{2
G BGL

:
G
~�i,jqJpW1{2

G BGL
:
G
~�i,jq. Consequently, w.h.p in

n, }JW1{2
G BGL

:
G
~�i,j}2 «✏ rGpi, jq. With SDD linear system solvers, JW1{2

G BGL
:
G can be

approximated in rOpm✏´1q time, from which }JW1{2
G BGL

:
G
~�i,j}2 can be queried in rOp✏´2q time.

Our approach: asymmetric CountSketch in `1. Towards improving upon JL sketches for effective
resistance estimation, our key tool is to use other sketching algorithms. In particular we use that
there are algoirthms that achieve better than rOp✏´2q-sketch dimension for vectors with small `1 norm
with comparable guarantees, e.g., CountSketch. CountSketch is a classic memory-efficient algorithm
for estimating the number of occurences of various datapoints in a data stream [41] and efficiently
computing inner products [42]. Given v P Rn and integer parameters s, t ° 0, CountSketch
transforms v to a vector Sv P R3tsˆn, where S P R3tsˆn is a 3t-column-sparse 0/1 matrix. Lemma 2
is a special case of Theorem 4 from [42], which provides accuracy guarantees for inner product
estimation using CountSketch.
Lemma 2 (Special Case of [42], Theorem 4). Let vectors v, w P n

. Let S be a random CountSketch

matrix. Let xi “ xpSvqrpi ´ 1qs ` 1 : i ¨ ss, pSwqrpi ´ 1qs ` 1 : i ¨ ssy for i P r3ts, and

let X denote the median of txiu. For s “ O
´
min

´
}v}1}w}1
✏|xv,wy| ,

}v}22}w}22
✏2|xv,wy|2

¯¯
, and t “ logpncq,

|X ´ xv, wy| § ✏ |xv, wy| with probability at least ⌦p1 ´ n´cq.

To improve the guarantee in Lemma 2 to hold whp. for all v, w P S rather than for each fixed
pair, one can simply choose t “ logpnc|S|q and apply a union bound. Consequently, if we knew
that }W1{2

G BGL
:
G
~�i,j}21{rGpi, jq “ rOp1q, then building a CountSketch with s “ rOp✏´1q would
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yield a rOpn✏´1q-size sketch, improving over the rOpn✏´2q sketch obtained using the `2 JL sketch
in [5]. Unfortunately, it is unclear if and when such a bound holds, and so, it is unclear how the `1
CountSketches could be useful in this setting. This leads to the main insight that fuels our algorithms.
Rather than seeking a symmetric factorization of rGpi, jq as a quadratic form vJv and applying a
sketching procedure to v, we instead work with an asymmetric factorization. In particular, we observe

rGpi, jq “ xD´1
LG

~�i,j ,D
1{2
L pNLGq:D´1{2

LG
~�i,jy. (1)

At first glance, it may seem unclear why (1) is helpful. However, we show that indeed, for expanders
›››D´1

L
~�i,j

›››
1

›››D1{2
L pNLq:D´1{2

L
~�i,j

›››
1

{rGpi, jq “ rOp1q. (2)

Our main result essentially follows from (2). Using SDD linear system solvers, we can efficiently
approximate SD1{2

L pNLq:D´1{2
L P R rOp✏´1qˆn in rOpm✏´1q time, yielding our Tq of rOpm✏´1q and s

of rOpn✏´1q (see discussion in supplementary material). Moreover, SD´1
L is rOp1q-sparse, due to the

structure of Count-Sketch. So, using our (approximate) access to SD1{2
L pNLq:D´1{2

L , for any query
i, j P V , we can efficiently approximate (1) using the recovery procedure of Lemma 2 in rOp1q time.

3.2 Our Results

We use the approach in Section 3.1 to develop algorithms to compute spectral sketch data structures
for SDD matrices M with rOp1q normalized condition number, as defined in Definitions 6 and 7. So,
as discussed in Section 2, this implies that our spectral sketch algorithms will automatically apply to
normalized Laplacians of expanders and enable us to compute effective resistances.
Definition 7 (Spectral Sketch Data Structure). We say an algorithm produces an pTs, Tq, sq-spectral

sketch data structure for a PSD matrix A P Rnˆn
if given A P Rnˆn

and ✏ P p0, 1q, the algorithm

creates a binary string of length OpspA, ✏qq in time OpTspA, ✏q, from which, for any supported query

b P Rn
, w.h.p it outputs qApbq «✏ bJAb in time OpTqpA, ✏qpnnzpbqq2q.

Our spectral sketches of SDD matrices M will only support DM -numerically sparse query vectors.
Definition 8 (D-numerically sparse). For a diagonal matrix D, the D-numerical sparsity of x P Rn

is nsD pxq :“
››D´1x

››
1

}x}1 {
››D´1{2x

››2
2
. We say x is pc,Dq-numerically sparse if nsD pxq § c.

Definition 8 is restrictive; however, several natural classes of vectors satisfy the requirements. For
example, i are (1, D)-numerically sparse and ~�i,j is (2, DM )-numerically sparse for any i, j P rns
and invertible diagonal matrix D P Rnˆn (see supplementary material for additional examples.)

The following asymmetric rearrangement of quadratic forms is crucial to our analysis.
Lemma 3. Let M P Rnˆn

be SDD and x P Rn
be orthogonal to ker pMq. Then,

xJM:x “ 1

2

A
D´1

M x,D1{2
M pNM{2q:D´1{2

M x
E

“
A
D´1{2

M x,N:
MD´1{2

M x
E

• 1

2

›››D´1{2
M x

›››
2

2
.

Proof. For notational convenience, let N`M “ NM{2. Let v “ M:x “ pDM ´ AM q:x. Note that
D´1{2

M x K ker pNM q, and 2D1{2
M N`MD1{2

M “ M. Consequently, v “ 1
2D

´1{2
M N`

:
MD´1{2

M x,
and hence xJM:x “ 1

2xDM
´1x,DM

1{2N`
:
MDM

´1{2xy. The second equality now follows
immediately by rearranging terms. To obtain the inequality, note that, because M is SDD and
D is invertible, NM is PSD. Furthermore, 2I ´ NM “ I ´ D´1{2

M AMD´1{2
M , which is also PSD,

as � pAM q Ä r´dmax, dmaxs. So, 0 § � pNM q § 2. So, �minpNM q • 1{2 and the lemma
follows.

Lemma 4 bounds
›››D1{2

M pNM{2q:D´1{2
M x

›››
1
. The proof uses the power series expansion of pNM{2q:.

Lemma 4. Let M P Rnˆn
be an SDD matrix and x P Rn

be a unit vector orthogonal to ker pMq.

Then
›››D1{2

M pNM{2q:DM
´1{2x

›››
1

§ max
´
1, 2s pMq log

´a
ndmax2s pMq{

a
dmin

¯¯
}x}1 ` 1.
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Combining our Lemmas 3 and 4 with the guarantees of Lemma 2 and prior work on SDD linear
system solvers (see supplementary material), we obtain the following theorem.
Theorem 7. For any SDD matrix M P Rnˆn

, there is an algorithm to construct an

p rOps pMqnnzpMq✏´1q, rOp1q, rOps pMqn✏´1qq-spectral sketch data structure of M:
supported

over queries S, where S is any set of p rOp1q,DM q-numerically sparse vectors orthogonal to ker pMq.

Because the ~�i,j queries appearing in effective resistance computations are 2-sparse and p2,DM q-
numerically sparse for all SDD matrices M, taking M “ LG in Theorem 7 immediately implies
Theorem 2 and Theorem 3 (see supplementary material for detailed discussion and pseudocode.)

3.3 Extensions to PSD Matrices

Our approach of approximating quadratic forms via asymmetric inner products also yields a query-
efficient sketching procedure for approximating quadratic forms of well-conditioned PSD matrices.

Theorem 8. There is an algorithm to construct an p rOppAqnnzpAq✏´2q, rOp1q, rOppAqn✏´2qq-

spectral sketch data structure of A supported over S, where S is any set of vectors orthogonal to

ker pAq and A is PSD.

In comparison, JL [39] gives an p rOpn!q, rOp✏´2q, rOpn✏´2qq-spectral sketch data structure using
efficient square root algorithms [43]. JL achieves better compression than Theorem 8, while
Theorem 8 achieves faster query time. When the matrix is well conditioned and error tolerance is
sufficiently high, Theorem 8 may achieve better construction time and query time than JL while
maintaining comparable compression.

4 Lower Bounds

In this section, we present our main hardness results. Section 4.1 outlines our approach. In Section 4.2,
we present our lower bounds for the problem of estimating effective resistances for all pairs of nodes
(case where S “ V ˆ V ), which we call the “all pairs effective resistance estimation problem.”
Section 4.3 shows our techniques also yield lower bounds for other spectral sum estimation problems.

4.1 Our Approach

Approaches of Previous Work The approach of [33] begins with the fact that G has a triangle if and
only if tr

`
A3

G

˘
{6 • 1. They use the fact that various spectral sums Sf of the of the SDD matrix I ´

�AG (for � sufficiently small) can be expressed as a power series Sf pI´�AGq “ ∞8
k“0 ck�

k trpAk
Gq.

The first two terms of this series can be computed directly. So given Y «✏ Sf pI ´ �AGq, one can
estimate tr

`
A3

G

˘
, where the estimation error is controlled by the magnitude of the first two terms of

the series and the tail error due to truncating at the third term. By bounding this estimation error, [33]
show that, for appropriate choices of �, Y «✏ Sf pI ´ �AGq yields an additive 1/2 approximation to
tr

`
A3

G

˘
, which is sufficient for triangle detection. They also reduce the problem of estimating the

spectral sum tr
`
B´1

˘
for an SDD matrix B to the all pairs effective resistance estimation problem.

Our Approach We use three key techniques to better bound the estimation errors incurred in the
power-series-inspired approach of [33]. This yields faster reductions and better lower bounds for
effective resistance estimation. Rather than obtaining effective resistance lower bounds by reducing
the problem of computing tr

`
A3

G

˘
{6 to computing the trace of an SDD matrix as in [33], we use a

reduction that closely resembles the structure of effective resistances. For ↵ ° 0 sufficiently small,
´
I ´ ↵

n
AG

¯´1
“

8ÿ

k“0

↵k

nk
Ak

G. (3)

Since AG is known, given access to ~�J
i,jpI ´ ↵

nAGq´1~�i,j , we can estimate the entries of A2
G, where

the estimation error is controlled by ↵ and the tail error of truncating (3) at the third term. By
bounding this estimation error, for appropriate choice of ↵, we can obtain additive 1/2 approximations
to all entries of A2

G, which is sufficient to identify all paths of length 2. We can then detect a

8



triangle by simply scanning for an edge tu, vu such that u and v are connected by a path of length
2. Estimating the entries of A2

G leads to lower estimation error than estimating tr
`
A3

G

˘
as in [33]).

Second, we use a standard randomized reduction that reduces the triangle detection problem to
the triangle detection problem restricted to tripartite graphs. The reduction relies on the fact that a
randomly sampled tripartition of the original graph preserves triangles with constant probability. To
detect a triangle in a tripartite graph G “ pV1 \V2 \V3, Eq, we construct a graph H by removing all
edges E1,2 :“ ttu, vu P E : u P V1, v P V2u between V1 and V2. G has a triangle if and only if there
is an edge tu, vu P E1,2 and a path of length 2 between u and v in H . Crucially, we can show that
the third term sA3

H does not contribute to the tail error when estimating the tu, vu-th entry of
`
A2

H

˘

using (3). Third, to lower the spectral norm of AH (and consequently better bound the convergence
of the power series (3)), we introduce the symmetric random signing of AH below.
Definition 9 (Symmetric Random Signing). Given a symmetric matrix A P Rnˆn

, its symmetric
random signing sA is the random matrix with sAi,j :“ ⇠i,jAi,j , where ⇠i,j are independent

Rademacher random variables that satisfy ⇠i,j “ ⇠j,i.

We show that this random signing preserves the non-zeroness of entries of A2
H with constant

probability, allowing us to detect whether G has a triangle even if we replace AG in (3) with sAH

instead. This is beneficial, as matrix Chernoff guarantees
›› sAH

››
2

“ rOp?
nq whp. whereas }AH}2

may be as large as n. So the tail error of truncating the power series is smaller. To compute entries
of sA2

H efficiently using effective resistance estimates on expanders, we first show that we can use
all pairs effective resistance estimates on expanders to estimate ~�Ti,jM´1~�i,j for all i, j P rns, where
M “ pI ´ Qq is an SDD matrix with ⇢pQq § 1{3. Then, by choosing M “ I ´ ↵

n
sAH as in (3) for

an appropriate constant ↵, we can estimate sA2
H from estimates of ~�Ti,jM´1~�i,j . This yields our lower

bound on the all pairs effective resistance estimation problem.

Additionally, we show that random signing also preserves the non-zeroness of tr
`
A3

G

˘
with constant

probability, and leverage this to obtain improved randomized conditional lower bounds for various
spectral sum estimation problems. We closely follow the trace estimation approach of [33], and again
use the smaller spectral radius of sAG to improve bounds on the power series truncation error.

4.2 Improved Lower Bounds for Effective Resistance Estimation

In this section we provide a series of reductions which yield our main result on lower bounds for the
all pairs effective resistance estimation problem for all pairs of nodes (case where S “ V ˆ V ).
Definition 10. In the SDD effective resistance estimation problem, given an SDD matrix M such

that DM “ I, AM “ Q, with ⇢pQq § 1{3 and ✏ P p0, 1q, we must output rr P Rn2

such that

rra,b «✏
~�J
a,bM

´1~�a,b @a, b P rns. We call ~�J
a,bM

´1~�a,b the SDD effective resistance of pa, bq in M.

For brevity, we use rrpMq to refer to the solution of the SDD effective resistance problem on input
M. Our first step is to show that an algorithm for the all pairs effective resistance estimation problem
on expanders implies an algorithm for the SDD effective resistance estimation problem.
Lemma 5. Given an algorithm to solve the all pairs effective resistance estimation problem on

graphs with r⌦p1q-expansion in rOpn2✏´cq time for some c ° 0, we can produce an algorithm to solve

the SDD effective resistance estimation problem in rOpn2✏´cq time.

To prove Lemma 5, we first prove the lemma for the case where Q is entrywise non-negative by
constructing an expander G with n ` 1 vertices such that rGpa, bq “ ~�J

a,bM
´1~�a,b for all a, b P rns.

We extend the reduction to arbitrary Q by constructing Q1 of size 2n so that Q1 is entrywise
non-negative and rrpI ´ Qq is a simple linear transform of rrpI ´ Q1q.

We turn our attention to reducing the triangle detection problem to the SDD effective resistance
problem. As discussed, a key aspect of our approach is to work with the random signing sAG of
AG. Lemma 6 shows that to determine whether pA2

Gqi,j ° 0 with constant probability, it suffices
to determine whether p sA2

Gqi,j ° 0. Matrix Chernoff ensures whp. ⇢p sAGq “ rOp?
nq, while ⇢pAGq

could be as large as n [44]. So, estimating entries of sAG leads to lower power series tail error.
Lemma 6. For i ‰ j, if pA2

Gqi,j “ 0, then p sA2
Gqi,j “ 0; if pA2

Gqi,j ° 0, P
“
|p sA2

Gqi,j | ° 1
‰

• 1{2.
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The idea of the proof is that if ta, bu, tb, cu exist in G, either ⇠a,c “ 1 or ⇠a,c “ ´1 results in
p sA2

Gqa,c ° 0. Finally, we use the power series approach in Section 4.1 to obtain Theorem 9.
Theorem 9. Given an algorithm which solves the SDD effective resistance estimation problem in

rOpn2✏´cq time, we can produce a randomized algorithm that solves the triangle detection problem

in rOpn2p1`cqq time whp.

Theorem 9 and Lemma 5 with c “ 1{2 ´ � immediately imply our main result Theorem 4.

Additionally, we extend the lower bound of Theorem 4 to the all edges effective resistance estimation
by the following reduction.
Lemma 7. Given an algorithm to solve the all edges effective resistance estimation problem (i.e.,

Definition 1 where S “ E) in rOpm✏´cq time, we can produce an algorithm to solve the all pairs

effective resistance estimation problem in rOpn2✏´cq time for some c ° 0.

The rough idea behind the reduction is to add a complete graph of edges of sufficiently small weight
that would not change the effective resistances much. Lemma 7 combined with Theorem 4 then imply
a r⌦pm✏´1{2q randomized lower bound for the all edges effective resistance estimation problem on
graphs with graphs with r⌦p1q-expansion.

4.3 Improved Lower Bounds for Spectral Sum Estimation

Finally, we discuss our improved lower bounds for various spectral sum estimation problems.
Analogous to Lemma 6, in the following lemma we show that to determine whether a graph has a
triangle (i.e., tr

`
A3

G

˘
° 0) with constant probability, it suffices to determine whether tr

` sA3
G

˘
° 0.

Lemma 8. If tr
`
A3

G

˘
“ 0, then tr

` sA3
G

˘
“ 0, and if tr

`
A3

G

˘
° 0 then P

“ˇ̌
tr

` sA3
G

˘ˇ̌
° 0

‰
• 1{4.

The central idea of the proof is that if a triangle ta, bu, tb, cu, tc, au exists in G, then amongst the
4 possible configurations of the Rademacher random signing variables ⇠a,b and ⇠b,c, at least one
configuration must result in

ˇ̌
tr

` sA3
G

˘ˇ̌
° 0. By following the proof of Theorem 15 from [33], and

replacing their use of AG with a symmetric random signing sAG, we obtain an improved randomized
version of their result by leveraging the smaller spectral radius of sAG. Theorem 5 follows by applying
this result to the functions f that define the corresponding spectral sums (see supplementary material).

5 Conclusion

In this paper we provided improved upper and lower bounds on the problem of estimating and
sketching effective resistances on expanders. On the algorithmic side we show how sketches tailored
to `1 when carefully applied to asymmetric formulations of the quadratic form of the Laplacian
pseudoinverse gave our results. On the lower bound side, we provided an alternative to the trace
estimation approach of [33] for showing lower bounds and coupled it with techniques of randomly
signing edges of the graph to obtain our results. Further, we showed that these techniques had broader
implications for addressing algorithmic challenges in numerical linear algebra.

Beyond the natural open problem of improving both our upper and lower bounds towards bringing
them together, there are interesting open problems in broadening the applicability of both our upper
and lower bounds. For example, obtaining an rOpm✏´1q time algorithm for estimating the effective
resistance of all edges in a general (non-expander) graph and extending our r⌦pn2✏´1{2q lower bounds
to deterministic algorithms remain interesting open problems. We hope that the results of this paper
provide useful tools for addressing each.
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6 Supplementary Material

In this supplementary material section, we include additional discussion and proofs of the results from
the main body. In Section 6.1, we discuss additional related work on effective resistance estimation
and fine-grained complexity analysis more broadly. In Section 6.2, we discuss additional details and
provide omitted proofs pertaining to our algorithmic results in Section 3. In Section 6.3, we discuss
additional details and provide omitted proofs pertaining to our hardness results in Section 4.

6.1 Additional Related Work

Here we supplement the discussion in Section 1 by briefly discussing additional work related to
the effective resistance estimation problem and providing a more detailed comparison of our results
to [29].

Dynamic effective resistance estimation. Effective resistance estimation and sketching are part
of a broader family of previously studied problems involving graph compression and effective
resistance estimation. For example, there is a related line of work on dynamically maintaining
effective ressistance estimates in dynamic graphs, e.g., [19, 31], which in turn is related to problems
of dynamically maintaining electric flows in graphs, e.g., [45, 46]. Whether our techniques have
ramifications for these related problems is an interesting question for future work.

Fine-grained complexity analysis. Our effective resistance estimation lower bounds fall under
a broader topic of fine grained complexity analysis, i.e., the problem of characterizing the optimal
complexity of problems which are known to have polynomial time solutions. Here, we provide
references to a few examples. [34] showed subcubic equivalences between the problem of triangle
detection, Boolean matrix multiplication, and several other graphical problems. As discussed, [33]
utilize the results of [34] to obtain conditional lower bounds on several spectral sum approximation
problems– many of which we also study in this paper. Similarly, [47–49] provided several
conditional complexity lower bounds for linear algebraic problems, conditional on the use of particular
computational models. [50] and [51] also provide fine grained lower bounds for the fault replacement
paths problem, problems on graph centrality measures, and complementary problems. Making
connections between our techniques for our effective resistance estimation lower bounds and these
prior works in fine-grained complexity analysis is an interesting open problem.

Comparison with the approach of [29]. Effective reisistance sketching and estimation for
expanders was previously studied in [29]. [29] produces an p rOpm ` n✏´2q, rOp1q, rOpn✏´1qq effective
resistance sketch for graphs with r⌦p1q-expansion. Our work provides a different, independently
obtained runtime for effective resistance estimation by producing an p rOpm✏´1q, rOp1q, rOpn✏´1qq
effective resistance sketch for graphs with r⌦p1q expansion. Additionally, our work can be applied
to produce an p rOpm1`op1q ` n✏´2q, rOp1q, rOpn✏´1qq effective resistance sketch, by running on a
sparse graphical sketch, such as that guaranteed by [30] (see Section 1.1). Consequently, our results
match those of [29] up to an mop1q factor in all regimes, and improve for sufficiently high accuracy
on sparse graphs.

Given a graph G with r⌦p1q-expansion, [29] proposes an algorithm which is motivated by the idea
of storing rOp1q-sparse approximations to the columns of L:

G, which would clearly be sufficient for
querying effective resistances of G in rOp1q time. However, it is unclear whether the columns of
L:
G have small `1 norm, and consequently, it is unclear how to obtain these sparse approximations.

Consequently, their algorithm instead estimates the following vector �u for each u P V ,

�u “ 1

2

8ÿ

t“0

˜ˆ
1

2
I ` 1

2
AGD

´1
G

˙t

eu ´ ⇡

¸
,

where ⇡ “ DLG
JDLG

. They show that �u is closely related to DGL
:
Geu ´ ⇡, and consequently access

to �u is sufficient for estimating effective resistances. Additionally, they use structural properties
of expanders to show that each �u must have small `1 norm and that it can be computed efficiently
by running lazy random walks on G (i.e., the random walk which, at each step follows the natural
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random walk on G with probability 1/2 and stays idle with probability 1/2). These key properties of
�u enable their result.

Our approach is similar to that of [29] in that we also reformulate the effective resistance between
two vertices as an inner product between two vectors whose `1 norm we can bound; however,
the vectors we consider are not the �u vectors considered in [29]. Instead, we rewrite rGpi, jq as
the inner product of D´1

LG
~�i,j with D1{2

LG
pNLG{2q:D´1{2

LG
~�i,j . Similar to [29], we then use similar

underlying structural properties of expanders to argue that the `1 norms of these vectors is not too
large. However, instead of using random walks to estimate these vectors, we use sketching techniques
(specifically, CountSketch) and Laplacian system solvers to estimate them, an idea which is inspired
by the work of [5]. The differences in the specific effective resistance vectors we estimate and the
different technique of estimating them is what leads to the difference in runtime between [29] and
our own work. 3 [29] also provide an extension of their effective resistance sketch techniques to
well-conditioned SDD matrices, which we also do in our generalized Theorem 7; our lower bounds
on the SDD effective resistance estimation problem (see Section 4.2) therefore also apply to the work
of [29].

6.2 Additional Discussion of Algorithmic Results

In Section 6.2.1, we discuss related background on CountSketch and SDD linear system solvers,
which are crucial to our proofs of our upper bound results. In Section 6.2.2 we expand on our
discussion of DM-numerical sparsity from Definition 8 and provide our motivation for studying such
queries. In Section 6.2.3 we present omitted proofs from Section 3.2 and Section 3.3.

6.2.1 Relevant Technical Background

CountSketch. Below we prove that Lemma 2 follows from Theorem 4 in [42].

Proof of Lemma 2. Applying Theorem 4 from [42] with t “ 2,

r|X ´ xv, wy|s § min

ˆ
3

}v}21}w}21
s2

, 2
}v}22}w}22

s

˙
.

Applying Markov’s inequality for the second moment,
„
|X ´ xv, wy| ° 2

?
3min

ˆ}v}1}w}1
s

,
}v}2}w}2?

s

˙⇢
§ 1

4
.

Consequetly, setting s “ O
´
min

´
}v}1}w}1
✏xv,wy , }v}22}w}22

✏2xv,wy2
¯¯

suffices for r|X ´ xv, wy| § ✏xv, wys •
3{4. To improve the failure probability to Opn´cq, it suffices to repeat the sketch O plogpncqq times
and output the median.

SDD Linear System Solvers. In order to compute our effective resistance sketches efficiently, we
apply a CountSketch matrix S to M:, where M is an SDD matrix. To do this efficiently, we leverage
the following theorem.
Theorem 10 (SDD Linear System Solver). Let M P Rnˆn

be SDD and consider any � ° 0.

There exists a randomized algorithm which, with high probability in n, processes a graph in time

rOpnnz pMqq to create access to a linear operator Q� P nˆn
such that Q� can be applied to any

b P n
with b K ker pMq in time rOpmq and

››Q�b ´ M:b
››
M

§ �
››M:b

››
M

.

Many SDD linear system solvers can be viewed as the type of an operator Q� required in Theorem 10.
For a particular example in which this is apparent, consider the operator corresponding to the iterative
solver proposed in [52] or the solver from [53]. There is a long line of research on nearly linear
time SDD and Laplacian system solvers, beginning with the work of [54] and leading to current
state-of-the-art randomized algorithm of [55].

3More precisely, when writing the dependence on s pGq :“ s pLGq, [29] has an rOpm ` n✏
´2s pGq3 ` |S|q

runtime for the effective resistance estimation problem. This paper instead presents a runtime of
rOpm✏

´1s pGq ` |S|q for the effective resistance estimation problem.
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6.2.2 Examples of DM -numerical Sparsity

As we discussed, our spectral sketch data structures in Section 3.2 allow for a restricted set of queries
to the pseudoinverse, in particular those that are DM -numerically sparse as defined in Definition 8.
Here, we elaborate on types of queries that are DM -numerically sparse.

• ~�i,j is (2, D)-numerically sparse for any invertible D P Rnˆn. As we are interested primarily in
effective resistance estimation in this paper, this provides the primary motivation for studying this
class of vectors.

• Standard basis vectors are (1, D)-numerically sparse for any invertible D P Rnˆn.
• When D is the identity matrix, Definition 8 reduces to the standard definition of numerical

sparsity [56].

• More generally, if x P Rn is �-numerically sparse, then it is
´
�maxi di,i

mini di,i
,D

¯
-numerically sparse

for any diagonal D P Rnˆn. Note that if D is approximately a multiple of the identity, then the
DM-numerical sparsity is approximately equal to the numerical sparsity, up to constants.

The approaches discussed in Section 3.2 apply to all of these examples.

6.2.3 Omitted Proofs form Section 3

In this section, we provide proofs of omitted results from Section 6.2.3. For notational convenience,
in this section we define A`M :“ 1

2I ` 1
2D

´1{2
M AMD´1{2

M . Note that NM “ 2 pI ´ A`M q.

First, let us prove Lemma 4. We first prove the following lemma regarding the power series expansion
of N`M :“ pNM{2q:.
Lemma 9. Let M P Rnˆn

be SDD. For any x K ker pMq,

pNM{2q: D´1{2
M x “

8ÿ

k“0

pA`M qk D´1{2
M x,

and for m • 1,
›››››pNM{2q: D´1{2

M x ´
mÿ

k“0

pA`M qk D´1{2
M x

›››››
1

§
?
n2s pMq?
dmin

exp

ˆ
´ m ` 1

2s pMq

˙
}x}2.

Proof. Let r denote the rank of M . Let q1, ..., qn denote orthonormal eigenvectors of A`M associated
with �1pA`M q, ...,�npA`M q respectively, Q denote the orthogonal matrix whose i-th column is qi,
and r⇤ denote the diagonal matrix of the �ipA`M q’s.

An orthogonal eigendecomposition of pNM{2q: is given by pNM{2q: “ Q⇤QJ, where ⇤ is the
diagonal matrix whose entries are given by

⇤i,i “
#
0, i “ r ` 1, ..., n

1
1´�ipA`M q , i “ 1, ..., r

.

So, for any t P rrs, pNM{2q:qt “ 1
1´�tpA`M qqt, where �tpA`M q P p0, 1q; and consequently,

0 § �tpA`M q † 1 is in the radius of convergence for the power series of 1
1´x , and hence

8ÿ

k“0

pA`M qk “
8ÿ

k“0

Qr⇤kQJqt “ qt

8ÿ

k“0

�k
t “ 1

1 ´ �tpA`M qqt.

Now, x K ker pMq implies D´1{2
M x K ker pNM q; and consequently, D´1{2

M x can be expressed as a
linear combination of q1, ..., qr. The first statement in the lemma now follows by linearity.

For the second statement, note that �minpN`M q “ �npN`M q{s pMq • 1{p2s pMqq, so �r pA`M q §
1 ´ 1{p2s pMqq. Since D´1{2

M x K qr`1, ..., qn,
›››pA`M qkD´1{2

M x
›››
2

§
ˆ
1 ´ 1

2s pMq

˙k }x}2?
dmin

.
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Using the fact that }x}1 § ?
n}x}2 for all x, for m • 1, we have

›››››p1{2NM q: D´1{2
M x ´

mÿ

k“0

pA`M qk D´1{2
M x

›››››
1

§ ?
n

›››››p1{2NM q: D´1{2
M x ´

mÿ

k“0

pA`M qk D´1{2
M x

›››››
2

§ ?
n

8ÿ

k“m`1

›››pA`M qk D´1{2
M x

›››
2

§
?
n2s pMq?
dmin

ˆ
1 ´ 1

2s pMq

˙m`1

}x}2

§
?
n2s pMq?
dmin

exp

ˆ
´ m ` 1

2s pMq

˙
}x}2.

Using Lemma 9, the proof of Lemma 4 is now straightforward.

Proof of Lemma 4. Let m • max
´
1, 2s pMq log

´ ?
ndmax2spMq?

dmin

¯¯
. By Lemma 9,

›››››D
1{2
M N`

:
MD´1{2

M x ´
mÿ

k“0

D1{2A`M
kD´1{2

M x

›››››
1

“
›››››D

1{2
M

˜
N`

:
MD´1{2

M x ´
mÿ

k“0

A`M
kD´1{2

M x

¸›››››
1

§
?
ndmax2s pMq?

dmin
exp

ˆ
´ m ` 1

2s pMq

˙
}x}2 § 1.

Using triangle inequality plus the observation that D1{2
M A`MD´1{2

M “ 1{2I ` 1{2AMD´1
M has each

column normalized to have absolute column sum at most 1,
›››D1{2

M N`
:
MD´1{2

M x
›››
1

§
›››››

mÿ

k“0

D1{2
M A`M

kD´1{2
M x

›››››
1

` 1 § m}x}1 ` 1.

Next, we will prove our result in Theorem 7. The corresponding algorithm pseudocode for
constructing the spectral sketch data structure is given in Algorithm 1. The algorithm pseudocode
for querying the spectral sketch data structure is given in Algorithm 2. The proof of Theorem 7
guarantees that it suffices to set t “ rOp1q and s “ rOps pMq ✏´1q in Algorithm 1 and Algorithm 2.
In the following, we use }x}A :“ xJAx to be the A-seminorm for any PSD matrix A.

Proof of Theorem 7. It suffices to assume, without loss of generality, that S is a set of unit vectors,
as at query time, for any vector b we can compute }b}2 in Opnnzpbqq time and rescale. Set � “

minp1,d3
minq�minpMq✏

2maxp1,d2
maxq

?
nmaxp1,dmaxq . By Theorem 10, in rOpnnz pMqq, whp. we can obtain access to a linear

operator Q� such that Q� can be applied to any b P S in time rOpnnzpMqq and }Q�b ´ M:b}M §
�}M:b}M “ �}b}M: . Then,

�minpMq}pQ�b ´ M:qb}22 § }pQ�b ´ M:qb}2M § �2}b}2M: § �2

�minpMq}b}22.

So, }pQ�b ´ M:qb}2 § �
�minpMq § ✏. Consequently, by triangle inequality, we have that

}2DMQ�b}1 § }2DMM:b}1 ` }2DMQ�b ´ 2DMM:b}1
where 2DMM:b “ D1{2

M pNM{2q:D´1{2
M b and }2DMQ�b ´ 2DMM:b}1 § 2

?
ndmax}Q�b ´

M:b}2 § ✏. Consequently,

}2DMQ�b}1 § }D1{2
M pNM{2q:D´1{2

M b}1 ` ✏.

17



Now, Lemma 4 guarantees that }2DMQ�b}1 § rOps pMq ` ✏q}b}1 “ rOps pMqq}b}1. Similarly,
ˇ̌
ˇxD´1

M b,D1{2
M pNM{2q:D´1{2

M by ´ xD´1
M b, 2DMQ�by

ˇ̌
ˇ “

ˇ̌
xD´1

M b, 2DMM:by ´ xD´1
M b, 2DMQ�by

ˇ̌

§ 2dmax

››D´1
M b

››
2

}pQ�b ´ M:qb}2

§ 2
dmax

dmin

�

�minpMq § ✏

ˆ
1

2d2min

˙
.

Lemma 3 guarantees that xD´1
M b, 2DMQ�by • Op1q}D´1{2

M b}22. Consequently,

}D´1
M b}1}2DMQ�b}1

xD´1{2
M b, 2DMQ�by

“ rOps pMqq}D´1
M b}1}b}1

}D´1{2
M b}22

“ rOps pMqqnsDM pbq “ rOps pMqq.

So, using Õp1q copies of a CountSketch matrix S P R rOpspMq✏´1qˆn, Lemma 2 guarantees that we
can compute an X such that whp.

ˇ̌
X ´ xD´1

M b, 2DMQ�by
ˇ̌

§ ✏xD´1
M b, 2DMQ�by.

Moreover, we showed above that
ˇ̌
ˇxD´1

M b, 2DMQ�by ´ xD´1
M b,D1{2

M pNM{2q: D´1{2
M by

ˇ̌
ˇ § ✏

ˆ
1

2d2min

˙

§ ✏xD´1
M b,D1{2

M pNM{2q: D´1{2
M by,

where the last line uses the observation from Lemma 3, that xD´1
M b,D1{2

M pNM{2q:D´1{2
M by •

1
2}D´1

M b}22. It now follows that
ˇ̌
ˇX ´ xD´1

M b,D1{2
M pNM{2q:D´1{2

M by
ˇ̌
ˇ § ✏xD´1

M b, 2DMQ�by ` ✏xD´1
M b,D1{2

M pNM{2q: D´1{2
M by

§ 2✏p1 ` ✏qxD´1
M b,D1{2

M pNM{2q: D´1{2
M by

§ 4✏xD´1
M b,D1{2

M pNM{2q: D´1{2
M by.

Thus, by Lemma 3, 1
2X «4✏ x 1

2D
´1
M b,D1{2

M pNM{2q: D´1{2
M by “ xb,M :by; hence, rescaling ✏ by a

constant factor of 4 yields the approximation guarantee (without changing the size of S by more than
constant factors).

Consequently, we see that by storing SDMQ� , we can support queries b P S. To justify the runtime
guarantee, note that Theorem 10 shows we can compute SDMQ� in rOpnnzpMqs pMq ✏´1q time,
by applying an approximate SDD system solver to each row in S. To support queries, we need only
store SDMQ� and S, which requires only rOpns pMq ✏´1q bits.

Finally, we justify the query complexity. The key observation is that S is rOp1q-column sparse.
Computing X requires taking the median of rOp1q quantities, each of which requires computing an
inner product involving an rOpnnzpbqq-sparse vector SD´1

M b. Using this fact, X can be computed in
rOpnnzpbq2q.

We can now provide a proof of Theorem 2, which follows almost immediately from Theorem 7.

Proof of Theorem 2. Let G “ pV,E,wq be a graph with r⌦p1q-expansion. As argued previously
(see Section 3.2), LG is SDD with rOp1q normalized condition number, ~�i,j K kerLG, and ~�i,j is
p2,DLGq- numerically sparse. To see why Theorem 2 holds, simply observe that we can boost the
whp. guarantee in Theorem 7, which holds for each fixed query, to hold whp. for all ~�i,j for i, j P V
by maintaining Oplogpnqq copies of the spectral sketch data structure guaranteed in Theorem 7 as
our sketch, and then, at query time, taking the median of the results of the outputs from querying
each of the Oplogpnqq copies of the sketch.
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Algorithm 1: SpectralSketchSDDInverse
Input: A matrix M P Rnˆn, error tolerance ✏ P p0, 1q, and integers s, t ° 0.
Output: A CountSketch matrix S P Rp3tqsˆn and rS P Rp3tqsˆn, an approximation of

2SDMM:
1 Set � as in the proof of Theorem 7;
2 Generate a random CountSketch matrix S P Rp3tqsˆn (see Theorem 4 of [42]) ;
3 Generate access to a linear operator Q� such that for all b K ker pMq,

}Q�b ´ M:b}M § �}M :b}M (See Theorem 10);
4 Compute rS “ 2SDMQ� ;
5 return pS, rSq

Algorithm 2: QuerySketchSDDInverse
Input: DM, output of Algorithm 1, query vector b, and integers s, t ° 0 as inputted to

Algorithm 1.
Output: An approximation to xb,M:by.

1 Set rb “ b{}b}2;
2 for i P r3ts do

3 xi “ 1
2xpSD´1

M
rbqrpi ´ 1qs ` 1 : piqssi, prSrbqrpi ´ 1qs ` 1 : piqssy ;

4 end

5 return }b}22mediantxiu.

Theorem 3 is now a direct corollary of Theorem 2. Finally, we provide the proof of Theorem 8.

Proof of Theorem 8. Let x K ker pAq. Note that for any }x}2 }Ax}2 “ pA1{2qxJAx. So, by the
`2 norm guarantees from Lemma 2, it suffices to build a CountSketch matrix S with s “ rO

`
pAq✏´2

˘

to guarantee that for any x K ker pAq, xSx,SAxy «✏ xx,Axy. The time to compute the sketch
SA is at most rOppAqnnzpAq✏´2q. Due to the column-sparsity of S, Sx is rOpnnzpxqq sparse, and
consequently, xSx,SAxy can be computed in rOpnnzpxq2q time.

6.3 Lower Bounds

Here we formalize the approach for lower bounds that was discussed in Section 4.

6.3.1 Proofs for Lower Bounds on Effective Resistance Estimation

In this section, we present proofs that were omitted from Section 4.2. First, we formalize a standard
randomized reduction from triangle detection in general graphs to triangle detection in tripartite
graphs in Lemma 10 below.
Lemma 10. Given an algorithm which can solve the triangle detection problem on an n-node

tripartite undirected graph in Opn�q time, we can produce a randomized algorithm which can solve

the triangle detection problem on an arbitrary n-node undirected graph G in rOpn�q time whp.

Proof. We first sample a tripartite subgraph H of G by assigning each vertex in G to a random
tripartition with equal probability 1/3 and deleting edges within each resulting tripartition. First,
note that if G has no triangles then H also has no triangles since H is a subgraph of G. Second,
observe that if G has a triangle ta, b, cu, it is also a triangle in H if each vertex ends up in a different
tripartition. This occurs with probability at least p1{3q3 “ 1{27 which is a constant. Therefore,
solving the triangle detection problem on H and returning the same output also successfully solves
the triangle detection problem on G with probability at least 1{27. We can repeat this randomized
procedure logpncq times to boost the success probability to at least 1´ n´c, which is whp. in n. This
randomized algorithm runs in rOpn�q time, completing the proof.
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Next, we establish some crucial properties of symmetric random signing that enables our results.
First, we show in Lemma 11 below that the symmetric random signing of the adjacency matrix of a
graph leads to a smaller spectral radius.
Lemma 11. Let G “ pV,Eq be an undirected unweighted graph on n nodes. Let sAG denote a

symmetric random signing of AG. With high probability, ⇢p sAq § rOp?
nq.

Proof. Let �2 :“
›››
∞

tu,vuPE pEu,vq2
›››
2

where Eu,v is the adjacency matrix of a graph with only a

single edge between u and v. Note that entries of E2
u,v indicates paths of length two in this graph.

Therefore, this is a diagonal matrix that satisfies
`
E2

u,v

˘
i,i

“ 1 if and only if i P tu, vu. Consequently,

�2 “

››››››

ÿ

tu,vuPE
pEu,vq2

››››››
2

“ }D}2 § dmax § n.

We can now write sA “ ∞
tu,vuPE ⇠u,vEu,v and apply the Matrix Rademacher concentration result

(Theorem 1.2) from [44], to get that for any constant c ° 1,

P
”
�n

` sA
˘

•
a
dmax logpcnq

ı
§ n exp

ˆ´cdmax logpnq
2dmax

˙
“ n

1

nc
“ n´c`1.

Next, we prove Lemma 6 presented in Section 4.2 which states that the symmetric random signing
preserves the non-zeroness of the entries of A2

G with constant probability.

Lemma 6. For i ‰ j, if pA2
Gqi,j “ 0, then p sA2

Gqi,j “ 0; if pA2
Gqi,j ° 0, P

“
|p sA2

Gqi,j | ° 1
‰

• 1{2.

Proof. Note that

` sA2
˘
i,j

“
nÿ

k“1

sAi,k
sAk,j

If A2
i,j “ 0, then G has no path of length exactly two between i and j, so each term Ai,kAk,j in the

summation above must be zero, and hence
` sA2

˘
i,j

“ 0, completing the first part of the lemma.

Since
` sA2

˘
i,j

is only supported on the integers, to prove the second statement, it suffices to show

that when
`
A2

˘
i,j

° 0, P
”���

` sA2
˘
i,j

��� “ 0
ı

is no larger than 1/2. To see this, note that if A2
i,j ‰ 0,

then then G has at least one path of length exactly 2 between i and j. That is, there exists a k1 P rns
such that Ai,k1Ak1,j “ 1. We can write

` sA2
˘
i,j

“
nÿ

k“1

⇠i,k⇠k,jAi,kAk,j

Because i ‰ j, for every k, ` P rns each ⇠i,k is always independent from any other ⇠`,j term appearing
in the sum. Moreover, if ⇠i,k appears in the sum, then ⇠k,i never appears in the sum. Therefore, for
each t⇠i,k⇠k,jukPrns are themselves independently chosen Rademacher random variables, and all
terms in the summation are independent. Separating out the k1-th entry,

` sA2
˘
i,j

“ ⇠i,k1⇠k1,j `
nÿ

k‰k1
⇠i,k⇠k,jAi,kAk,j

D“ ⇠1 ` Z,

where ⇠1 is a Rademacher random variable and Z :“ ∞n
k‰k1 ⇠i,k⇠k,jAi,kAk,j is independent from ⇠1.

For any value of Z, Pr⇠1 “ ´Zs § 1
2 . Therefore,

P
”` sA2

˘
i,j

“ 0
ı

§ 1

2
,

completing the second part of the result.
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Now, we prove Lemma 5 in two steps. First, we show in Lemma 12 that given an algorithm to solve
the all pairs effective resistance estimation problem on expanders, we can produce an algorithm to
solve the SDD effective resistance estimation problem specifically on SDD matrices with non-positive
offidiagonals. Then, we show in Lemma 14 that this algorithm can be used to produce an algorithm
to solve the general SDD effective resistance estimation problem.
Lemma 12. Given an algorithm that solves the all pairs effective resistance estimation problem on

graphs with r⌦p1q-expansion in rOpn2✏´cq time for some c ° 0, we can produce an algorithm which

takes as input an SDD matrix M “ I ´ Q such that Q is entrywise non-negative and ⇢ pQq § 1
3 ,

and solves the SDD effective resistance estimation problem for M in rOpn2✏´cq time.

Proof. Let v :“ pI ´ Qq . Note that v is entrywise non-negative. Consider the matrix

L :“
ˆ
I 0
0 }v}1

˙
´

ˆ
Q v
vJ 0

˙
.

and note that it is the Laplacian matrix. Since M is a principal submatrix of L, we have by the
eigenvalue interlacing theorem [57] that �1 pMq § �2 pLq. But since ⇢ pQq § 1{3, we have that
�1 pMq § 2{3 and consequently �2 pLq • 2{3. Therefore, L is the Laplacian of an r⌦p1q-expander
(see Cheeger’s Inequality Theorem 6). We claim that for i, j P n,

~�J
i,jL

:~�i,j “ ~�J
i,jM

´1~�i,j ,

which is sufficient to prove the lemma. Note that for any x P Rn, y P R, and ↵ P R,

L

ˆ
x ` ↵
y ` ↵

˙
“

ˆ
pI ´ Qqx ` vJx
vJx ´ }v}1 y

˙
.

Let

L:~�i,j “
ˆ
zx
zy

˙
.

Then, note that

L

ˆ
zx ´ zy

0

˙
“

ˆ
~�i,j
0

˙
ùñ pI ´ Qqpzx ´ zy q “ ~�i,j .

Consequently,
~�J
i,jpI ´ Qq´1~�i,j “ ~�J

i,jpzx ´ zy q “ ~�J
i,jzx ´ zy~�

J
i,j “ ~�J

i,jzx “ ~�J
i,jL

:~�i,j .

Now, to prove Lemma 14, we first show a useful property of block symmetric matrices in the helper
lemma below.

Lemma 13. Suppose A “
ˆ
X Y
Y X

˙
where X,Y P Rnˆn

. Then,

~�J
i,jpX ´ Yq~�i,j “ 1

2

”
~�J
i,n`iA~�i,n`i ` ~�J

j,n`jA~�j,n`j

ı
´ ~�J

i,n`jA~�i,n`j ` ~�J
i,jA~�i,j .

Proof. Note that
~�J
i,jpX ´ Yq~�i,j “ pXi,i ` Xj,jq ´ 2Xi,j ` 2Yi,j ´ pYi,i ` Yj,jq.

Meanwhile,
1

2
~�J
i,n`iA~�i,n`i “ pXi,i ´ Yi,iq,

1

2
~�J
j,n`jA~�j,n`j “ pXj,j ´ Yj,jq,

´~�J
i,n`jA~�i,n`j “ ´Xi,i ` 2Yi,j ´ Xj,j ,

~�J
i,jA~�i,j “ Xi,i ´ 2Xi,j ` Xj,j ,

and adding these four terms together concludes the proof.
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Lemma 14. Suppose we are given an algorithm which takes as input an SDD matrix M “ I´Q such

that Q is entrywise non-negative and ⇢ pQq § 1
3 , and solves the SDD effective resistance estimation

problem for M in rOpn2✏´cq time. Then, we can produce an algorithm which takes as input an SDD

matrix M1 “ I´Q1
and ⇢ pQ1q § 1

3 , and solves the SDD effective resistance estimation problem for

M1
in rOpn2✏´cq time.

Proof. We can decompose Q1 as Q1 “ P ´ N where P is a matrix which contains only the positive
offdiagonal entries of Q1 and ´N is a matrix which contains all the negative offdiagonal entries.
Therefore both P and N themselves are entrywise non-negative. We define

Q :“
ˆ
P N
N P

˙
.

Note that Q is also entrywise non-negative. We also have ⇢pQq § 1{3. To see this, assume for the
sake of contradiction that Q has an eigenvalue � ° 1{3. This means that there must exist some
x P R2n such that Qx “ �x. Let x “ rx1;x2s where x1, x2 P Rn. The eigenvalue equation
then implies that Px1 ` Nx2 “ �x1 and Nx1 ` Px2 “ �x2. Subtracting these equations yields
pP ´ Nqpx1 ´ x2q “ �px1 ´ x2q which means that � is also an eigenvalue of Q1. This is a
contradiction since ⇢pQ1q § 1{3. Therefore, ⇢pQq § 1{3.

Now, consider the following block decomposition of Qk

Qk “
ˆ
X Y
Y X

˙

where X,Y P Rnˆn. We will show by induction that Q1k “ pP ´ Nqk “ X ´ Y. In the base
case, when k “ 1, this is trivially true. Now, assume that the claim holds for all k § m for some m.
Consider the following block decomposition of Qm

Qm “
ˆ
W Z
Z W

˙
.

By the inductive hypothesis, we know that Q1m “ pP ´ Nqm “ W ´ Z. Now, we have that

Qm`1 “
ˆ
W Z
Z W

˙ ˆ
P N
N P

˙
“

ˆ
WP ` ZN WN ` ZP
WN ` ZP WP ` ZN

˙
,

and also that

Q1m`1 “ pW ´ ZqpP ´ Nq “ WP ´ ZP ´ WN ` ZN “ pWP ` ZNq ´ pWN ` ZPq.
Hence, the claim follows by induction. By Lemma 13, it follows that

~�J
i,jQ

1k~�i,j “ 1

2

”
~�J
i,n`iQ

k~�i,n`i ` ~�J
j,n`jQ

k~�j,n`j

ı
´ ~�J

i,n`jQ
k~�i,n`j ` ~�J

i,jQ
k~�i,j . (4)

Now we can use the power series expansion of pI ´ Qq´1 to say, for any u, v P r2ns,

~�J
u,vpI ´ Qq´1~�u,v “

8ÿ

k“0

~�J
u,vQ

k~�u,v.

Similarly, for any i, j P rns,

~�J
i,jpI ´ Q1q´1~�i,j “

8ÿ

k“0

~�J
i,jQ

1k~�i,j .

So, by linearity and (4), it follows that

~�J
i,jpI ´ Q1q´1~�i,j “1

2

”
~�J
i,n`ipI ´ Qq´1~�i,n`i ` ~�J

j,n`jpI ´ Qq´1~�j,n`j

ı

´ ~�J
i,n`jpI ´ Qq´1~�i,n`j ` ~�J

i,jpI ´ Qq´1~�i,j ,

and this completes the proof.
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Lemma 5 follows directly from Lemma 12 and Lemma 14. Finally, we prove Theorem 9 below.
Theorem 9. Given an algorithm which solves the SDD effective resistance estimation problem in

rOpn2✏´cq time, we can produce a randomized algorithm that solves the triangle detection problem

in rOpn2p1`cqq time whp.

Proof. As G is tripartite, let V “ V1 \ V2 \ V3 be the partition of G such that no edge has
both endpoints in Vi for some i P r3s. Let E1,2 :“ ttu, vu P E : u P V1, v P V2u, and let
H :“ pV,EzE1,2q. Let A “ AH denote the adjacency matrix of H and let sA be a random signing
of A.

Suppose that G has a triangle. Then, there exists a pair of vertices u P V1, v P V2 such that
tu, vu P E12 and H contains a path of length two between u and v. Furthermore, observe that
because there are no edges between V1 and V2 in H , H has no paths of length three between V1 and
V2. Consequently, in order to find a triangle in G, it suffices to check, for each i P V1, j P V2 with
ti, ju P E1,2, whether there exists a path of length two between node i and node j in H . In other
words, we need to check if there exists some ti, ju P E1,2 such that A2

i,j ° 0. By Lemma 6, we can
instead check if

ˇ̌ sA2
i,j

ˇ̌
° 0 and we would still correctly detect a triangle with probability at least 1/2.

Note that this check requires requires only OpnnzpAqq additional time, since |E1,2| † nnzpAq.

So, our goal now is to compute an accurate enough estimate of
ˇ̌ sAi,j

ˇ̌2 for all ti, ju P E1,2 given
the effective resistance estimate rri,j . To this end, let N “

`
I ´ ↵

n
sA

˘´1 for some ↵ † 1
3 . Note

that the max row-sum of sA is 1/3, so the inverse exists. Lemma 11 guarantees that with high
probability, ⇢

` sA
˘

§ rOp?
dmaxq “ rOp?

nq. We condition on this event in the remainder of the proof.
Consequently, we can express N as a power series,

N “
8ÿ

k“0

´↵

n

¯k sAk.

Now, let rN denote the truncation of N at the third term in this power series. That is, rN “
I ` ↵

n
sA ` ↵2

n2
sA2. Therefore, we have for all ti, ju P E1,2,

sA2
i,j “ n2

↵2
rNi,j .

Noticing that Ni,j “ Ni,i`Nj,j´ri,j
2 motivates us to define our estimate of sA2

i,j that we denote Pi,j

as follows

Pi,j :“
n2

↵2

«
rNi,i ` rNj,j ´ rri,j

2

�
.

Now, observe that rNi,i “ 1 ` ↵2

n2
sA2

i,i, and sA2
i,i is simply the degree of vertex i in H . Note that the

random signing does not affect the fact that the diagonal entries of the square of the adjacency matrix
are the degrees. Therefore, rNi,i can also be computed for all i in only OpnnzpAqq time. The additive
error between our estimate Pi,j and

ˇ̌ sA
ˇ̌2
i,j

takes the form

ˇ̌
Pi,j ´ sA2

i,j

ˇ̌
“

ˇ̌
ˇ̌
ˇ
n2

↵2

«
rNi,j ´

rNi,i ` rNj,j ´ rri,j
2

�ˇ̌
ˇ̌
ˇ .

By triangle inequality and plugging in the definition of ri,j , we break up the error into four pieces

ˇ̌
Pi,j ´ sA2

i,j

ˇ̌
§ n2

↵2

”ˇ̌
ˇ rNi,j ´ Ni,j

ˇ̌
ˇ `

ˇ̌
ˇ rNi,i ´ Ni,i

ˇ̌
ˇ {2 `

ˇ̌
ˇ rNj,j ´ Nj,j

ˇ̌
ˇ {2 ` |rri,j ´ ri,j | {2

ı
. (5)

We now bound each term separately. Consider any i P V1. Since, H contains no triangle containing i,` sA3
˘
i,i

“ 0. So, we have that

���Ni,i ´ rNi,i

��� “
�����

8ÿ

k“4

↵k

nk

` sAk
˘
i,i

����� §
›››››

8ÿ

k“4

↵k

nk
sAk

›››››
2
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§
8ÿ

k“4

rO
ˆ

↵?
n

˙k

“
rOp ↵?

n
q4

1 ´ rOp ↵?
n

q

Similarly, for any i P V1 and j P V2, note that sA3
i,j “ 0 because H has no edges between V1 and V2,

and there are no edges within each tripartition Vi. Consequently, by a similar argument as above,
���Ni,j ´ rNi,j

��� “
8ÿ

k“4

p sA4qi,j “ 1

2

8ÿ

k“4

eJ
i p sAkqei ` eJ

j p sAkqej ´ ~�J
i,jp sAkq~�i,j

“ 1

2

´
eJ
i ei ` eJ

j ej ` ~�J
i,j
~�i,j

¯ ›››››

8ÿ

k“4

↵k

nk
sAk

›››››
2

§ 2
8ÿ

k“4

rO
ˆ

↵?
n

˙k

“
2 rOp ↵?

n
q4

1 ´ rOp ↵?
n

q
.

Finally, consider the magnitude of the approximation error between rri,j and ri,j . We have

|ri,j ´ rri,j | § ✏ |ri,j | .

Note that |ri,j | “
ˇ̌
ˇ~�J

i,jN~�i,j
ˇ̌
ˇ § }~�i,j}2}N} § 2}

`
I ´ ↵

n
sA

˘´1 } § 2
1´ ↵

n } sA}
2

§ 2
1´ rOp ↵?

n
q . Plugging

these estimates of the errors into (5), we get

ˇ̌
Pi,j ´ sA2

i,j

ˇ̌
§ n2

↵2

»

—–
rO

´
↵?
n

¯4
` ✏

1 ´ rO
´

↵?
n

¯

fi

�fl .

Since
��sA2

i,j

�� P t0, 1u, to compute sA2
i,j , we need approximate it to additive 1/2 error. That is, we

require

1

1 ´ rOp ↵?
n

q

„
rOp↵2q ` ✏

n2

↵2

⇢
† 1

2
,

or equivalently,

✏ †
↵2 ´ rOp ↵3?

n
q

2n2
´

rOp↵4q
n2

“ rO
ˆ

1

n2

˙
,

where the last step follows from the fact that we can take ↵ to be a sufficiently small constant.
Therefore, estimates rri,j with ✏ “ rOpn´2q for all ti, ju P E1,2 are sufficient to determine if��sA2

i,j

�� is 0 or 1. As noted earlier, checking this for all edges in E1,2 takes OpnnzpAqq additional
time. Therefore, by plugging in ✏ “ rOpn´2q, we can use an algorithm that solves the SDD
effective resistance estimation problem in rOpn2✏´cq time to solve the triangle detection problem in
rOpn2n2cq “ rOpn2p1`cqq time whp. and this completes the proof.

Lemma 7. Given an algorithm to solve the all edges effective resistance estimation problem (i.e.,

Definition 1 where S “ E) in rOpm✏´cq time, we can produce an algorithm to solve the all pairs

effective resistance estimation problem in rOpn2✏´cq time for some c ° 0.

Proof. The idea is that, given a graph G on n nodes and m edges, we can always add to it a complete
graph of edges of sufficiently small weight that would not change the effective resistances much. Let
LG be the graph Laplacian and H be the graph obtained by adding a complete graph with uniform
edge weight ↵ ° 0. Then, LH “ LG ` ↵pnI ´ T q. It suffices to find ↵ small enough such that
xTL:

Hx «✏ xTL:
Gx for all x K . First, we use the fact that if xTLHx «✏ xTLGx, then we also

have xTL:
Hx «✏ xTL:

Gx [28]. To show the former, we need

xT pLG ` ↵pnI ´ T q ´ LGqx § ✏xTLGx
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ùñ ↵ § ✏
xTLGx

xT pnI ´ T qx

for all x K . Therefore, taking ↵ § ✏�minpLGq
n is sufficient to have xTL:

Hx «✏ xTL:
Gx for all

x K . As a consequence, we can estimate all pairs effective resistances on G by estimating all edges
effective resistances on H . So, any combinatorial Õpm✏´cq time algorithm for the all edges effective
resistance estimation problem would immediately imply a combinatorial Õpn2✏´cq time algorithm
for all pairs effective resistance estimation.

6.3.2 Proofs for Lower Bounds on Spectral Sum Estimation

In this section, we present proofs for the results presented in Section 4.3. First, we prove Lemma 8
below.
Lemma 8. If tr

`
A3

G

˘
“ 0, then tr

` sA3
G

˘
“ 0, and if tr

`
A3

G

˘
° 0 then P

“ˇ̌
tr

` sA3
G

˘ˇ̌
° 0

‰
• 1{4.

Proof. Again for convenience, let sA “ sAG. Denote by ⇠ab “ ⇠ba the Rademacher random variable
used to decide the sign of edge pa, bq. We can write

tr
` sA3

˘
{6 “

ÿ

triangles ti,j,ku in G

⇠ij⇠jk⇠ki “: T (6)

If tr
`
A3

˘
° 0, then G must have at least one triangle. Consider the following cases:

1. G has an odd number of triangles. In this case, since each term in the sum in (6) is either `1
or ´1, and there is an odd number of terms in the sum, so tr

` sA3
˘

° 0 wp 1.

2. G has an even number of triangles. First, define T pa, bq :“∞
triangles ta,b,ku that contain ta,bu ⇠ab⇠bk⇠ak We now subdivide this into two cases:

(a) There exists an edge ta, bu that is part of an odd number of triangles. We can decompose
the sum in (6) as follows:

tr
` sA3

˘
{6 “ T pa, bqloomoon

S1

`T ´ T pa, bqlooooomooooon
S2

Suppose there exists some realization of the random variables ⇠ij such that
tr

` sA3
˘

{6 “ 0. Since S1 has odd terms, it must be non-zero. By flipping the
sign of ⇠ab, we can flip the sign of S1, and so ´S1 ` S2 ‰ 0. Therefore, for every
configuration the variables ⇠ij that result in a 0 trace, there exists an equally likely
configuration that results in tr

` sA3
˘

{6 ‰ 0. Therefore, P
“ˇ̌
tr

` sA3
˘ˇ̌

° 0
‰

• 1{2.
(b) Every edge in G is a part of an even number of triangles. Let ta, b, cu be a triangle in

G. In this case, we decompose (6) as follows:

tr
` sA3

˘
{6 “ ⇠ab⇠bc⇠aclooomooon

S1

`T pa, bq ´ ⇠ab⇠bc⇠acloooooooooomoooooooooon
S2

`T pb, cq ´ ⇠ab⇠bc⇠acloooooooooomoooooooooon
S3

` T ´ T pa, bq ´ T pb, cq ` ⇠ab⇠bc⇠acloooooooooooooooooooomoooooooooooooooooooon
S4

Consider all 4 possible values of the pair of random variables t⇠ab, ⇠bcu. Since each Si

has an odd number of terms, Si ‰ 0 for all i. We observe that it is not possible for all 4
equally likely configurations of t⇠ab, ⇠bcu to result in S1 ` S2 ` S3 ` S4 “ 0, so at
least one configuration must result in T ‰ 0. Therefore, P

“ˇ̌
tr

` sA3
˘ˇ̌

° 0
‰

• 1{4.

To prove our main hardness result Theorem 5, we first present a hardness result for a more general
class of spectral sums in the theorem below. It closely resembles Theorem 15 from [33], but with
improved bounds as a result of the random signing.
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Theorem 11 (Improved randomized version of Theorem 15 from [33]). Let f : R` Ñ R`
be

a function such that it can be expressed as fpxq “ ∞8
k“0 ckpx ´ 1qk where |ck{c3| § hk´3

for

k ° 3 and x P p0, 2q. Given an algorithm which takes as input a graph G “ pV,Eq on n
nodes and, in O pn�✏´cq time, outputs an estimate X «✏1{9 Sf pI ´ � sAGq with � and ✏1 satisfying

� “ min
 

p?
n logp↵nqq´1, p10n3h logp↵nqq´1

(
and ✏1 “ min

 
1,

ˇ̌
c3�3{pc0nq

ˇ̌
,
ˇ̌
c3�{pc2n2q

ˇ̌(

for some constant ↵ ° 1, we can produce an algorithm that solves the triangle detection problem in

O
`
n2 ` n�✏´c

1

˘
time whp.

Proof. For convenience, we write A “ AG. The proof closely follows the proof of Theorem 15
from [33], but we replace A with its symmetrically random signed version that we denote sA. We
present a full proof here for completeness.

First, we note that by lemma 11, we have that } sA}2 § ?
n log↵n whp. for some constant ↵ ° 1.

We define sB “ I ´ � sA and consequently sB is PSD whp. Now, using the definition of f , we have
nÿ

i“1

�ip sBq “
nÿ

i“1

fp1 ´ ��ip sAqq “
nÿ

i“1

8ÿ

k“0

ckp��ip sAqqk “
8ÿ

k“0

ck�
ktr

` sAk
˘
.

We analyze the tail of this power series. Specifically, we have
ˇ̌
ˇ̌
ˇ

8ÿ

k“4

ck�
ktr

` sAk
˘
ˇ̌
ˇ̌
ˇ § |c3| �3

8ÿ

k“4

ˇ̌
tr

` sAk
˘ˇ̌
�k´3

ˇ̌
ˇ̌ck
c3

ˇ̌
ˇ̌ . (7)

Now, we have
ˇ̌
tr

` sAk
˘ˇ̌

§ } sA}k´2
2

›› sA
››
F

§ nk{2`1 whp. and further nk{2`1 § n3pk´3q for all
k ° 3. Therefore, using the definition of � as in the theorem we get that whp.,

ˇ̌
tr

` sAk
˘ˇ̌
�k´3

ˇ̌
ˇ̌ck
c3

ˇ̌
ˇ̌ § 1

10k´3
for all k ° 3.

Plugging into Equation (7), we get
ˇ̌
ˇ̌
ˇ

8ÿ

k“4

ck�
ktr

` sAk
˘
ˇ̌
ˇ̌
ˇ § |c3| �3

9
.

The rest of the proof is essentially identical to the steps in the proof of Theorem 15 in [33], but we
reproduce them here for completeness.

Using the simple facts tr
` sA0

˘
“ n, tr

` sA
˘

“ 0 and tr
` sA2

˘
§ n2, we have

c0tr
` sA0

˘
` c1tr

` sA
˘

` c2tr
` sA2

˘
§ |c3| �3

`
c0n{pc3�3q ` c2n

2{pc3�q
˘

§ |c3| �3
✏1

.

Given X , in Opnnzp sAqq time, we can compute

X ´ c0n ´ c2�
2tr

` sA2
˘

“ c3�
3tr

` sA3
˘

˘ |c3| �3
9

˘ ✏1
9

ˆ |c3| �3
9

` c3�
3tr

` sA3
˘

` |c3| �3
✏1

˙

“ c3�
3

„
tr

` sA3
˘ ˆ

1 ˘ 1

20

˙
˘ 1

3

⇢
.

This is sufficient to detect if
ˇ̌
tr

` sA
˘ˇ̌

“ 0 or if
ˇ̌
tr

` sA3
˘ˇ̌

• 1. The final result then follows by
applying Lemma 8.

We now prove the main result Theorem 5.
Theorem 5. Given a combinatorial algorithm which on input B P Rnˆn

outputs a spectral sum

estimate Y «✏ Sf pBq in O pn�✏´cq time with � • 2 for the spectral sums in Table 3, we can

produce a randomized combinatorial algorithm that can detect a triangle in an n-node graph whp. in

rO pn�`↵cq time, where ↵ is a scaling that depends on properties of the function f (see Table 3 for

values of ↵ for several spectral sums.)

Proof. We apply Theorem 11 to the specific spectral sums in Table 3.
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Schatten 3-norm We have fpxq “ x3. Therefore, ck “ 0 for k ° 3. So we apply Theorem 11
with h “ 0 and hence � “ rOp 1?

n
q and ✏1 “ rOp 1

n2.5 q.

Schatten p-norm p ‰ 1, 2 We have fpxq “ xp. Using the Taylor series about 1, we have
ck
c3

§ pk´3 for all k ° 3 as well as
ˇ̌
ˇ c0c3

ˇ̌
ˇ “

ˇ̌
ˇ 1
ppp´1qpp´2q

ˇ̌
ˇ §

ˇ̌
ˇ 1
2mintp,pp´1q,pp´2qu

ˇ̌
ˇ and similarly

ˇ̌
ˇ c2c3

ˇ̌
ˇ §

ˇ̌
ˇ 1
2mintp,pp´1qu

ˇ̌
ˇ. Therefore, with h “ p, we apply Theorem 11 with � “ rOp 1

n3p q and

✏1 “ c3�
3

c0n
“ rOp |mintp,pp´1q,pp´2qu|

n10p3 q, which gives the result.

SVD Entropy We have fpxq “ x log x. For x P p0, 2q, using the Taylor Series about 1 we can write
x log x “ ∞8

k“0 ckpx ´ 1qk where c0 “ 1 logp1q “ 0, c1 “ logp1q ` 1 “ 1, and |ck| “ pk´2q!
k! § 1

for k • 2. So we have ck † c3 for all k ° 3, c0
c3

“ 0 and c2
c3

“ 1
3 . So with h “ 1, Applying Theorem

11 with � “ rOp 1
n3 q and ✏1 “ �

3n2 “ rOp 1
n5 q gives the result.

Log Determinant We have fpxq “ log x. For x P p0, 2q, using the Taylor Series about 1 we can
write log x “ ∞8

k“0 ckpx ´ 1qk where c0 “ 0, |ci| “ 1{i for i • 1. Again we have ck † c3 for
all k ° 3 and c0

c3
“ 0 while c2

c3
“ 3

2 . So with h “ 1, Applying Theorem 11 with � “ rOp 1
n3 q and

✏1 “ �
3n2 “ rOp 1

n5 q gives the result.

Trace of Exponential We have fpxq “ ex. Using the Taylor Series about 1 we can write ex “
∞8

k“0
epx´1qk

k! . We have c0
c3

“ 6, c2
c3

“ 3, and ck † c3 for all k • 3. So with h “ 1, Applying
Theorem 11 with � “ rOp 1

n3 q and ✏1 “ c3�
3

c0n
“ rOp 1

n10 q gives the result.
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