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Abstract

Domain Generalization (DG) techniques have emerged as a popular approach to
address the challenges of domain shift in Deep Learning (DL), with the goal of
generalizing well to the target domain unseen during the training. In recent years,
numerous methods have been proposed to address the DG setting, among which
one popular approach is the adversarial learning-based methodology. The main idea
behind adversarial DG methods is to learn domain-invariant features by minimizing
a discrepancy metric. However, most adversarial DG methods use 0-1 loss based
H∆H divergence metric. In contrast, the margin loss-based discrepancy metric
has the following advantages: more informative, tighter, practical, and efficiently
optimizable. To mitigate this gap, this work proposes a novel adversarial learning
DG algorithm, MADG, motivated by a margin loss-based discrepancy metric. The
proposed MADG model learns domain-invariant features across all source domains
and uses adversarial training to generalize well to the unseen target domain. We
also provide a theoretical analysis of the proposed MADG model based on the
unseen target error bound. Specifically, we construct the link between the source
and unseen domains in the real-valued hypothesis space and derive the general-
ization bound using margin loss and Rademacher complexity. We extensively
experiment with the MADG model on popular real-world DG datasets, VLCS,
PACS, OfficeHome, DomainNet, and TerraIncognita. We evaluate the proposed
algorithm on DomainBed’s benchmark and observe consistent performance across
all the datasets.

1 Introduction
Over the past decade, Deep Neural Networks (DNNs) have demonstrated exceptional performance
across various fields, including robotics [1], medical imaging [2], agriculture [3], and more. However,
the effectiveness of DNNs in supervised learning environments relies heavily on the independently
and identically distributed (i.i.d.) assumption of the training and test (target) data. Unfortunately, in
reality, this assumption can be compromised due to domain shifts in target data [4]. For example, a
model trained on different domains of image data may perform poorly when presented with an image
of a known label featuring an unseen background or viewpoint, as explained in [5]. To address this
issue, researchers have developed techniques under the framework of domain adaptation (DA) [6].
The key idea behind DA is to adapt a model trained on a source dataset to minimize the generalization
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error on the target dataset [7]. However, the major limitation of DA is that the target data, whether
labeled or unlabeled, must be available during training. In contrast, the Domain Generalization (DG)
setting aims to leverage knowledge from similar domains to classify previously unseen domains [8].

Recent years have seen the development of various algorithms addressing the DG setting, among
which one popular approach is the adversarial learning-based methodology [9–14]. Other approaches
can be broadly classified into meta-learning techniques [15–17], data augmentation methods [18–
20], self-supervised learning methods [21–23], regularization-based methods [24–29], and so on.
Additionally, there have been concerted efforts towards the development of benchmark datasets
[30–35] for the DG setting to study methods. The assumption of distribution shift, i.e., smooth
variation between the conditional distribution P(Y |X) and the marginal distribution P(X) is also
common in DG literature [36; 37].

The main objective of DG methods is to model the functional relationship between the input space
X and the label space Y for all domains. To achieve this, adversarial DG methods learn a domain-
invariant representation by minimizing a discrepancy metric among the source domains. However,
despite the myriad efforts, most adversarial learning methods use the 0-1 loss based H∆H diver-
gence metric [38] for domain alignment. In contrast, divergence metrics based on margin loss are
more informative [39], practical, and efficiently optimizable [40]. This work addresses this gap by
proposing a novel adversarial DG algorithm, MADG, motivated by a margin-based divergence metric.
The proposed MADG leverages margin-based disparity discrepancy [40] to estimate source domain
discrepancies in the DG setting and uses adversarial training to ensure that MADG generalizes well
to unseen target domains. We also theoretically analyze the proposed MADG algorithm based on
bounds for the unseen target error. The proposed generalization bound uses the Rademacher complex-
ity framework [41], which provides data-dependent estimates of functional class complexities. The
effectiveness of the proposed algorithm is demonstrated through extensive experiments on multiple
benchmark DG datasets.

The key contributions of this work can be summarized as follows: (i) We introduce the use of margin
loss and a corresponding scoring function to formulate the relationship between domains and develop
upper bounds for the unseen target error (the first such margin-based effort in the DG setting, to the
best of our knowledge); (ii) We subsequently analyze the generalization bound in terms of functional
class complexity using the Rademacher complexity framework; (iii) We propose a novel margin-based
adversarial DG training algorithm, MADG, motivated by our theoretical results; and (iv) We study
the proposed method on five well-known benchmark datasets in the DomainBed setup, providing a
higher average accuracy and consistency in model performance across these datasets.

2 Related Work
In this section, we discuss earlier literature proposed specifically for adversarial DG, as well as
theoretical analysis for the DG problem in general. We discuss other DG literature across a broader set
of categories in the Appendix. The main idea behind existing adversarial DG methods is to minimize
the H∆H divergence by employing a minimax optimization between a domain discriminator and
a classifier to learn domain-invariant features. One of the early works [9] proposed a method that
iteratively divided samples into latent domains via clustering and trained the domain-invariant feature
extractor via adversarial learning. Other efforts extended such an approach of adversarial learning
with different divergence metrics and regularization techniques. Lin et al. [10] proposed a multi-
dataset feature generalization network (MMFA-AAE) based on an adversarial auto-encoder to learn
a generalized domain-invariant latent feature representation with the Maximum Mean Discrepancy
(MMD) measure to align distributions across multiple domains. Deng et al. [11] examined adversarial
censoring techniques to learn invariant representations from multiple domains. Zhao et al. [12]
proposed an entropy regularization term along with adversarial loss to ensure conditional invariance of
learned features. Akuzawa et al. [13] proposed the notion of accuracy-constrained domain invariance,
and then developed an adversarial feature learning method with accuracy constraint (AFLAC), which
explicitly provided invariance on adversarial training. Rahman et al. [42] proposed a correlation-
aware adversarial DG framework where the features of the source and target data are minimized
using correlation alignment along with adversarial learning. All these prior works on adversarial DG
methods use a 0-1 loss based H∆H discrepancy metric to align source domains. In this work, we
instead leverage a margin-based disparity discrepancy and propose a new adversarial learning strategy
founded on our theoretical analysis. The margin loss is advantageous compared to the 0-1 loss as
it provides informative generalization bounds, tightness, classifier-aware alignment, and efficient
optimization. We discuss each of these advantages in detail in Section 4.
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Early efforts for theoretical analysis for the DG problem [43; 44] used kernel-based approaches to
the problem setting with corresponding generalization error analysis, and showed empirical results
using traditional machine learning methods. A few other efforts [45–47] also followed a similar path,
and focused on kernel-based approaches in traditional methods. From a deep learning perspective,
an early attempt at such a theoretically motivated method was proposed in [48] using a convex hull
formulation and distribution matching to obtain generalization bounds, which also is an inspiration
for parts of our work. In [49], the authors study theoretical bounds in the DG setting using three
new concepts: feature invariance across domains, feature discriminability for the classification
task, and a feature expansion function to generalize the first two concepts from the source to the
target domain. [50] identified measures relating to the Fisher information, predictive entropy, and
maximum mean discrepancy to be good predictors of out-of-distribution generalization of empirical
risk minimization (ERM) models in the DG setting. [24] proposed generalization bounds in terms
of the model’s Rademacher complexity and suggested using regularized ERM models for the DG
problem. Finally, [14] introduced an online game in which one model (player) reduces the error on
test data provided by an adversarial player, but do not provide any empirical studies. In this work, we
draw inspiration from [48] by considering a convex combination of source domains and leverage this
to propose a new margin-based approach to the theoretical analysis of DG, which helps develop an
informative generalization bound. Motivated by this analysis, we propose the MADG algorithm, a
novel margin-based adversarial learning approach for DG, which shows consistent performance over
other state-of-the-art methods across benchmarks.

3 Preliminaries
We consider a set of source domains DSi with i ∈

{
1, 2, . . . , Ns

}
and a set of unseen domains

DUm
with m ∈

{
1, 2, . . . , Nu

}
. We use D to refer to any of these domains when the index is not

relevant. We use the terms ‘domain’ and ‘distribution’ interchangeably in this work. Each such
domain D ⊆ X × Y , where X is an input space and Y is an output space, which is {0, 1} in binary
classification and {1, · · · , k} in multi-class classification. We use D̂ to denote a set of samples drawn
independently from D, i.e. D̂ =

{
(xi, yi)

}n
i=1

where xi ∈ X and yi ∈ Y ,∀i ∈
{
1, 2, . . . , n

}
. We

use (x, y) to refer to a labeled sample (xi, yi), when the index is not relevant.

As in [51], we consider the multi-class setting with a hypothesis space F of scoring functions
f : X → R|Y| = Rk, where the outputs report the confidence of the prediction on each dimension.
Similar to [40], we use f(x, y) to denote the component of f(x) that corresponds to the label y. In
order to obtain the final predicted label, we also consider a labeling function space H containing
hf : X → Y such that hf (x) = argmaxy∈Y f(x, y), i.e. the predicted label assigned to data sample
x is the one resulting in the largest confidence score.

The expected error rate of a classifier h ∈ H with respect to a distribution D is defined as errD(h) =
∆

E(x,y)∼D1
[
h(x) ̸= y

]
where 1 is the indicator function. We also define the margin ρf (·) and the

corresponding margin loss of hypothesis f for a labeled example (x, y) as follows:

ρf (x, y) =
∆ 1

2

(
f(x, y)− maxy′ ̸=y f(x, y′)

)
; err

(ρ)
D (f) =∆ Ex∼D

[
Φρ ◦ ρf (x, y)

]
(1)

where ◦ denotes the composition function and Φρ is:

Φρ(t) =


0 if ρ ≤ t

1− t
ρ if 0 ≤ t ≤ ρ

1 if t ≤ 0

(2)

The margin disparity and its empirical version are then defined as:

disp(ρ)
D
(
f ′, f

)
=∆ ED

[
Φρ ◦ ρf ′(., hf )

]
(3)

disp(ρ)
D̂

(
f ′, f

)
=∆ ED̂

[
Φρ ◦ ρf ′(., hf )

]
=

1

n

n∑
i=1

Φρ ◦ ρf ′
(
xi, hf (xi)

)
(4)

where f and f ′ are different scoring functions. Margin disparity discrepancy (MDD) is used to
quantify the degree of discrepancy/disagreement between decision boundaries of classifiers (using
their margins) trained on different domains in our context. Such a measure can be used to evaluate
the generalization performance of a model across multiple domains. The MDD and its empirical
version are defined in Eqn. (5) and Eqn. (6) below, respectively.
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d(ρ)f,F
(
DSi

,DSk

)
=∆ supf ′∈F

(
disp(ρ)DSk

(
f ′, f

)
−disp(ρ)DSi

(
f ′, f

))
(5)

d(ρ)f,F
(
D̂Si

, D̂Sk

)
=∆ supf ′∈F

(
disp(ρ)

D̂Sk

(
f ′, f

)
−disp(ρ)

D̂Si

(
f ′, f

))
(6)

We use the above terminologies from [40], which however focused on domain adaptation (with one
source domain and one seen target domain). Handling multiple seen domains and an unseen target
domain in the DG setting is non-trivial, which we focus on in this work.

4 Margin-based Approach to Domain Generalization: Theory
This section presents the theoretical motivation for our margin-based approach to the Domain General-
ization (DG) problem. Our approach is based on considering the margin disparity discrepancy (MDD),
defined above, between the source domains, thereby obtaining a generalization bound. We believe
such a margin-based approach has a few advantages: (i) Informative: Generalization bounds based on
margin loss for classification provide more information (than 0-1 loss-based bounds) by establishing
a dependency between any margin function satisfying the Lipschitz condition and the upper bounds,
as demonstrated in well-known earlier work [39]. (ii) Tightness: In contrast to using a 0-1 loss
to identify samples causing disagreement between classifiers, margin loss computes disagreement
between scoring functions using a smooth function parameterized by the threshold (ρ). Consequently,
the number of samples causing agreement between classifiers is less, resulting in such an MDD-based
bound being tighter, as shown in Fig. 1. (iii) Classifier-aware Discrepancy: MDD considers the
classifier function while measuring discrepancy; as shown in Eqns 5 and 6, the supremum is com-
puted over f ′ while holding f constant (f learns the posterior distribution P(y|x) discriminatively
for the classification task). This provides a classifier-aware approach to computing discrepancy.

hf = 0

hf' = 0

hf' = 1

hf = 1

 = Margin

Figure 1: Space of intersection (agree-
ment) in MDD (yellow) is reduced as
compared to 0-1 loss (blue + yellow) be-
tween f and f ′ for labels {0, 1}.

(iv) Efficient Optimization and Practicality: The definition
of MDD, as in Eqn. (5), only requires taking the supremum
over one hypothesis. Therefore, compared to other divergence
measures such as H∆H [38], MDD can be optimized with
ease and is practically useful, as also stated in [40].

In this section, we derive a generalization bound for an unseen
domain based on the margin-based MDD loss in the DG
setting. To this end, we first show an upper bound on the
unlabeled source domain error given other labeled source
domains (Lemma 1 and Theorem 1). We then leverage this to
develop the upper bound for the error on an unseen domain
that is not necessarily a source domain (Lemma 2, Theorem 2,
and Corollary 1). We subsequently analyze the upper bound
from Corollary 1 using the Rademacher complexity framework and develop our final generalization
bound for the unseen target domain in the DG setting (Lemma 3 and Theorem 3) using our margin-
based loss. In Sec 5, we show the formulation of the proposed adversarial learning algorithm, MADG,
motivated by the generalization bound in Sec 4, that employs MDD to address the DG problem.

We begin by considering a setting where training data consists of Ns − 1 labeled source domains
DSi

, i = {1, . . . , Ns − 1} and a single unlabeled source domain DST
, and show an upper bound on

error in this setting. We later use this to show an upper bound for the DG setting. We first establish an
upper bound on the MDD between a weighted sum of the labeled source domains and the unlabeled
one in Lemma 1 below.

Lemma 1 Consider a weighted sum of Ns − 1 labeled source distributions defined as DS̄ :=∑Ns−1
i=1 αiDSi

, where αis are mixture co-efficients s.t.
∑Ns−1

i=1 αi = 1, and f is a scoring function.
Then

d(ρ)
f,F
(
DS̄ ,DST

)
≤

Ns−1∑
i=1

αid
(ρ)
f,F
(
DSi

,DST

)
(7)

Detailed proofs for all our theoretical results are provided in the Appendix. It follows from Lemma
1 that an effective way to minimize the discrepancy between the unlabeled source domain and the
mixture of labeled source domains in the hypothesis space is by minimizing the convex sum of the
pairwise MDD between each labeled and unlabeled source domain. Building upon this insight, we
provide bounds on the unlabeled source error below in Theorem 1.
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Theorem 1 Consider a scoring function f , unlabeled source domain DST
and a mixture of Ns −

1 source distributions denoted as DS̄ :=
∑Ns−1

i=1 αiDSi , where αis is mixture co-efficients s.t.∑Ns−1
i=1 αi = 1. Then the error on the unlabeled source DST

is bounded as:

errDST
(hf ) ≤

Ns−1∑
i=1

αi

(
err

(ρ)
DSi

(f) + d(ρ)f,F
(
DSi

,DST

))
+λ̂ (8)

Remark 1: From Theorem 1, we observe that the unlabeled source error is upper bounded by the
labeled source errors, the pairwise discrepancy between each labeled and unlabeled source domain,
and the ideal margin loss described below in Remark 2. We can also interpret Theorem 1 as an upper
bound for the multi-source domain adaptation (DA) setting. While this is not our primary focus in
this work, we report preliminary empirical results for a multi-source DA algorithm that reduces the
first two terms in Theorem 1 in the Appendix.

Remark 2: The ideal loss λ̂ is defined as λ̂ = minf∗∈F

(∑Ns−1
i=1 αi err

(ρ)
DSi

(f∗) + err
(ρ)
DST

(f∗)
)

and is a constant that is independent of function f .

Building on Theorem 1, we now develop bounds for the DG setting, where all source domains (Ns)
are labeled, and the target domain is unseen during training. To this end, we consider the relationship
between the unseen target and multiple source domains. In particular, we derive our error bound on
the unseen target domain using the convex hull of the labeled source domains and MDD. We also
provide a DG algorithm motivated by our theoretical analysis, which we describe later in Sec 5.

Before stating our main theorem, we present Lemma 2, which states that if the maximum MDD
between any two sources is bounded above by ϵ, then the MDD between any two domains that belong
to the convex hull of all the sources will also be bounded by ϵ. Let Λs be the convex hull of source
domains defined as Λs =

{
D̄ : D̄ =

∑Ns

i=1 πiDSi
where

∑Ns

i=1 πi = 1
}

.

Lemma 2 Let d(ρ)f,F
(
DSi

,DSk

)
≤ ϵ ∀i, k ∈

{
1, 2, . . . , Ns

}
and f be a scoring function. Then the

following inequality holds for the MDD between any pair of domains D′,D′′ ∈ Λs:

d(ρ)f,F
(
D′,D′′)≤ ϵ (9)

We observe from Lemma 2 that in the hypothesis space, the discrepancy among all the domains (seen
or unseen) that belong to the convex hull Λs can be reduced by minimizing the maximum MDD
between two source domains. With the necessary tools at hand, we state the key theorem, i.e., the
unseen target error bound for the DG problem below in Theorem 2.
Theorem 2 Consider a mixture of Ns source distributions, scoring function f, unseen domain DUm

,
and γ = d(ρ)f,F

(
DUm , D̄U

)
where D̄U is the projection of DUm onto the convex hull of the sources i.e.

D̄U = argminπ1,π2,...,πNs
d(ρ)
f,F

(
DUm

,
∑Ns

i=1 πiDSi

)
,
∑Ns

i=1 πi = 1. Then, the unseen target error is
bounded as follows:

errDUm
(hf ) ≤

Ns∑
i=1

πi

(
err

(ρ)
DSi

(f)
)
+ϵ+ γ + λ̄ (10)

Remark 3: As defined in Theorem 2, γ = d(ρ)f,F
(
DUm

, D̄U

)
. Two scenarios therefore arise: γ = 0

when the unseen domain falls in the convex hull, i.e., DUm
=
∑Ns

i=1 πiDSi
or γ > 0 when the unseen

domain cannot be represented by available domains alone. Thus this parameter can be interpreted as
the need for diverse source domains. The more diverse the source domains are, the smaller the value
of γ.

Remark 4: As seen from Lemma 2, ϵ is defined as the upper bound for the MDD between any two
domains that belong to the convex hull Λs formed by the source domains. Thus, we can also interpret
ϵ as the highest MDD value among the source domains as shown below in Eqn 11.
ϵ = d(ρ)f,F

(
DSi′ ,DSk′

)
, s.t. d(ρ)f,F

(
DSi′ ,DSk′

)
≥ d(ρ)

f,F
(
DSi

,DSk

)
∀i, k, i′, k′ ∈

{
1, . . . , Ns

}
(11)

Equipped with this definition for ϵ, we can re-state Theorem 2 as Corollary 1 below.
Corollary 1 Consider a mixture of Ns source distributions, scoring function f, unseen
domain DUm

, γ = d(ρ)
f,F
(
DUm

, D̄U

)
, and d(ρ)f,F

(
DSi′ ,DSk′

)
where d(ρ)f,F

(
DSi′ ,DSk′

)
≥

d(ρ)f,F
(
DSi

,DSk

)
∀i, k, i′, k′ ∈

{
1, 2, . . . , Ns

}
. Then the unseen target error is bounded as follows:
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errDUm
(hf ) ≤

Ns∑
i=1

πi

(
err

(ρ)
DSi

(f)
)
+d(ρ)f,F

(
DSi′ ,DSk′

)
+γ + λ̄ (12)

As seen from Corollary 1, the unseen target error is bounded above by the source er-
rors, maximum MDD between two source domains, γ, and the ideal loss given by λ̄ =

minf∗∈F

(∑Ns

i=1 πierr
(ρ)
DSi

(f∗) + err
(ρ)
DUm

(f∗)

)
.

Before we derive the generalization bound with the Rademacher complexity framework, we define

ΠHF =

{
x 7→ f

(
x, h(x)

)∣∣∣∣h ∈ H, f ∈ F
}

[40] and Rademacher complexity Rn,D in Definition 1.

Definition 1 Let F be a class of functions such that f ∈ F : X × Y → [a, b] and D̂ ={
(x1, y1) . . . , (xn, yn)

}
be a fixed sample of size n drawn from D over X ×Y . Then the Rademacher

complexity of F is defined as:

Rn,D(F) =∆ ED̂∼Dn

[
Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi, yi)

]]
(13)

where σis are independent Rademacher variables that assume values in {−1,+1}. We now leverage
Lemma 3.6 in [40] to derive our Lemma 3.
Lemma 3 For any δ > 0, with probability 1−2δ, the following holds simultaneously for any scoring
function f :∣∣∣∣d(ρ)f,F

(
D̂Si

, D̂Sk

)
−d(ρ)f,F

(
DSi

,DSk

)∣∣∣∣ ≤ k

ρ
Rni,DSi

(
ΠHF

)
+
k

ρ
Rnk,DSk

(
ΠHF

)
+

√
log 2

δ

2ni
+

√
log 2

δ

2nk

(14)

where ni and nk correspond to the sample size of D̂Si
and D̂Sk

, respectively. The difference between
MDD and its empirical version is bounded by the Rademacher complexity as seen in Eqn 14. With
these definitions, we derive our generalization bound based on Rademacher complexity and empirical
MDD as below.
Theorem 3 Given the same setting as Corollary 1 and Lemma 3, for any δ > 0, with probability
1− 3δ, we obtain the following generalization bound for all f :

errDUm
(f) ≤

Ns∑
i=1

πi

(
errρ

D̂Si

(f)
)
+d(ρ)f,F

(
D̂Si′ , D̂Sk′

)
+γ + λ̄+

k

ρ
Rni,DSi

(
ΠHF

)
+

k

ρ
Rnk,DSk

(
ΠHF

)
+

√
log 2

δ

2ni′
+

√
log 2

δ

2nk′
+

Ns∑
i=1

πi

(
2k2

ρ
Rni,DSi

(
Π1F

)
+

√
log 2

δ

2ni

)
(15)

where Π1F =∆
{
x 7→ f(x, y)

∣∣y ∈ Y, f ∈ F
}

as defined in [51] and 1 (in the subscript) represents
constant functions mapping all points to the same class (see Appendix for more details). Theorem 3
thus establishes a relationship between the margin value ρ and the generalization error. The first two
terms on the right-hand side exhibit minimal variation with an increase in the margin ρ, especially
when ρ is small and the hypothesis space is rich, thus reducing the overall right-hand side. However,
if ρ exceeds a certain threshold (resulting in a weak classifier), then the first two terms significantly
increase, resulting in increase of the overall bound. Choosing a better ρ value thus allows one to
obtain a desired error bound, making it more informative than a 0-1 loss-based bound. Inspired by
this theoretical framework, we now propose our margin-based adversarial learning algorithm for DG
in the next section.

5 MADG: Methodology
This section details the methodology of the proposed MADG algorithm, a novel adversarial DG
algorithm motivated by the theory in Section 4. As seen in Theorem 3, the unseen target domain error
is upper-bounded by the convex sum of the empirical source domain errors, ϵ̂ term defined in Eqn.
(16), γ, λ̄ and complexity terms. We hence aim to minimize the two important terms, viz., the convex
sum of the empirical source domain errors and the ϵ̂ term (given below).

ϵ̂ = d(ρ)
f,F
(
D̂Si′ , D̂Sk′

)
, s.t. d(ρ)

f,F
(
D̂Si′ , D̂Sk′

)
≥ d(ρ)

f,F
(
D̂Si

, D̂Sk

)
∀i, k, i′, k′ ∈

{
1, . . . , Ns

}
(16)

6



Source 1

Source 2

Source NS

GRL

GRL

Concatenate
all sources

Feature Extractor

(Classification Loss)

(Transfer Loss)

Input
GRL = Gradient Reversal Layer

Figure 2: Architecture of the proposed MADG methodology

Efficient estimation of ϵ̂. As stated in Eqn. (16), ϵ̂ is defined as the maximum pairwise empirical
MDD among all source domains. Similar to Remark 4 and Lemma 2, we can also interpret ϵ̂ as the
upper bound of the empirical MDD between any two domains inside the convex hull formed by the
source domains. If we minimize the sum of the empirical MDD between different pairs of the source
domains, then the size of the convex hull reduces, which in turn minimizes ϵ̂. Thus, one effective way
to estimate ϵ̂ is to consider the term below in Eqn. (17).

Ns−1∑
i=1

Ns∑
k=i+1

d(ρ)f,F
(
D̂Si , D̂Sk

)
(17)

Minimax optimization. To find the optimal f in the hypothesis space F , we formulate our objective
function as a minimization problem. As mentioned earlier, we minimize the sum of the empirical
source errors and the ϵ̂ term estimated using Eqn (17). Thus, the minimization problem can be written
as:

min
f∈F

Ns∑
i=1

πi

(
err

(ρ)

D̂Si

(f)
)
+

Ns−1∑
i=1

Ns∑
k=i+1

d(ρ)f,F
(
D̂Si

, D̂Sk

)
(18)

Since empirical MDD is defined as the supremum of the hypothesis space F , minimizing it is in turn
a minimax game with a strong max player and weaker min player. In order to strengthen the min
player, we use a feature extractor, G, which further modifies the optimization problem as follows:

min
f,G

Ns∑
i=1

πi

(
err

(ρ)

G(D̂Si
)
(f)
)
+

j∑
l=1

(
disp(ρ)

G(D̂Si
)

(
f∗
l , f

)
−disp(ρ)

G(D̂Sk
)

(
f∗
l , f

))
,

f∗
l = max

f ′
l

(
disp(ρ)

G(D̂Si
)

(
f ′
l , f
)
−disp(ρ)

G(D̂Sk
)

(
f ′
l , f
))

, where f, f ′
l ∈ F and ∀l =

{
1, . . . , j

}
.

(19)

where j =
(
Ns

2

)
. The relationship between l, i and k is as follows: if l = 3 then we pick the i and k

value corresponding to the 3rd element of the set
{
(i, k) : i =

{
1, . . . , Ns−1

}
, k =

{
i+1, . . . , Ns

}}
.

To solve the minimization problem in Eqn. (19), we design an adversarial learning algorithm whose
model architecture is shown in Fig. 2. One classifier f performs the classification task on all source
domains, while j other classifiers, denoted by f ′, compute the empirical MDD between different
pairs of source domains, which finally sum together as the transfer loss. To compute the source
errors in Eqn. (19), we use the standard cross-entropy loss E(D̂Si

). For convenience of optimization
(MDD can be hard to optimize directly using stochastic gradient descent), in practice, following [40],
we approximate the MDD loss as

(
D(ρ̂,l)

(
D̂Si , D̂Sk

))
in terms of two loss functions, L and L′, as

shown below.

E
(
D̂Si

)
= E(x,y)∼D̂Si

[
L
(
f
(
G(x)

)
, y
)]

D(ρ̂,l)

(
D̂Si

, D̂Sk

)
= E(x,y)∼D̂Sk

[
L′
(
f ′
l

(
G(x)

)
, f
(
G(x)

))]
− ρ̂E(x,y)∼D̂Si

[
L
(
f ′
l

(
G(x)

)
, f
(
G(x)

))]
(20)

We train the feature extractor, G, to minimize the above MDD loss term by using a Gradient Reversal
Layer (GRL) proposed in [52], as D(ρ̂,l)(D̂Si , D̂Sk

) is not differentiable w.r.t the parameters of f . L
and L′ are defined as:
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L
(
f
(
G(x)

)
, y
)
=∆ − log

[
σy

(
f
(
G(x)

))]
, L′

(
f ′(G(x)), f(G(x)))=∆ log

[
1− σ

hf

(
G(x)

)(f ′(G(x)))]
(21)

where σw(z) =
ezw∑k
i=1 ezi

, z ∈ Rk, for w = 1, . . . , k, and ρ̂ = eρ. The final optimization problem
that the MADG method solves is shown below.

min
f,G

Ns∑
i=1

πi

(
E(D̂Si)

)
+

j∑
l=1

(
D(ρ̂,l)

(
D̂Si , D̂Sk

))
, max

f ′
1,...,f

′
j

j∑
l=1

(
D(ρ̂,l)

(
D̂Si , D̂Sk

))
(22)

Algorithm 1 Margin-based adversarial learning for
Domain Generalization (MADG)
INPUT: Ns labeled source domains
for epoch← 1 to total_epochs do

for batch← 1 to total_batches do
Update parameters of f , G, using Eqn. (20)
ŷD̂Si

← f(G(x)) ∀i ∈ {1, 2, . . . , Ns}
Compute MDDl as in Eqn. (20) using ŷD̂Si

Compute Transfer loss
=

∑j
l=1(D(ρ̂,l)

(
D̂Si , D̂Sk

)
)

Update parameters of f ′and G as in Eqn. (22)
end for

end for

We propose an adversarial DG algorithm to
solve the minimization problem, as shown in
Algorithm 1. We train the proposed adversarial
model in two steps. In the first step, we update
the parameters fand G. In the next step, we
first do a forward pass to compute the outputs
from f and then update the parameters f ′and G
as shown in the algorithm. We further show
through our ablation studies that this way of up-
dating parameters at different steps outperforms
a joint update strategy.

6 Experiments
Datasets and Implementation Details. We per-
form an extensive evaluation on five benchmark DG datasets for image classification: VLCS [30],
PACS [31], OfficeHome (OH) [32], TerraIncognita (TI) [33] and DomainNet (DN) [34].We follow
[53] in using ‘Test-domain validation’ procedure for hyperparameter selection. We use the Resnet50
architecture [54] pre-trained on ImageNet dataset [55] as the feature extractor (G). We train our
model using stochastic gradient descent with momentum [56]. We use a mini-batch that contains 32
samples from all source domains. All other implementation details including hyperparameters such
as learning rate, margin, and weight decay are provided in the Appendix.

Baselines and evaluation metrics. We report the results of all baseline models from [35], which
are represented by † in Table 1. We also present the results from [53], which are represented by ⊥.
We run our experiments for three trials and report the average accuracy (with standard deviation).
Existing state-of-the-art methods (see [35]) focus on average accuracy across the benchmarks, with
each method doing well on a subset of datasets. In order to reward consistent performance across
datasets while improving average accuracy, we additionally include a ranking-based metric (from
[53]) and go beyond ranking with two new metrics (AD and GD), which more precisely capture
the consistent performance of a method across datasets: (i) Median rank (M) [53]: This measures
the median rank of a model’s performance across all datasets and is not skewed to best/worst ranks
when compared to the mean rank. (ii) Arithmetic mean of differences (AD): This measures the
difference of a model’s performance w.r.t the highest-performing model’s accuracy on a given dataset,
and then taking its arithmetic mean across datasets. (iii) Geometric mean of differences (GD):
This similarly measures the geometric mean of the difference between the highest accuracy and the
achieved accuracy of a model across all datasets.
Results. We report the results on different DG benchmark datasets on the considered evaluation
metrics in Table 1. It is observed that most previous methods are far from the best-performing model’s
accuracy on at least one of the datasets. This is captured well by the metrics AD and GD, which
quantify the mean of the differences from the best accuracy across all the datasets. Thus, we observe
higher values in the first two columns of Table 1, where our MADG model performs the best showing
its consistency. The MADG algorithm outperforms all other models on average accuracy, median
rank, AD, and GD, thus demonstrating consistent performance.

The results also show that MADG outperform DANN and CDANN models (which are based on the
0-1 loss discrepancy theory) across most datasets and improves the average accuracy by ≈ 2% with
significantly better AD and GD values too – corroborating our margin-based approach to the DG
problem. MADG is 1% better on the avg accuracy (and lower AD-GD values) when compared to
ERM, which was found to be a strong baseline for DG in [35]. Our model also reports an accuracy
improvement of ≈ 3% on the OfficeHome dataset compared to all other models.
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Table 1: Accuracy(%) on benchmark DG datasets. Values in red and orange are best and second best-
performing models in a column, respectively. We report deviation as ±N/A for models that did not report them.
OH = OfficeHome dataset, TI = TerraIncognita dataset, DN = DomainNet dataset, M = Median rank, AD =
Arithmetic mean of differences, GD = Geometric mean of differences, Avg. = Average accuracy(%).
Algorithm AD(↓) GD(↓) M(↓) VLCS OH PACS TI DN Avg.(↑)
ERM (1998)† [57] 2.2 1.8 8 77.6±0.3 66.4±0.5 86.7±0.3 53.0±0.3 41.3±0.1 65.0
CORAL (2016)† [58] 1.9 1.1 3 77.7±0.2 68.4±0.2 87.1±0.5 52.8±0.2 41.8±0.1 65.6
DANN (2016)† [59] 3.4 2.1 16 79.7±0.5 65.3±0.8 85.2±0.2 50.6±0.4 38.3±0.1 63.8
CDANN (2018)† [60] 3.2 0.7 14 79.9±0.2 65.3±0.5 85.8±0.8 50.8±0.6 38.5±0.2 64.1
MLDG (2018)† [61] 2.3 1.8 6 77.5±0.1 66.6±0.3 86.8±0.4 52.0±0.1 41.6±0.1 64.9
MMD (2018)† [62] 5.9 0.9 10 77.9±0.1 66.2±0.3 87.2±0.1 52.0±0.4 23.5±9.4 61.4
IRM (2019)† [63] 6.7 5.3 18 76.9±0.6 63.0±2.7 84.5±1.1 50.5±0.7 28.0±5.1 60.6
GroupDRO (2019)† [64] 3.9 1.9 10 77.4±0.5 66.2±0.6 87.1±0.1 52.4±0.1 33.4±0.3 63.3
Mixup (2020)† [65] 1.9 0.4 5 78.1±0.3 68.0±0.2 86.8±0.3 54.4±0.3 39.6±0.1 65.4
ARM (2020)† [66] 4.1 3.4 14 77.8±0.3 64.8±0.4 85.8±0.2 51.2±0.5 36.0±0.2 63.1
RSC (2020)† [67] 2.9 2.5 9 77.8±0.6 66.5±0.6 86.2±0.5 52.1±0.2 38.9±0.6 64.3
SagNet (2021)† [68] 2.3 2.0 6 77.6±0.1 67.5±0.2 86.4±0.4 52.5±0.4 40.8±0.2 65.0
V-REx (2021)† [69] 4.7 0.8 12 78.1±0.2 65.7±0.3 87.2±0.6 51.4±0.5 30.1±3.7 62.5
AND-mask (2021)⊥ [70] 3.9 3.3 13 76.4±0.4 66.1±0.2 86.4±0.4 49.8±0.4 37.9±0.6 63.3
Fish (2021) ⊥ [71] 2.5 0.6 13 77.8±0.6 66.0±2.9 85.8±0.6 50.8±0.4 43.4±0.3 64.8
SAND-mask (2021)⊥ [72] 5.2 4.2 16 76.2±0.5 65.9±0.5 85.9±0.4 50.2±0.1 32.2±0.6 62.1
Fishr (2022)⊥ [53] 1.5 1.2 3 78.2±0.2 68.2±0.2 86.9±0.2 53.6±0.4 41.8±0.2 65.7

G2DM (2019)†∗[48]

T
he

or
y

B
as

ed
M

et
ho

ds

- - - 75.9±N/A - 73.6±N/A - - -
MTL(2021)†∗[47] 2.5 2.0 8 77.7±0.5 66.5±0.4 86.7±0.2 52.2±0.4 40.8±0.1 64.8
Transfer(2021)* [73] - - - - 64.3±N/A 85.3±N/A - - -
Ood(2021)* [49] - - - 76.3±N/A 68.1±N/A 86.6±N/A - - -
MADG (ours) 1.2 0.3 3 78.7±0.2 71.3±0.3 86.5±0.4 53.7±0.5 39.9±0.4 66.0

To highlight our contribution, we also provide a grouping of DG methods that are theory-based in
Table 1 (also denoted with a ∗), some of which do not report results on all benchmark datasets. For
the only such method that reports results on all datasets – MTL, MADG achieves 1.2% more average
accuracy, 1.3 units less AD, 1.7 units less GD, and a lower median ranking as compared to MTL.
More results, including ‘Training-domain’ model selection results, are provided in the Appendix.

7 More Empirical Analysis and Ablation Studies
Computational Cost. The computational cost of a model is usually measured in terms of GPU RAM
occupied (GB) and time taken per step (s). In terms of computational cost, following Eqn. (17), while
we iteratively compute MDD over all domains, our computational cost during training is similar to
other benchmark methods as shown in Table 2. As seen in the table, even simple methods like ERM
and Mixup have running times in similar ranges.

Table 2: Computational cost and Average Ac-
curacy (%) (Avg.) for different baselines.

Model GPU(GB)(↓) Time(s)(↓) Avg.(↑)
MADG ∼10.5 ∼1.3 66.0
Fishr [53] ∼15.7 ∼0.6 65.7
Fish [71] ∼3.4 ∼ 1.2 64.8
Mixup [65] ∼8.2 ∼0.4 65.4
ERM [57] ∼8.2 ∼0.4 65.0

Margin. As shown in Theorem 3, the margin
value ρ plays an important role, especially with
its dependency on the generalization error. In
practice, to get the desired margin while train-
ing the MADG algorithm, we approximate it as
ρ̂ =∆ exp ρ. We experiment with different margin
values, ρ̂ = 1, 1.5, 2, and 3, and report the average
accuracy for PACS and VLCS dataset in Table 3.
Table 3 shows that ρ̂ = 1.5 outperforms other values
on both datasets. As seen from the definition of the margin loss function Eqn. (1) and MDD Eqn.
(5), although having a large margin is better to achieve low loss and higher target accuracy, there is a
tradeoff between optimal margin and loss value. We observe a similar trend in Table 3.

Table 3: Accuracy(%) of
MADG model for different
ρ̂ values.
ρ̂ PACS VLCS

1 86.2 78.4
1.5 86.5 78.7
2 86.2 78.4
3 85.7 77.8

Experiments on Colored MNIST. As stated in Theorem 2, γ is defined
as the projection of the unseen domain onto the convex hull. It is also
defined in Theorem 2 as the MDD between the convex hull and the unseen
domain, which can be further approximated with a combination of two
different cross-entropy functions as in Eq (20). This equation is equivalent
to a balanced Jensen-Shannon (JS) Divergence as shown in Proposition
D.1. in [40]. Thus, we can approximate this projection by computing the
JS divergence between domains. We experimented on the Colored MNIST
dataset, where we noted the γ values to be small for all domains, as shown
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in Table 4. This is because the distributions of different domains in Colored MNIST are relatively
close to each other when compared to real-world datasets.

Table 4: Pairwise JS divergence for the Col-
oredMNIST dataset and the approximated γ
value.

+90 +80 -90 ∼ γ

+90 0 0.019 0.024 0.043
+80 0.019 0 0.029 0.048
-90 0.024 0.029 0 0.054

As seen in Table 5, the proposed MADG algorithm
achieves 65.6% average accuracy, which is significantly
higher than the ERM model (57.8% average accuracy),
thus showing that using a margin-based DG algorithm,
MADG, learns better domain-invariant features on the
Colored MNIST dataset. Besides, Table 4 shows that γ
is small across domains in this dataset, showcasing the
promise of the proposed method when the unseen domain
is within the convex hull of the source domains.

Table 5: Accuracy (%) on ColoredM-
NIST dataset (C).

C ERM MADG

+90 71.8±0.4 72.3±0.3
+80 72.9±0.1 74.0±0.2
-90 28.7±0.5 50.5±0.4
Average 57.8 65.6

MDD classifiers. The proposed MADG algorithm uses ‘j’
f ′ classifiers, and each one calculates the MDD between a
pair of source domains. In the algorithm, ‘j’ is defined as
j =

(
NS

2

)
. In this section, we analyze the algorithm with

j = NS − 1 where l takes corresponding i and k values from
{(1, i) : i = {2, . . . , Ns}}. As seen in Table 6, for ‘NS − 1’,
the model performs low across all the datasets, significantly
(∼ 2.5%) for the TerraIncognita dataset because the model fails
to capture all possible domain discrepancies, leading to poor
performance by the feature extractor in learning invariant features.

Table 6: Accuracy(%) of the
MADG model for different
MDD classifiers. New = NS−
1, Org. =

(
NS
2

)
Data j=Org. j=New

VLCS 78.7 78.5
PACS 86.5 86.4
OH 71.3 70.8
TI 53.7 51.1

Additional Results. The proposed MADG algorithm is further com-
pared with recent methods, MIRO [29] and SD [74], which report
results using different hyperparameter selection procedures. For a fair
comparison, we run both these methods following our setting and report
the results on OfficeHome data as shown in Table 7. As seen from Table
7, the proposed MADG outperforms the SD model on all domains. The
MADG model also outperforms MIRO on two domains and achieves
the same accuracy on the ‘R‘domain.

Table 7: Accuracy(%) on OfficeHome (OH)
dataset

OH Miro SD MADG

A 67.0 ±0.7 64.8±0.9 68.6 ±0.5
C 56.5 ±0.9 49.9 ±1.2 55.5 ±0.2
P 79.4 ±1.4 75.6 ±1.3 79.6 ±0.3
R 81.5 ±0.5 79.1 ±0.2 81.5 ±0.4

Avg 71.1 67.4 71.3

Weighted MDD. The proposed MADG algorithm
calculates the Transfer loss as the arithmetic sum of
the ‘j’ MDD losses. This section analyzes the ef-
fect on the model’s performance using a weighted
(w) arithmetic sum. The different weights used in
this section are wl =

1
NS

, ∀l = 1 . . . j(Average) and
wl =

MDDL∑j
l=1 MDDl

(Dynamic). The performance of
the MADG algorithm using different weights is re-
ported in Table 8. The model with wl = 1, ∀l =
1 . . . j performs better than other weight values as reported in Table 8.

8 Conclusion
Table 8: Accuracy(%)
of the MADG with dif-
ferent wl values. One:
wl = 1, Avg.=Average,
Dyn.=Dynamic

One Avg. Dyn.

P 97.7 97.8 97.6
A 87.8 87.3 87.5
C 82.2 82.0 82.4
S 78.3 77.4 77.2

Avg 86.5 86.1 86.2

This study presented a novel adversarial algorithm for DG called
MADG. Our approach is inspired by a theoretical framework that
formulates the relationship between the source and unseen domains
in real-valued hypothesis space. We used the margin loss function
and Rademacher complexity framework to develop a generalization
bound, which is informative. The proposed bound also shows a depen-
dency between the margin value and the generalization error, which
can be easily translated into an algorithm. To this end, we developed
the MADG algorithm that leverages the MDD metric with minimax
optimization to learn domain-invariant features and generalize well to
the unseen domain. The algorithm was studied on five well-known
DG benchmark datasets and reported consistent performance across
all datasets as compared to other methods. We also report several empirical analyses and ablation
studies.
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