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A1 Proofs
Lemma 1. Consider a weighted sum of Ns − 1 labeled source distributions defined as DS̄ :=∑Ns−1

i=1 αiDSi , where αis are mixture co-efficients s.t.
∑Ns−1

i=1 αi = 1, and f is a scoring function.
Then

d(ρ)
f,F
(
DS̄ ,DST

)
≤

Ns−1∑
i=1

αid
(ρ)
f,F
(
DSi ,DST

)
Proof: Consider a mixture distribution of Ns − 1 source domains with support Ω = X × Y . Then

d(ρ)f,F (DS̄ ,DST
) = supf ′∈F

(
EDST

[
Φρ ◦ ρf ′(., hf )

]
− EDS̄

[
Φρ ◦ ρf ′(., hf )

])
= supf ′∈F

(∫∫
Ω

DST
(.) Φρ ◦ ρf ′(x, hf ) dΩ−

∫∫
Ω

DS̄(.) Φρ ◦ ρf ′(x, hf )dΩ

)
= supf ′∈F

(∫∫
Ω

DST
(.) Φρ ◦ ρf ′(x, hf ) dΩ−

∫∫
Ω

Ns−1∑
i=1

αiDSi
(.) Φρ ◦ ρf ′(x, hf ) dΩ

)

since
Ns−1∑
i=1

αi = 1
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= supf ′∈F

(∫∫
Ω

Ns−1∑
i=1

αiDST
(.) Φρ ◦ ρf ′(x, hf ) dΩ−

∫∫
Ω

Ns−1∑
i=1

αiDSi(.) Φρ ◦ ρf ′(x, hf ) dΩ

)

= supf ′∈F

Ns−1∑
i=1

αi

(∫∫
Ω

DST
(.) Φρ ◦ ρf ′(x, hf ) dΩ−

∫∫
Ω

DSi(.) Φρ ◦ ρf ′(x, hf ) dΩ

)
From sub-additivity of sup function, we get:

≤ αi

Ns−1∑
i=1

supf ′∈F

(∫∫
Ω

DST
(.) Φρ ◦ ρf ′(x, hf ) dΩ−

∫∫
Ω

DSi
(.) Φρ ◦ ρf ′(x, hf ) dΩ

)

=

Ns−1∑
i=1

αid
(ρ)
f,F (DSi

,DST
)

Thus, we have:

d(ρ)f,F (DS̄ ,DST
) ≤

Ns−1∑
i=1

αid
(ρ)
f,F (DSi

,DST
)

Theorem 1. Consider a scoring function f , unlabeled source domain DST
and a mixture of Ns −

1 source distributions denoted as DS̄ :=
∑Ns−1

i=1 αiDSi , where αis is mixture co-efficients s.t.∑Ns−1
i=1 αi = 1. Then the error on the unlabeled source DST

is bounded as:

errDST
(hf ) ≤

Ns−1∑
i=1

αi

(
err

(ρ)
DSi

(f) + d(ρ)f,F
(
DSi ,DST

))
+λ̂

Proof: For a setting with a single labeled and unlabeled domain in the DA setting, it has been shown
that the error bound on the unlabeled domain is bounded as follows [40]:

errDST
(hf ) ≤

(
err

(ρ)
DS

(f) + d(ρ)f,F (DS ,DST
)

)
+ λ

where λ is the ideal combined margin loss independent of the scoring function and is defined as
λ = minf∗∈F

(
err

(ρ)
DS

(f∗) + err
(ρ)
DST

(f∗)
)

. We herein leverage this to provide an upper bound for
the error on an unlabeled source domain when multiple labeled source domains are available, as
shown below.

errDST
(hf ) ≤ (err

(ρ)
DS̄

(f) + d(ρ)f,F (DS̄ ,DT ) + λ̂

where λ̂ = err
(ρ)
DS̄

(f∗) + err
(ρ)
DST

(f∗)). We know that ∀f ∈ F :

err
(ρ)
DS̄

(f) =

Ns−1∑
i=1

αierr
(ρ)
DSi

(f)

From the above result, we get:

errDST
(hf ) ≤

(Ns−1∑
i=1

(
αierr

(ρ)
DSi

(f)
)
+ d(ρ)f,F (DS̄ ,DST

)

)
+ λ̂

From Lemma 1, we get an upper bound on the MDD between the mixture distribution and unlabeled
source domain. Therefore the upper bound for the unlabeled source error is given by:

errDST
(hf ) ≤

Ns−1∑
i=1

αi

(
err

(ρ)
DSi

(f) + d(ρ)
f,F (DSi

,DST
)

)
+ λ̂

Lemma 2. Let d(ρ)f,F
(
DSi

,DSk

)
≤ ϵ ∀i, k ∈

{
1, 2, . . . , Ns

}
and f be a scoring function. Then the

following inequality holds for the MDD between any pair of domains D′,D′′ ∈ Λs:

d(ρ)f,F
(
D′,D′′)≤ ϵ
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Proof: Consider two domains, D′ and D′′ on the convex hull ΛS of Ns source domains with
support Ω = X × Y . Consider also D′ =

∑Ns

i=1 πiDSi(.) and D′′ =
∑Ns

k=1 πkDSk
(.), where∑Ns

i=1 πi = 1 and
∑Ns

k=1 πk = 1,. The MDD between D′ and D′′ can be written as:

d(ρ)f,F (D
′,D′′) = supf ′∈F

(
ED′′

[
Φρ ◦ ρf ′(., hf )

]
− ED′

[
Φρ ◦ ρf ′(., hf )

])
= supf ′∈F

(∫∫
Ω

D′′(.) Φρ ◦ ρf ′(x, hf ) dΩ−
∫∫

Ω

D′(.) Φρ ◦ ρf ′(x, hf ) dΩ

)
= supf ′∈F

(∫∫
Ω

Ns∑
k=1

πkDSk
(.) Φρ ◦ ρf ′(x, hf ) dΩ−

∫∫
Ω

Ns∑
i=1

πiDSi
(.) Φρ ◦ ρfx(x, hf ) dΩ

)

Since
Ns∑
i=1

πi = 1and
Ns∑
k=1

πk = 1,we get :

= supf ′∈F

(∫∫
Ω

Ns∑
k=1

Ns∑
i=1

πkπiDSk
(.) Φρ ◦ ρf ′(x, hf ) dΩ−

∫∫
Ω

Ns∑
i=1

Ns∑
k=1

πiπkDSi
(.) Φρ ◦ ρf ′(x, hf ) dΩ

)

= supf ′∈F

Ns∑
i=1

Ns∑
k=1

πiπk

(∫∫
Ω

DSk
(.) Φρ ◦ ρf ′(x, hf ) dΩ−

∫∫
Ω

DSi
(.) Φρ ◦ ρf ′(x, hf ) dΩ

)
From sub-additivity of the sup function:

≤
Ns∑
i=1

Ns∑
k=1

πiπksupf ′∈F

(∫∫
Ω

DSk
(.) Φρ ◦ ρf ′(x, hf ) dΩ−

∫∫
Ω

DSi
(.) Φρ ◦ ρf ′(x, hf ) dΩ

)

=

Ns∑
i=1

Ns∑
k=1

πiπk

(
d(ρ)f,F (DSi

,DSk
)
)

Given that d(ρ)f,F (DSi
,DSk

) ≤ ϵ ∀i, k ∈
{
1, 2, . . . , Ns

}
,we get:

d(ρ)f,F (D
′,D′′) ≤ ϵ

Theorem 2. Consider a mixture of Ns source distributions, scoring function f, unseen domain DUm
,

and γ = d(ρ)f,F
(
D̄U ,DUm

)
where D̄U is the projection of DUm

onto the convex hull of the sources i.e.

D̄U = argminπ1,π2,...,πNs
d(ρ)
f,F

(∑Ns

i=1 πiDSi
,DUm

)
,
∑Ns

i=1 πi = 1. Then, the unseen target error is
bounded as follows:

errDUm
(hf ) ≤

Ns∑
i=1

πi

(
err

(ρ)
DSi

(f)
)
+ϵ+ γ + λ̄

Proof: Motivated by Theorem 1, we now analyze the error for an unseen target domain and provide a
bound w.r.t. a mixture distribution of Ns labeled source domains as shown below.

errDUm
(hf ) ≤

Ns∑
i=1

πi(err
ρ
Si
(f) + d(ρ)

f,F (DSi
,DUm

)) + λ̄

Using sub-additivity of the sup function, we get:

d(ρ)f,F (DSi
,DUm

) ≤ d(ρ)
f,F (DSi

, D̄U ) + d(ρ)
f,F (D̄U ,DUm

)

Using Lemma 2 and the definition of γ:

d(ρ)f,F (DSi
,DUm

) ≤ ϵ+ γ

Thus, we now upper-bound
∑Ns

i=1 πid
(ρ)
f,F (DSi

,DUm
) by ϵ + γ. Also, in Theorem 1, λ̂ depended

on the joint ideal loss between multiple labeled sources and the unlabeled one. Since we have an

unseen target in DG, we define λ̄ = minf∗∈F

(∑Ns

i=1 πierr
(ρ)
DSi

(f∗) + err
(ρ)
DUm

(f∗)

)
, which is the

joint ideal error between multiple sources and unseen domain. Thus, using the above results, we can
upper bound the unseen target error as shown in Theorem 2.
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Corollary 1. Consider a mixture of Ns source distributions, scoring function f, un-
seen domain DUm , γ = d(ρ)f,F

(
DUm , D̄U

)
, and d(ρ)

f,F
(
DSi′ ,DSk′

)
where d(ρ)f,F

(
DSi′ ,DSk′

)
≥

d(ρ)f,F
(
DSi ,DSk

)
∀i, k, i′, k′ ∈

{
1, 2, . . . , Ns

}
. Then the unseen target error is bounded as follows:

errDUm
(hf ) ≤

Ns∑
i=1

πi

(
err

(ρ)
DSi

(f)
)
+d(ρ)f,F

(
DSi′ ,DSk′

)
+γ + λ̄

Lemma 3. [40]. For any δ > 0, with probability 1− 2δ, the following holds simultaneously for any
scoring function f :∣∣∣∣d(ρ)f,F

(
D̂Si , D̂Sk

)
−d(ρ)f,F

(
DSi ,DSk

)∣∣∣∣ ≤ k

ρ
Rni,DSi

(
ΠHF

)
+
k

ρ
Rnk,DSk

(
ΠHF

)
+

√
log 2

δ

2ni
+

√
log 2

δ

2nk

Lemma 4. [40]. Let Π1F = {x 7→ f(x, y)|y ∈ Y, f ∈ F}. Then for any δ > 0, for a fixed ρ > 0,
with probability atleast 1− δ, the following holds for all scoring function f ∈ F:

|errρDSi
(f)− errρ

D̂Si

(f)| ≤ 2k2

ρ
Rni,DSi

(Π1F) +

√
log 2

δ

2ni

A simple corollary of this lemma is as follows:
errρDSi

(hf ) ≤ errρDSi
(f)

≤ errρ
D̂Si

(f) +
2k2

ρ
Rni,DSi

(Π1F) +

√
log 2

δ

2ni

As defined in [40], the term ΠHF can be interpreted as the inner product between the vector fieldsH
and F defined as ΠHF = ⟨H,F⟩ = {⟨h, f⟩|h ∈ H, f ∈ F}.Similarly Π1F can be understood as
the union of projections of F onto each dimension.
Theorem 3. Given the same setting as Corollary 1 and Lemma 3, for any δ > 0, with probability
1− 3δ, we obtain the following generalization bound for all f :

errDUm
(f) ≤

Ns∑
i=1

πi

(
errρ

D̂Si

(f)
)
+d(ρ)f,F

(
D̂Si′ , D̂Sk′

)
+γ + λ̄+

k

ρ
Rni,DSi

(
ΠHF

)
+

k

ρ
Rnk,DSk

(
ΠHF

)
+

√
log 2

δ

2ni′
+

√
log 2

δ

2nk′
+

Ns∑
i=1

πi

(
2k2

ρ
Rni,DSi

(
Π1F

)
+

√
log 2

δ

2ni

)
Proof: From Lemma 4, for Ns source distributions, the expected margin loss is upper bounded, as
shown below.

Ns∑
i=1

πi

(
errρDSi

(f)

)
≤

Ns∑
i=1

πi

(
errρ

D̂Si

(f) +
2k2

ρ
Rni,DSi

(Π1F) +

√
log 2

δ

2ni

)
.

From Lemma 3, we upper-bound the expected MDD as shown below.

d(ρ)f,F
(
DSi

,DSk

)
≤ d(ρ)f,F

(
D̂Si

, D̂Sk

)
+
k

ρ
Rni,DSi

(
ΠHF

)
+
k

ρ
Rnk,DSk

(
ΠHF

)
+

√
log 2

δ

2ni
+

√
log 2

δ

2nk

Using the above results and Corollary 1, we get Theorem 3 .

A2 Other Related Work
In this section, we discuss earlier literature proposed for the DG problem, in terms of their broad
categories. Apart from adversarial learning, existing DG methods can be broadly categorized
into: (i) Meta-Learning approaches, where the model is exposed to domain shift during training to
equip it with better domain adaptation [A1–A6]; (ii) Data augmentation techniques that generate
multiple augmentations of a data sample to help the model overcome overfitting and achieve better
generalization [A7–A12]; (iii) Self-Supervised learning methods that involve training the model
to predict a pretext task first and then fine-tuning it for the downstream task [A13–A18]; and (iv)
Regularization techniques that aim to restrict the model with certain constraints that enable it to learn
general features and prevent it from learning domain-specific features [A19–A25].
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A3 Implementation Details
This section provides detailed information about the implementation of our experiments on the five
benchmark datasets for the DG problem. The datasets and their respective details are outlined as
follows, VLCS: This consists of 4 domains, namely, VOC2007, LabelMe, Caltech101, SUN09, with
a total of 10,729 images, each with dimension (3,224,224) and 5 classes. OfficeHome: There are 4
domains in this dataset: Art, Clipart, Product, and Real, with 15,588 examples and 65 classes. Each
sample image has a dimension of (3,224,224). PACS: It comprises of 4 domains, Photo, Art, Cartoon,
and Sketch, with 9,991 samples, each with dimension (3,224,224) and 7 classes. TerraIncognita:
This dataset focuses on wild animal images taken by camera traps at 4 locations, L100, L43, L46, and
L38, with 24,788 examples each with dimensions (3,224,224) and 10 classes. DomainNet: There
are a total of 6 domains in this dataset, clipart, sketch, infograph, quickdraw, painting, and real, with
586,575 images each with dimension (3,224,224) and 345 classes.

By conducting experiments on these benchmark datasets, we ensure a comprehensive evalua-
tion of the proposed MADG model’s performance, taking into account diverse domains, vary-
ing class distributions, and image characteristics. The code for our work is available at:
https://github.com/qwedaq/MADG.

The MADG model uses ResNet50 [54] architecture pre-trained on the ImageNet [55] dataset as the
feature extractor (G). The model is trained using stochastic gradient descent with momentum optimizer
[56] on Nvidia V100 GPU with 32GB RAM. We list all hyperparameter details of the MADG model
according to the dataset in Table A1. We also list the search space for each hyperparameter as shown
in Table A2. We follow the recent state-of-the-art [53] (also supported by [A26–A28]) to tune the
hyperparameters by selecting a hyperparameter value that performs the best from a range of values
shown in Table A2.

Table A1: Hyperparameter values of our MADG model implementation on all datasets

Hyperparameter VLCS OfficeHome PACS TerraIncognita DomainNet

Margin 1.5 2 1.5 2 2
Learning rate 0.004 0.004 0.004 0.01 0.004
Momentum 0.9 0.9 0.9 0.9 0.9
Weight decay 0.0005 0.0005 0.0005 0.005 0.0005
Dropout 0.5 0.5 0.5 0.3 0.5
Learning rate decay 0.0002 0.0002 0.0002 0.001 0.0002

Table A2: Ranges of values for hyperparameter tuning.

Hyperparameter Search Values
Margin [1, 1.5, 2, 3]

Learning rate [0.01, 0.04, 0.001, 0.004, 0.0001]

Momentum [0.85, 0.9, 0.95]

Weight Decay [0.005, 0.0005]

Dropout [0.3, 0.4, 0.45, 0.5]

Learning rate decay [0.001, 0.0002]

A4 Additional Results
This section provides detailed results for each domain on all five datasets in Tables A3 to A7. Note
that for the Fish [71] model, no per-dataset results are available. As stated in the main paper, we
observe from these detailed results that the proposed MADG provides consistently strong results
across the domains and benchmarks, as evidenced by the AD, GD and M metrics in Table 1 (main
paper).
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Table A3: Accuracy (%) on each domain of the OfficeHome dataset. We represent ‘-’ for models which did not
report accuracy for that domain. We also report deviation as ±N/A for models that did not report them.

Algorithm A C P R Avg.(↑)

ERM (1998)[57] 61.7±0.7 53.4±0.3 74.1±0.4 76.2±0.6 66.4
CORAL (2016)[58] 64.8±0.8 54.1±0.9 76.5±0.4 78.2±0.4 68.4
DANN (2016)[59] 60.6±1.4 51.8±0.7 73.4±0.5 75.5±0.9 65.3
CDANN (2018)[60] 57.9±0.2 52.1±1.2 74.9±0.7 76.2±0.2 65.3
MLDG (2018)[61] 60.5±0.7 54.2±0.5 75.0±0.2 76.7±0.5 66.6
MMD (2018)[62] 60.4±1.0 53.4±0.5 74.9±0.1 76.1±0.7 66.2
IRM (2019)[63] 56.4±3.2 51.2±2.3 71.7±2.7 72.7±2.7 63.0
GroupDRO (2019)[64] 60.5±1.6 53.1±0.3 75.5±0.3 75.9±0.7 66.2
Mixup (2020)[65] 63.5±0.2 54.6±0.4 76.0±0.3 78.0±0.7 68.0
ARM (2020)[66] 58.8±0.5 51.8±0.7 74.0±0.1 74.4±0.2 64.8
RSC (2020)[67] 61.7±0.8 53.0±0.9 74.8±0.8 76.3±0.5 66.5
SagNet (2021)[68] 62.7±0.5 53.6±0.5 76.0±0.3 77.8±0.1 67.5
V-REx (2021)[69] 59.6±1.0 53.3±0.3 73.2±0.5 76.6±0.4 65.7
AND-mask (2021)[70] 60.3±0.5 52.3±0.6 75.1±0.2 76.6±0.3 66.1
Fish (2021) [71] - - - - 66.0
SAND-mask (2021)[72] 59.9±0.7 53.6±0.8 74.3±0.4 75.8±0.5 65.9
Fishr (2022)[53] 63.4±0.8 54.2±0.3 76.4±0.3 78.5±0.2 68.2

GDM(2019)[48]

T
he

or
y-

B
as

ed
M

et
ho

ds

- - - - -
MTL(2021)[47] 60.7±0.8 53.5±1.3 75.2±0.6 76.6±0.6 66.5
Transfer(2021)[73] - - - - 64.3
Ood(2021)[49] 65.8±N/A 55.1±N/A 75.2±N/A 76.3±N/A 68.1
MADG (ours) 68.6±0.5 55.5±0.2 79.6±0.3 81.5±0.4 71.3

Table A4: Accuracy (%) on each domain of the TerraIncognita dataset. We represent ‘-’ for models which did
not report accuracy for that domain. We also report deviation as ±N/A for models that did not report them.

Algorithm L100 L38 L43 L46 Avg.(↑)

ERM (1998)[57] 59.4±0.9 49.3±0.6 60.1±1.1 43.2±0.5 53.0
CORAL (2016)[58] 60.4±0.9 47.2±0.5 59.3±0.4 44.4±0.4 52.8
DANN (2016)[59] 55.2±1.9 47.0±0.7 57.2±0.9 42.9±0.9 50.6
CDANN (2018)[60] 56.3±2.0 47.1±0.9 57.2±1.1 42.4±0.8 50.8
MLDG (2018)[61] 59.2±0.1 49.0±0.9 58.4±0.9 41.4±1.0 52.0
MMD (2018)[62] 60.6±1.1 45.9±0.3 57.8±0.5 43.8±1.2 52.0
IRM (2019)[63] 56.5±2.5 49.8±1.5 57.1±2.2 38.6±1.0 50.5
GroupDRO (2019)[64] 60.4±1.5 48.3±0.4 58.6±0.8 42.2±0.8 52.4
Mixup (2020)[65] 67.6±1.8 51.0±1.3 59.0±N/A 40.0±1.1 54.4
ARM (2020)[66] 60.1±1.5 48.3±1.6 55.3±0.6 40.9±1.1 51.2
RSC (2020)[67] 59.9±1.4 46.7±0.4 57.8±0.5 44.3±0.6 52.1
SagNet (2021)[68] 56.4±1.9 50.9±2.3 59.1±0.5 44.1±0.6 52.5
V-REx (2021)[69] 56.8±1.7 46.5±0.5 58.4±0.3 43.8±0.3 51.4
AND-mask (2021)[70] 54.7±1.8 48.4±0.5 55.1±0.5 41.3±0.6 49.8
Fish (2021) [71] - - - - 50.8
SAND-mask (2021)[72] 56.2±1.8 46.3±0.3 55.8±0.4 42.6±1.2 50.2
Fishr (2022)[53] 60.4±0.9 50.3±0.3 58.8±0.5 44.9±0.5 53.6

GDM(2019)[48]

T
he

or
y-

B
as

ed
M

et
ho

ds

- - - - -
MTL(2021)[47] 58.4±2.1 48.4±0.8 58.9±0.6 43.0±1.3 52.2
Transfer(2021)[73] - - - - -
Ood(2021)[49] - - - - -
MADG (ours) 60.0±1.2 51.8±0.2 57.4±0.3 45.6±0.5 53.7
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Table A5: Accuracy (%) on each domain of the DomainNet dataset. We represent ‘-’ for models which did not
report accuracy for that domain. We also report deviation as ± N/A for models that did not report them.

Algorithm clip info paint quick real sketch Avg.(↑)

ERM (1998)[57] 58.6±0.3 19.2±0.2 47.0±0.3 13.2±0.2 59.9±0.3 49.8±0.4 41.3
CORAL (2016)[58] 59.2±0.1 19.9±0.2 47.4±0.2 14.0±0.4 59.8±0.2 50.4±0.4 41.8
DANN (2016)[59] 53.1±0.2 18.3±0.1 44.2±0.7 11.9±0.1 55.5±0.4 46.8±0.6 38.3
CDANN (2018)[60] 54.6±0.4 17.3±0.1 44.2±0.7 12.8±0.2 56.2±0.4 45.9±0.5 38.5
MLDG (2018)[61] 59.3±0.1 19.6±0.2 46.8±0.2 13.4±0.2 60.1±0.4 50.4±0.3 41.6
MMD (2018)[62] 32.2±13.3 11.2±4.5 26.8±11.3 8.8±2.2 32.7±13.8 29.0±11.8 23.5
IRM (2019)[63] 40.4±6.6 12.1±2.7 31.4±5.7 9.8±1.2 37.7±9.0 36.7±5.3 28.0
GroupDRO (2019)[64] 47.2±0.5 17.5±0.4 34.2±0.3 9.2±0.4 51.9±0.5 40.1±0.6 33.4
Mixup (2020)[65] 55.6±0.1 18.7±0.4 45.1±0.5 12.8±0.3 57.6±0.5 48.2±0.4 39.6
ARM (2020)[66] 49.6±0.4 16.5±0.3 41.5±0.8 10.8±0.1 53.5±0.3 43.9±0.4 36.0
RSC (2020)[67] 55.0±1.2 18.3±0.5 44.4±0.6 12.5±0.1 55.7±0.7 47.8±0.9 38.9
SagNet (2021)[68] 57.7±0.3 19.1±0.1 46.3±0.5 13.5±0.4 58.9±0.4 49.5±0.2 40.8
V-REx (2021)[69] 43.3±4.5 14.1±1.8 32.5±5.0 9.8±1.1 43.5±5.6 37.7±4.5 30.1
AND-mask (2021)[70] 52.3±0.8 17.3±0.5 43.7±1.1 12.3±0.4 55.8±0.4 46.1±0.8 37.9
Fish (2021) [71] - - - - - - 43.4
SAND-mask (2021)[72] 43.8±1.3 15.2±0.2 38.2±0.6 9.0±0.2 47.1±1.1 39.9±0.6 32.2
Fishr (2022)[53] 58.3±0.5 20.2±0.2 47.9±0.2 13.6±0.3 60.5±0.3 50.5±0.3 41.8

GDM(2019)[48]

T
he

or
y-

B
as

ed
M

et
ho

ds

- - - - -
MTL(2021)[47] 58.0±0.4 19.2±0.2 46.2±0.1 12.7±0.2 59.9±0.1 49.0±0.0 40.8
Transfer(2021)[73] - - - - -
Ood(2021)[49] - - - - -
MADG (ours) 62.5±0.4 22.0±0.3 34.1±0.3 15.1±0.2 57.4±1.1 48.0±0.3 39.9

Table A6: Accuracy (%) on each domain of the VLCS dataset. We represent ‘-’ for models which did not report
accuracy for that domain. We also report deviation as ± N/A for models that did not report them.

Algorithm C L S V Avg.(↑)

ERM (1998) [57] 97.6±0.3 67.9±0.7 70.9±0.2 74.0±0.6 77.6
CORAL (2016) [58] 97.3±0.2 67.5±0.6 71.6±0.6 74.5±N/A 77.7
DANN (2016) [59] 99.0±0.2 66.3±1.2 73.4±1.4 80.1±0.5 79.7
CDANN (2018) [60] 98.2±0.1 68.8±0.5 74.3±0.6 78.1±0.5 79.9
MLDG (2018) [61] 97.1±0.5 66.6±0.5 71.5±0.1 75.0±0.9 77.5
MMD (2018) [62] 98.8±0.0 66.4±0.4 70.8±0.5 75.6±0.4 77.9
IRM (2019) [63] 97.3±0.2 66.7±0.1 71.0±2.3 72.8±0.4 76.9
GroupDRO (2019) [64] 96.7±0.2 65.9±0.2 72.8±0.8 73.4±1.3 77.4
Mixup (2020) [65] 97.8±0.4 67.2±0.4 71.5±0.2 75.7±0.6 78.1
ARM (2020) [66] 97.6±0.6 66.5±0.3 72.7±0.6 74.4±0.7 77.8
RSC (2020) [67] 98.0±0.4 67.2±0.3 70.3±1.3 75.6±0.4 77.8
SagNet (2021) [68] 97.4±0.3 66.4±0.4 71.6±0.1 75.0±0.8 77.6
V-REx (2021) [69] 98.4±0.2 66.4±0.7 72.8±0.1 75.0±1.4 78.1
AND-mask (2021) [70] 98.3±0.3 64.5±0.2 69.3±1.3 73.4±1.3 76.4
Fish (2021) [71] - - - - 77.8
SAND-mask (2021) [72] 97.6±0.3 64.5±0.6 69.7±0.6 73.0±1.2 76.2
Fishr (2022) [53] 97.6±0.7 67.3±0.5 72.2±0.9 75.7±0.3 78.2

G2DM (2019)[48]

T
he

or
y-

B
as

ed
M

et
ho

ds

95.5±N/A 67.6 ±N/A 69.4±N/A 71.1±N/A 75.9
MTL(2021)[47] 97.9±0.7 66.1±0.7 72.0±0.4 74.9±1.1 77.7
Transfer(2021)[73] - - - - -
Ood(2021)[49] 97.8 ±N/A 67.0±N/A 69.5 ±N/A 71±N/A 76.3
MADG (ours) 98.5±0.2 65.8±0.3 73.1±0.3 77.3±0.1 78.7

Results with Other Model Selection Strategies. For completeness of analysis, we also study our
method under the ‘Train-domain’ validation setting proposed in [35]. Although not our objective in
this work, our method obtains competitive results with minimal hyperparameter search efforts, as
shown in Tables A8 and A9.
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Table A7: Accuracy (%) on each domain of the PACS dataset. We represent ‘-’ for models which did not report
accuracy for that domain. We also report deviation as ± N/A for models that did not report them.

Algorithm P A C S Avg.(↑)

ERM (1998) [57] 96.2±0.3 86.5±1.0 81.3±0.6 82.7±1.1 86.7
CORAL (2016) [58] 97.1±0.5 86.6±0.8 81.8±0.9 82.7±0.6 87.1
DANN (2016) [59] 96.8±0.3 87.0±0.4 80.3±0.6 76.9±1.1 85.2
CDANN (2018) [60] 97.3±0.4 87.7±0.6 80.7±1.2 77.6±1.5 85.8
MLDG (2018) [61] 96.7±0.3 87.0±1.2 82.5±0.9 81.2±0.6 86.8
MMD (2018) [62] 97.1±0.5 88.1±0.8 82.6±0.7 81.2±1.2 87.2
IRM (2019) [63] 95.9±0.4 84.2±0.9 79.7±1.5 78.3±2.1 84.5
GroupDRO (2019) [64] 97.1±0.3 87.5±0.5 82.9±0.6 81.1±1.2 87.1
Mixup (2020)[65] 97.4±0.2 87.5 ±0.4 81.6±0.7 80.8±0.9 86.8
ARM (2020)[66] 95.9±0.3 85.0±1.2 81.4±0.2 80.9±0.5 85.8
RSC (2020)[67] 96.8±0.7 86.0±0.7 81.8±0.9 80.4±0.5 86.2
SagNet (2021)[68] 96.3±0.8 87.4±0.5 81.2±1.2 80.7±1.1 86.4
V-REx (2021)[69] 97.4±0.2 87.8±1.2 81.8±0.7 82.1±0.7 87.2
AND-mask (2021)[70] 97.1±0.2 86.4±1.1 80.8±0.9 81.3±1.1 86.4
Fish (2021) [71] - - - - 85.8
SAND-mask (2021) [72] 97.1±0.3 86.1±0.6 80.3±1.0 80.0±1.3 85.9
Fishr (2022) [53] 97.9±0.4 87.9±0.6 80.8±0.5 81.1±0.8 86.9

G2DM (2019)[48]

T
he

or
y-

B
as

ed
M

et
ho

ds

88.1 ±N/A 66.6 ±N/A 73.4 ±N/A 66.19±N/A 86.7
MTL(2021) [47] 96.5±0.7 87.0±0.2 82.7±0.8 80.5±0.8 86.7
Transfer(2021)[73] - - - - 85.3
Ood(2021)[49] 96.8±N/A 88.7±N/A 81.7±N/A 79.0±N/A 86.6
MADG (ours) 97.7±0.3 87.8±0.5 82.2±0.6 78.3±0.4 86.5

Table A8: Accuracy (%) on each domain of the OfficeHome dataset using alternate hyperparameter selection
method. We represent ‘-’ for models which did not report accuracy for that domain. We also report deviation as
± N/A for models that did not report them.

Algorithm A C P R Avg.(↑)

ERM (1998)[57] 61.3±0.7 52.4±0.3 75.8±0.1 76.6±0.3 66.5
CORAL (2016)[58] 65.3±0.4 54.4±0.5 76.5±0.1 78.4±0.5 68.7
DANN (2016)[59] 59.9±1.3 53.0±0.3 73.6±0.7 76.9±0.5 65.9
CDANN (2018)[60] 61.5±1.4 50.4±2.4 74.4±0.9 76.6±0.8 65.8
MLDG (2018)[61] 61.5±0.9 53.2±0.6 75.0±1.2 77.5±0.4 66.8
MMD (2018)[62] 60.4±0.2 53.3±0.3 74.3±0.1 77.4±0.6 66.3
IRM (2019)[63] 58.9±2.3 52.2±1.6 72.1±2.9 74.0±2.5 64.3
GroupDRO (2019)[64] 60.4±0.7 52.7±1.0 75.0±0.7 76.0±0.7 66.0
Mixup (2020)[65] 62.4±0.8 54.8±0.6 76.9±0.3 78.3±0.2 68.1
ARM (2020)[66] 58.9±0.8 51.0±0.5 74.1±0.1 75.2±0.3 64.8
RSC (2020)[67] 60.7±1.4 51.4±0.3 74.8±1.1 75.1±1.3 65.5
SagNet (2021)[68] 63.4±0.2 54.8±0.4 75.8±0.4 78.3±0.3 68.1
V-REx (2021)[69] 60.7±0.9 53.0±0.9 75.3±0.1 76.6±0.5 66.4
AND-mask (2021)[70] 59.5±1.2 51.7±0.2 73.9±0.4 77.1±0.2 65.6
Fish (2021) [71] - - - - 68.6
SAND-mask (2021)[72] 60.3±0.5 53.3±0.7 73.5±0.7 76.2±0.3 65.8
Fishr (2022)[53] 62.4±0.5 54.4±0.4 76.2±0.5 78.3±0.1 67.8

G2DM (2019)[48]

T
he

or
y-

B
as

ed
M

et
ho

ds

- - - - -
MTL(2021)[47] 61.5±0.7 52.4±0.6 74.9±0.4 76.8±0.4 66.4
Transfer(2021)[73] - - - - -
Ood(2021)[49] 61.9 ±N/A 55.6 ±N/A 74.7 ±N/A 76.3 ±N/A 67.1
MADG (ours) 67.6±0.2 54.1±0.3 78.4±0.3 80.3±0.5 70.1
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Table A9: Accuracy (%) on each domain of the PACS dataset using alternate hyperparameter selection method.
We represent ‘-’ for models which did not report accuracy for that domain. We also report deviation as ± N/A for
models that did not report them.

Algorithm P A C S Avg.(↑)

ERM (1998)[57] 97.2±0.3 84.7±0.4 80.8±0.6 79.3±1.0 85.5
CORAL (2016)[58] 97.5±0.3 88.3±0.2 80.0±0.5 78.8±1.3 86.2
DANN (2016)[59] 97.3±0.4 86.4±0.8 77.4±0.8 73.5±2.3 83.6
CDANN (2018)[60] 96.8±0.3 84.6±1.8 75.5±0.9 73.5±0.6 82.6
MLDG (2018)[61] 97.4±0.3 85.5±1.4 80.1±1.7 76.6±1.1 84.9
MMD (2018)[62] 96.6±0.2 86.1±1.4 79.4±0.9 76.5±1.5 84.6
IRM (2019)[63] 96.7±0.6 84.8±1.3 76.4±1.1 76.1±1.0 83.5
GroupDRO (2019)[64] 96.7±0.3 83.5±0.9 79.1±0.6 78.3±2.0 84.4
Mixup (2020)[65] 97.6±0.1 86.1 ±0.5 78.9±0.8 75.8±1.8 84.6
ARM (2020)[66] 97.4±0.3 86.8±0.6 76.8±0.5 79.3±1.2 85.1
RSC (2020)[67] 97.6±0.3 85.4±0.8 79.7±1.8 78.2±1.2 85.2
SagNet (2021)[68] 97.1±0.1 87.4±1.0 80.7±0.6 80.0±0.4 86.3
V-REx (2021)[69] 96.9±0.5 86.0±1.6 79.1±0.6 77.7±1.7 84.9
AND-mask (2021)[70] 96.9±0.4 85.3±1.4 79.2±2.0 76.2±1.4 84.4
Fish (2021)[71] - - - - 85.5
SAND-mask (2021)[72] 96.3±0.2 85.8±1.7 79.2±0.8 76.9±2.0 84.6
Fishr (2022)[53] 97.0±0.1 88.4±0.2 78.7±0.7 77.8±2.0 85.5

G2DM (2019)[48]

T
he

or
y-

B
as

ed
M

et
ho

ds

- - - - -
MTL(2021)[47] 96.4±0.8 87.5±0.8 77.1±0.5 77.3±1.8 84.6
Transfer(2021)[73] - - - - -
Ood(2021)[49] 96.2 ±N/A 85.2 ±N/A 80.4 ±N/A 77.7±N/A 84.9
MADG (ours) 97.6±0.7 84.9±0.5 80.6±0.6 76.7±0.6 85.0

Results with additional baselines. In this work, we also compare the proposed MADG with a recent
algorithm SD [74], which reported results on datasets different from ours. For a fair comparison, we
run the SD model on the VLCS, PACS, and TerraIncognita datasets. As seen from Tables A10, A11
and A12, the proposed MADG model achieves better performance on all the domains across all three
datasets.

Table A10: Accuracy(%) on VLCS dataset. Avg. = Average accuracy

Algorithm V C L S Avg.(↑)

SD(2021)[74] 72.6 ±1.7 91.4±1.7 64.1±1.6 63.3±1.2 72.3

MADG (ours) 77.3 ±0.1 98.5±0.2 65.8±0.3 73.1±0.3 78.7

Table A11: Accuracy(%) on PACS dataset. Avg. = Average accuracy

Algorithm A C P S Avg.(↑)

SD (2021)[74] 82.7 ±0.9 77.4±3 97.1±0.7 68.5±2.4 81.4

MADG (ours) 87.8±0.5 82.2±0.6 97.7±0.3 78.3±0.4 86.5

A5 Adapting MADG to Multi-source DA

As stated earlier, our Theorem 1 can be viewed as an upper bound for error in the multi-source
domain adaptation (DA) setting (which is new by itself too). While this is not our primary focus in
this work, we report preliminary empirical results for a multi-source DA algorithm that reduces the
first two terms in Theorem 1. We approximate the source errors and the MDD loss between labeled

9



Table A12: Accuracy(%) on TerraIncognita dataset. Avg. = Average accuracy

Algorithm L100 L46 L43 L38 Avg.(↑)

SD (2021)[74] 39.5 ±8.7 41.4 ±1.2 49.2 ±1 34.1±6.2 41.1

MADG (ours) 60.0 ±1.2 45.6±0.5 57.4±0.3 51.8±0.2 53.7

and unlabeled source domains as shown in Eqn (A5.1) below.

E
(
D̂Si

)
= E(x,y)∼D̂Si

[
L
(
f
(
G(x)

)
, y
)]

D(ρ̂,l)

(
D̂Si

, D̂ST

)
= E(x,y)∼D̂ST

[
L′
(
f ′
l

(
G(x)

)
, f
(
G(x)

))]
− ρ̂E(x,y)∼D̂Si

[
L
(
f ′
l

(
G(x)

)
, f
(
G(x)

))]
(A5.1)

where l = {1, . . . , Ns − 1}. The final optimization problem can then be given as below in Eqn A5.2.

min
f,G

Ns−1∑
i=1

αi

(
E(D̂Si

)
)
+

Ns−1∑
l=1

(
D(ρ̂,l)

(
D̂Si

, D̂ST

))
, max

f ′
1,...,f

′
j

Ns−1∑
l=1

(
D(ρ̂,l)

(
D̂Si

, D̂ST

))
(A5.2)

Algorithm A1 summarizes the methodology to adapt MADG to the multi-source DA setting. The
proposed multi-source DA (MADA) algorithm follows a similar structure to MADG, where we train
the adversarial model in two steps. In the first step, we update the parameters fand G. In the next
step, we do a forward pass to compute the outputs from f and then update the parameters f ′and G.
We evaluate the MADA algorithm’s performance on the Office Caltech dataset. We use ResNet101
[54] architecture pre-trained on the ImageNet dataset as the feature extractor and train the model
using stochastic gradient descent with a momentum optimizer. The results on Office Caltech are
reported in Table A13. As seen from Table A13, MADA outperforms previous models across most
domains and achieves the best average accuracy. It improves significantly, 1.2% average accuracy,
compared to MDAN, a theory-inspired model for the multi-source DA problem.

Algorithm A1 Margin-based adversarial learning for Multi-source Domain Adaptation (MADA)
Require: Ns labeled source domains, (x, y) ∼ DSi

for a← 1 to total_epochs do
for b← 1 to total_batches do

Update parameters according to minf,G
∑Ns−1

i=1 αiE(x,y)∼D̂Si
L(f(G(x)), y)

ŷDSi
← f(G(x) for i = {1, . . . , Ns − 1}

Calculate MDDl according to equation (A5.1) and using ŷDSi
for l = 1, . . . , Ns − 1

Calculate Transfer loss =
∑Ns−1

l=1 (D(ρ̂,l)(D̂Si
, D̂ST

))

Update parameters, f ′and G according to equation (A5.2)
end for

end for

A6 More Analysis
This section shows further empirical analysis conducted on the proposed MADG model.

MDD formulation The proposed MADG algorithm uses margin-based discrepancy, MDD, to
compute disagreements between classifiers for a pair of domains, as restated below.

d(ρ)f,F
(
DSi

,DSk

)
=∆ supf ′∈F

(
disp(ρ)DSk

(
f ′, f

)
−disp(ρ)DSi

(
f ′, f

))
We reformulate the MDD (called MDD-new) to compute disagreements for multiple domains
simultaneously, as shown below.

d(ρ)
f,F

(
DSi

,DSk
,DSp

)
=∆ supf ′∈F

(
disp(ρ)

DSp

(
f ′, f

)
−disp(ρ)DSk

(
f ′, f

)
−disp(ρ)DSi

(
f ′, f

))
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Table A13: Accuracy(%) of the proposed MADA model on Office Caltech dataset. We report deviation as
±N/A for models that did not report them. A = Amazon domain, C = Caltech domain, D = DSLR domain, W =
Webcam domain, Avg. = Average accuracy

Algorithm A C D W Avg.(↑)

DANN (2016)[A29] 94.8±N/A 89.7±N/A 98.2±N/A 99.3±N/A 95.5
MDAN (2018)[A30] 95.4±N/A 91.8±N/A 98.6 ±N/A 98.9±N/A 96.1
M3SDA (2019)[A31] 94.5±N/A 92.2±N/A 99.2±N/A 99.5±N/A 96.4
MDDA (2020)[A32] 95.5 ±0.2 91.6±0.3 99.0±0.0 99.42±0.2 96.4
DARN (2020)[A33] 95.7±0.4 91.8 ±0.3 99.4 .1 99.3 ±0.2 96.5
CMSS (2020)[A34] 96.0 ±N/A 93.7±N/A 99.3±N/A 99.6±N/A 97.2
MIAN (2021)[A35] 96.1 ±0.1 94.6 ±0.1 99.0 ±0.1 99.32 ±0.2 97.24

MADA (ours) 96.3±0.1 93.4±0.2 100.0±0.1 99.7±0.1 97.3

Table A14: Accuracy(%) of the MADG
algorithm with different MDD formulations.
Org.=Original MDD, New=MDD-new

Org. New

P 97.7 97.5
A 87.8 87.4
C 82.2 81.2
S 78.3 76.6

Avg 86.5 85.6

We compare the performance between our original
MDD and new MDD formulation on the PACS dataset
and report it in Table A14. The model trained with
the original MDD formulation achieves better accu-
racy across all domains as the pairwise disparity is able
to capture better domain discrepancy and hence learn
better domain-invariant features. More effective imple-
mentations of the multi-domain MDD strategy can be
an interesting direction of future work.

Multistep training. As mentioned in Algorithm 1 and Section 5.2 in the main paper, we solve
the minimax problem by training the MADG model in two crucial steps instead of a joint up-
date in a single step. We report in Table A15 that such two-step training improves the perfor-
mance of the model across all the datasets. As seen in Table A15, we also compare with the ‘j’
step training where each f ′

l classifier along with the feature extractor (G) is updated sequentially.

Table A15: Accuracy(%) of the
MADG model for different multi-
step training.

Dataset Two Single jstep

VLCS 78.7 78.4 77.9
PACS 86.5 83.0 81.9
OH 71.3 70.9 69.7
TI 53.7 52.4 52.7

The two-step training methodology outperforms the ‘j’ step method-
ology across all datasets. This is because in the two-step method-
ology, the parameters G and f are first updated to learn features
pertaining to the classification task. These updated parameters gen-
erate better pseudo labels to train the f ′ parameters in the next step.
This decoupled updation of parameters is not possible in joint-update
methodology. Similarly, for the j-step methodology, after the first
two updates of G, the feature extractor’s efficiency in extracting
features relevant to the classification task decrease as it receives only
gradients from the MDD loss for the next ‘j − 2’ steps.

A7 Limitations and Future Directions

The proposed model learns invariant features via adversarial learning. Although the minimax method
generates good invariant features, it can be further enhanced using explainable models such as
GradCAM [A36]. These explainable models help identify features that contribute to the end task
and are domain-invariant, thus being capable of boosting the MADG model’s performance. In
this work, we also consider a convex combination of multiple sources and their respective mixture
weights (πi, ∀i = {1, . . . , Ns}). These mixture weights can be further improved by identifying
source domains that are harder to align and assigning more weight to such domains. The proposed
model also requires domain labels during training, similar to recent work such as [53][71]
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