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Abstract

Large language models (LLMs) such as T0, FLAN, and OPT-IML, excel in multi-
tasking under a unified instruction-following paradigm, where they also exhibit
remarkable generalization abilities to unseen tasks. Despite their impressive per-
formance, these LLMs, with sizes ranging from several billion to hundreds of
billions of parameters, demand substantial computational resources, making their
training and inference expensive and inefficient. Furthermore, adapting these mod-
els to downstream applications, particularly complex tasks, is often unfeasible
due to the extensive hardware requirements for finetuning, even when utilizing
parameter-efficient approaches such as prompt tuning. Additionally, the most
powerful multi-task LLMs, such as OPT-IML-175B and FLAN-PaLM-540B, are
not publicly accessible, severely limiting their customization potential. To address
these challenges, we introduce a pretrained small scorer, Cappy, designed to en-
hance the performance and efficiency of multi-task LLMs. With merely 360 million
parameters, Cappy functions either independently on classification tasks or serve as
an auxiliary component for LLMs, boosting their performance. Moreover, Cappy
enables efficiently integrating downstream supervision without requiring LLM fine-
tuning nor the access to their parameters. Our experiments demonstrate that, when
working independently on 11 language understanding tasks from PromptSource,
Cappy outperforms LLMs that are several orders of magnitude larger. Besides, on
45 complex tasks from BIG-Bench, Cappy boosts the performance of the advanced
multi-task LLM, FLAN-T5, by a large margin. Furthermore, Cappy is flexible
to cooperate with other LLM adaptations, including finetuning and in-context
learning, offering additional performance enhancement. 2

1 Introduction

Large language models (LLMs) have led to a new paradigm that seeks to unify various natural
language processing (NLP) tasks within an instruction-following framework. This paradigm is
exemplified by the recent multi-task LLMs, such as T0 [23], FLAN [30, 4], and OPT-IML [10].
These models are trained with data from many tasks: for each task, following a task-specific template,
each labeled example is converted into an instruction (e.g., "Put the concepts together to
form a sentence: ski, mountain, skier.") and a corresponding response (e.g., "Skier
skis down the mountain"). Such (instruction, response) pairs are then used to train the
LLM, resulting in a conditional generation model that takes input of a data example as an instruction

∗Work done during an internship at Google.
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Figure 1: Cappy outperforms multi-task LLMs:
The overall accuracy averaged over 11 test tasks
from PromptSource. Every dashed line connects
different sizes of the same model. Lines positioned
more towards the upper left denote models that are
more efficient and yield superior performance.
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Figure 2: Cappy boosts multi-task LLMs: The
averaged Rouge-L score over 45 complex tasks
within BIG-Bench. Every dashed line represents
an approach working on LLMs of various sizes.
Self-scoring refers to using the cross-entropy of
LLM to select responses.

and generates a response. Moreover, these multi-task LLMs have exhibited remarkable task-wise
generalization capabilities. That is, they can address unseen tasks by understanding and solving
brand-new instructions.

Due to the complexity of understanding and resolving various tasks solely via instructions, the sizes
of these multi-task LLMs typically span from several billion parameters to hundreds of billions, such
as T0-11B [23] and OPT-IML-175B [10]. As a result, operating such sizable models poses significant
challenges to the majority of LLM users, because they demand considerable computational power
and impose substantial requirements on the memory capacities of GPUs/TPUs, making their training
and inference expensive and inefficient.

In practical applications, harnessing a single multi-task LLM to manage all conceivable tasks in a
zero-shot manner remains challenging, particularly when dealing with complex tasks, personalized
tasks and those that cannot be succinctly defined using instructions. On the other hand, the size
of downstream training data is usually insufficient to well train a model without incorporating rich
prior knowledge. Hence, it is long desired to adapt LLMs with downstream supervision. Yet, the
adaptation process presents three significant obstacles: the extensive storage to maintain a unique
LLM copy for each downstream task; the considerable memory demands on GPUs/TPUs; and the
unavailability of the most powerful multi-task LLMs, such as OPT-IML-175B [10] and FLAN-PaLM-
540B [4]. Certain parameter-efficient tuning strategies, including prompt tuning [18] and adapters [8],
substantially diminish storage requirements, but they still perform back-propagation through the LLM
parameters during the tuning process, thereby their memory demands keep high. Additionally, some
in-context learning techniques [5] circumvent parameter tuning by integrating a limited number of
supervised examples into the instruction. However, these techniques are constrained by the model’s
maximum input length, which permits only a few samples to guide task resolution.

In this work, we propose a novel approach to enhance the performance and efficiency of multi-task
LLMs. Specifically, we introduce a lightweight pretrained scorer, Cappy, based on a continual
pretraining on top of RoBERTa [20], with merely 360 million parameters. Cappy takes in an
instruction and a candidate response as input, and produces a score between 0 and 1, indicating an
estimated correctness of the response with respect to the instruction. Naturally, we formulate Cappy’s
pretraining as a regression problem. This anticipates training data in the form of (instruction,
response) pairs that correspond to various correctness score annotations. To generate the desired
training data from multiple pretrain datasets that solely contain instructions and their ground truth
responses, we propose a weakly-supervised approach with data augmentation through the use of
existing multi-task LLMs. As a result, we obtain a large and effective regression pretraining dataset
with diverse correctness score annotations ranging from 0 to 1.

To apply Cappy to practical problem-solving scenarios, we suggest an intuitive approach in an
candidate selection style. Specifically, Cappy works independently on classification tasks by selecting
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Figure 3: (left) The modeling of Cappy. (right) Illustration of Cappy’s application in enhancing
multi-task LLMs, and the comparison between downstream adaptation through Cappy and approaches
that rely on LLM’s parameters, such as finetuning and prompt tuning.

the answer choice that produces the highest score. Furthermore, beyond the standalone use, Cappy
serves as an auxiliary component of existing multi-task LLMs, choosing the most appropriate output
from a set of candidates generated by the LLM. In this case, Cappy allows for effective and efficient
adaptation to complex tasks through the incorporation of downstream supervision, without requiring
finetuning the multi-task LLM or the access to its parameters. Remarkably, Cappy exhibits flexibility
in collaboration with other LLM adaptations, such as finetuning and in-context learning.

We validate Cappy through an extensive suite of held-out tasks distinct from those incorporated in its
pretraining. The overall performance is as shown in Fig. 1 and Fig. 2. Specifically, on 11 language
understanding tasks drawn from PromptSource [1], Cappy, with 360 million parameters, outperforms
OPT-IML-30B and OPT-175B significantly, and matches the best ones among previous multi-task
LLMs. Besides, on 45 diverse complex tasks from BIG-Bench [25], Cappy consistently boosts the
performance of the advanced multi-task LLM, FLAN-T5, by a large margin. Furthermore, Cappy
offers additional performance enhancement when applied together with finetuning or in-context
learning. Our subsequent ablation study proves the significance of our proposed pretraining and data
augmentation strategies.

2 Related Work

LLMs for Instruction Following and Multi-task Prompted Training The scaling up of language
models brings them increasingly strong capabilities, culminating in a general paradigm of addressing
diverse problems in a unified instruction-following manner. There are two primary approaches of
such LLMs, each distinguished by the purpose of their instructions. The first approach emphasizes
compliance with arbitrary human instructions, often in a question-and-answer or dialogue format
(e.g., "I have to make a difficult decision. What should I do?"). Models such as
GPT-4 [21] and Vicuna [3] are designed to respond to these instructions with the goal of maximizing
user satisfaction. These models are typically trained through Reinforcement Learning with Human
Feedback (RLHF) [13], leveraging extensive human annotations. Their quantitative evaluation also
heavily depends on human judgment [33]. The second approach, however, is primarily devoted
to resolving well-defined NLP tasks. In this context, each data instance adheres to a task-specific
template, and is transformed into an instruction (e.g., "Put the concepts together to form
a sentence: ski, mountain, skier.") and a corresponding response (e.g., "A skier skis
down the mountain."). Multi-task LLMs, such as OPT-IML [10], FLAN [30, 4], and T0 [23],
are pretrained via multi-task prompted training. This process trains models as a unified conditional
generation task using pairs of instructions and responses from multiple upstream pretraining tasks.
These models are typically assessed based on performance on held-out test tasks, utilizing traditional
evaluation metrics such as accuracy, Rouge scores [17], and so forth. In this study, our primary
focus is on the second approach, i.e., multi-task LLMs, given its more straightforward evaluation.
Nonetheless, we posit that there is no significant obstacle to apply our proposed methodologies to
more humanish instructions, which we leave as our future direction.
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Figure 4: Data augmentation with a multi-task LLM to construct weakly supervised regression dataset
for Cappy’s pretraining and finetuning, as described in Sec. 3.2.

Adaptation of LLMs The size of LLMs makes their finetuning for downstream tasks particularly
challenging, primarily due to three issues. Firstly, finetuning necessitates the creation of a new copy
of an LLM for each specific downstream task. This is unacceptable for many applications. Secondly,
fine-tuning an LLM demands considerable device memory because of the back-propagation through
the LLMs, which is achievable only with high-end GPU/TPU clusters. Thirdly, the most powerful
LLMs, such as FLAN-PaLM-540B [4] and GPT-4 [21], are closed-source and thus inaccessible
for fine-tuning. A collection of parameter-efficient LLM adaptation techniques, including prompt
tuning [18] and adapters [8], like prefix tuning [15] and LoRA [7], have largely mitigated the storage
issue by decreasing the number of tunable parameters. However, these methods still require back
propagation through the original LLM weights to update the prompt or the adapter, leaving the second
and third issues remain significant barriers in LLM adaptation. Certain in-context learning techniques
[5] circumvent LLM’s parameter tuning by appending training examples to the instruction. However,
the instruction length is limited by the model’s maximum input length, such in-context learning
techniques allow for only a finite number of samples to guide the task-solving process. In this work,
we propose the adaptation of multi-task LLMs by employing Cappy to incorporate downstream
supervision. This approach enables any number of training examples without necessitating LLM
finetuning or access to its parameters. Hence, the LLM serves merely as a black box, and Cappy is
even compatible with WebAPIs of LLMs. Importantly, Cappy can also be deployed in conjunction
with other LLM adaptations, such as finetuning and in-context learning.

Ranking-based Models Ranking is a pivotal component of information retrieval systems, notably
in search engines and recommendation systems [19]. It involves sorting vast numbers of documents
to find content pertinent to a specific query. Recently, ranking has been adapted for NLP tasks
to aggregate answers [14], and cater to human preferences [2, 6]. Furthermore, in the emergent
domain of reinforcement learning from human feedback (RLHF) [26], ranking models trained on
human-ranked model outputs serve as reward providers for the training RL agents. Concurrently with
this work, [32] proposes a unified ranking model solving information alignment style tasks, such as
natural language inference and paraphrase detection. In this work, Cappy is conceptually a ranking
model for multi-task learning. Unlike methodologies specifically designed for question answering
[12] or summarization [22], Cappy offers extensive generalizability across multi-task scenarios.
Additionally, in contrast to RLHF reward models, Cappy doesn’t rely on expensive human-annotated
data, enabling large-scale pretraining.

3 The Cappy Scorer

3.1 Modeling

Cappy adopts the architecture of RoBERTa [20] with a linear layer on the top as a regression head.
The input of Cappy is a pair of text, comprising an instruction and a response, and the output is a
scalar score ranging from 0 to 1. This score indicates an estimation of the correctness of the response
with regard to the task instance described in the instruction.

3.2 Pretraining

Cappy’s pretraining uses the same dataset collection that is utilized by T0 [23]. This collection is
comprised of 39 diverse datasets from PromptSource [1], encompassing a wide range of task types,
such as question answering, sentiment analysis, and summarization, etc. Each dataset is associated
with one or multiple templates, converting each instance from the original datasets into a instruction
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paired with its ground truth response. Following the pretraining configuration of T0, the size of each
dataset is limited to a maximum of 500,000 examples.

In light of Cappy’s regression modeling, each data instance during pretraining must have a text pair
(instruction, response), coupled with an correctness annotation for the response in relation
to the instruction. A diverse array of score annotations is a pivotal aspect of a regression dataset.
However, the text pairs in our pretraining datasets merely contain instructions with their ground truth
responses, hence each text pair invariably has a correctness score of 1.0. This could culminate in a
critical lack of label diversity throughout Cappy’s pretraining. To address this issue, we propose a
data construction approach to produce Cappy’s pretraining dataset with correctness annotations that
diversely range from 0 to 1. The data construction consists of three components:

Ground Truth (score 1.0) This component encompasses all ground truth instruction-response pairs
from the pretraining dataset. Each pair is assigned a correctness annotation of 1.0.

Incorrect Responses (score 0.0) We engineer incorrect data points by creating mismatched
instruction-response pairs from the original datasets. For classification datasets, each instruction is
paired with all incorrect answer choices. For generation datasets, each instruction is arbitrarily paired
with a ground truth response from a distinct data point within the dataset.

Data Augmentation (score within [0, 1]) In addition to purely correct or incorrect data samples, we
fabricate instruction-response pairs with scores ranging between 0 and 1. This is achieved through
data augmentation applied across all generation task instances. For every instance within a generation
task, we leverage an existing multi-task LLM to generate multiple responses by sampling conditioned
on the given instruction. Subsequently, we assign an annotation to the pair formed by the instruction
and every response, using the similarity between the response and the ground truth response of
the instance. Specifically, we employ Rouge-L [17] to calculate this similarity as a form of weak
supervision. as it has been widely recognized as a reliable metric for overall performance in multi-task
environments and has demonstrated a strong alignment with human evaluation [29]. In practice, our
augmented samples are generated by two multi-task LLMs, BART0 [16] and T0-3B [23]. For each
instance within a generation task, both these models generate two samples using the top-k and top-p
sampling, respectively.

Consequently, we collect a pretraining dataset comprised of 160 million instances, each in the format
of (instruction, response, score). Cappy is initialized as RoBERTa and optimized using the
AdamW optimizer with an L2 regression loss. The optimization process involves a learning rate of
10−6, a warmup rate of 0.1, and an effective batch size of 1024. In alignment with the RoBERTa
variants, Cappy is also offered in two distinct versions: the smaller CappyBASE(120M parameters),
and the CappyLARGE(360M parameters).

3.3 Applying Cappy

Cappy solves practical tasks within a candidate-selection mechanism. More specifically, given an
instruction and a set of candidate responses, Cappy produces a score for each candidate. This is
achieved by inputting the instruction alongside each individual response, and then assigning the
response with the highest score as its prediction. In classification tasks, all candidate responses
are inherently predefined. For example, the options are {positive, negative} in a sentiment
classification task. In such scenarios, Cappy functions independently. On the other hand, in generation
tasks, candidate responses are not pre-defined, requiring an existing multi-task LLM to yield the
candidate responses. In this case, Cappy serves as an auxiliary component of the multi-task LLM,
enhancing its decoding.

3.4 Adapting Multi-task LLMs

When there is available downstream training data, Cappy enables effective and efficient adaptation
of multi-task LLMs on downstream tasks. Specifically, we propose to integrate downstream task
information into LLM’s predictions through the finetuning of Cappy. To elaborate, a downstream
regression dataset can be acquired through a data annotation process same as the approach utilized
during the pretraining data construction (§3.2). Then, Cappy can be finetuned on this regression
dataset. As a result, the finetuned Cappy collaborates with a multi-task LLM, boosting the LLM’s
performance on the downstream task.
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Figure 5: The performance of Cappy and multi-task LLMs on various test datasets. A series of dashed
lines are used to connect different sizes of the same model, such as OPT-30B and OPT-175B. Lines
or points positioned more towards the upper left of the diagram denote models that are more efficient
and yield superior performance. Each diagram corresponds to a specific test task, with the exception
of ANLI that represents three different tasks (ANLI-R1/R2/R3).

In contrast to other LLM tuning strategies such as finetuning and prompt tuning, adapting LLMs
with Cappy on downstream tasks avoids the need for back-propagation through LLM parameters.
Therefore, it significantly reduces the high demand for device memory. Besides, the adaptation with
Cappy does not rely on the access to the LLM parameters, making it compatable with closed-source
multi-task LLMs, such as the ones only accessible via WebAPIs. Compared with in-context learning
approaches which circumvent model tuning by attaching training examples to the instruction prefix,
Cappy is not restricted by the LLM’s maximum input length. Thus, Cappy can incorporate an
unlimited number of downstream training examples. Moreover, Cappy is flexible to work together
with other adaptation methods, such as finetuning and in-context learning, further boosting their
overall performance, as we demonstrate in experiments.

4 Experiments

All the experiments of this work, including the pretraining of Cappy and downstream adaptations, are
conducted on Google TPU-v4 [11], and all the code is implemented with Redco [27], a lightweight
toolkit for automating distributed training.

4.1 Zero-shot Performance on PromptSource

Our evaluation aligns with the ones used by OPT-IML and T0. We assess performance on 11 held-out
language understanding tasks in PromptSource [1], all of which are in classification style. These
tasks are categorically distinct from those utilized in the pretraining datasets. Our baselines include
multi-task LLMs, i.e., OPT, OPT-IML, T0, and BART0, and a RLHF reward model trained with
human feedback data, released by LAION-AI 3. Following the answer selection strategy employed

3https://huggingface.co/OpenAssistant/reward-model-deberta-v3-large-v2
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Model Accuracy

BART0BASE-140M 45.7
BART0LARGE-400M 50.2
RLHF-RM-185M 43.6
RLHF-RM-435M 53.3
OPT-30B 47.6
OPT-IML-30B 51.3
OPT-175B 49.3
OPT-IML-175B 56.5
T0-11B 58.2

CappyBASE-120M 49.9
CappyLARGE-360M 56.6

Table 1: The overall accuracy av-
eraged over 11 held-out test tasks
from PromptSource in a zero-shot
setting. "RLHF-RM" refers to the
RLHF reward model mentioned in
Section 4.1.

Frozen FLAN-T5
Small Base Large XL XXL

Sampling 11.43 15.79 19.62 23.22 25.73
Temperature 12.01 17.06 20.05 24.27 27.10
Top-K 11.52 15.75 19.76 22.67 25.82
Nucleus 11.92 16.62 20.20 24.17 26.90
Beam Search 16.40 19.86 23.48 26.12 29.66
Self-scoring 15.08 20.71 24.12 28.47 32.02

CappyBASE 23.36 27.26 29.83 32.79 36.63
CappyLARGE 24.45 28.25 30.75 33.97 36.93

ICL + Nucleus 16.37 20.46 23.65 28.64 32.70
ICL + Self-scoring 20.61 24.42 27.00 32.56 36.37
ICL + CappyLARGE 26.18 28.65 31.84 36.41 38.48

Table 2: The averaged Rouge-L score over 45 BIG-Bench tasks.
The backbone FLAN-T5 models are frozen. "ICL" refers to in-
context learning, i.e., attaching training examples in the prefix of
instruction. We include more prompt-tuning related results in the
appendix.

by T0 and OPT-IML, predictions from these multi-task LLMs are determined by the answer choice
that yields the highest model likelihood. FLAN is not considered among the baselines, as the the test
tasks are included in its pretraining tasks. We calculate the performance for each task by averaging
the results across all associated prompts.

The outcomes of the 11 tasks are presented in Figure 5, with the averaged overall performance of each
model summarized in Table 1. From the per-task figures, Cappy consistently outperforms BART0
models, which are comparable in size to Cappy, and also surpasses OPT and OPT-IML in the majority
of tasks. From the overall accurary in Table 1, we can summarize that our CappyBASEmodel yields
performance comparable to that of OPT-30B, OPT-IML-30B, and OPT-175B. Furthermore, our larger
360M CappyLARGEmodel performs at a level consistent with T0-11B and OPT-IML-175B. These
findings highlight Cappy’s superior performance and parameter efficiency in comparison to existing
multi-task LLMs. This improved performance can be credited to Cappy’s scoring-based pretraining
strategy, which integrates contrastive information by differentiating between high-quality and low-
quality responses. On the contrary, previous multi-task LLMs depend exclusively on teacher-forcing
training that utilizes only the ground truth responses.

4.2 Adaptation to BIG-Bench

We examine the adaptation of multi-task LLMs with Cappy on complex tasks from BIG-Bench
[25], a set of manually curated, challenging tasks that are considered beyond the capability of many
LLMs. We focus on all the 45 generation tasks within BIG-Bench, specifically those that do not offer
pre-established answer choices. The train/test split is provided by TaskSource [24]. The training sizes
of these tasks are variable, with a minimum of 14 and a maximum of 50,000 instances. The median
training size is 876. For each task, we finetune Cappy with an AdamW optimizer for 400 steps with a
learning rate of 2× 10−5 and an effective batch size of 256. We evaluate the performance using the
Rouge-L score on every test set, reporting the average score across 45 tests. In this experiment, all
variants of FLAN-T5 serve as the backbone LLMs.

We incorporate these approaches in comparison, including: Sampling: Standard token-by-token
sampling; Temperature: Sampling every token with a distribution temperature of 0.9; Top-K: Top-k
sampling with k=40; Nucleus: Nucleus sampling with top-p=0.95; Beam Search: Beam search with
a width of 4; Self-scoring: We collect four generated samples using all the sampling-based decoding
strategies above, plus the top sample from beam search 4, in total 4× 4 + 1 = 17 samples. With all
the samples, self-scoring selects the best one as prediction based on the model log-likelihood; Cappy:
conducting sample selection on the same set of samples as in self-scoring, but based on Cappy’s

4We don’t collect multiple samples by beam search, because the Jax API for beam search in huggingface-
transformers only returns the top sample.
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Figure 6: Advantage of Cappy scoring over FLAN-T5-XXL’s self-scoring, on 45 BIG-Bench tasks.
The x-axis is the names of the tasks.

scoring. Besides, we include a setting of in-context learning (ICL) by attaching training examples at
the beginning of the instruction until the model’s sequence length limit is reached. 5

The foundational FLAN-T5 models are frozen, that is, not finetuned. The results are displayed
in Table 2. They suggests that Cappy enhances the performance of FLAN-T5 models by a large
margin, consistently outperforming the most effective baseline achieved through sample selection
using self-scoring of the LLM itself.

Finetuned FLAN-T5
Small Base Large

Sampling 29.34 37.93 43.45
Temperature 29.83 38.21 43.65
Top-K 30.06 37.48 43.86
Nucleus 30.12 37.87 44.35
Beam Search 32.00 39.21 44.52
Self-scoring 33.95 41.00 46.49

CappyBASE 37.79 43.73 47.22
CappyLARGE 39.74 45.18 48.98

Table 3: The averaged Rouge-L score over
BIG-Bench tasks, when the backbone FLAN-
T5 models are also finetuned.

As mentioned in Section 3.4, Cappy exhibits flex-
ibility by enabling collaboration with other LLM
adaptations. The performance of Cappy working
together with finetuning and in-context learning, is
presented in Table 2 and Table 3, respectively. The
result demonstrate that Cappy keeps boosting per-
formance on top of other adaptations. This can be
attributed to the unique downstream knowledge that
Cappy acquires from downstream training data. More
precisely, while other LLM adaptations predomi-
nantly depend on traditional ground truth instruction-
response pairs for learning, Cappy extracts and har-
nesses the contrastive information by its regression
training data constructed with our proposed method.

4.2.1 Analysis on Cappy’s Scoring

To further understand Cappy’s scoring, we conducted a task-by-task analysis for all the 45 BIG-Bench
tasks, comparing the performance between Cappy’s scoring with the self-scoring of the multi-task
LLM - FLAN-T5-XXL (11B). Figure 6 displays the performance advantage of Cappy over FLAN-
T5-XXL’s self-scoring (with negative values indicating Cappy’s disadvantage). The results reveal
that, for most tasks, Cappy consistently maintains a Rouge-L approximately 5 points higher than the
LLM’s self-scoring. However, there are 3 tasks on which Cappy exhibits a significant disadvantage:
codenames, simple_arithmetic_json, and sufficient_information.

We showcase examples of these 3 tasks in Table 4. Upon examining the codenames examples, we
find that the instructions often contain disjointed words with diverse meanings without syntactic

5We also conduct prompt tuning for the adaptation of Big-Bench. Results are discussed in the Appendix.
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Task name: codenames

Instruction: Try to identify the 3 words best associated with the word PAJAMAS from the following list: nude,
judge, sleep, einstein, groom, troll, wish, sun, quarter, halloween, brain, stamp, wedding, slipper, minotaur, pad,
tip, crusader, helmet. Give your answer in alphabetical order.
Target: nude, sleep, slipper

Instruction: Try to identify the 1 word best associated with the word PREHISTORIC from the following list:
boom, new york, cotton, green, ball, pumpkin, force, suit, board, jet, mug, head, mammoth, seal, day, engine.
Give your answer in alphabetical order.
Target: mammoth

Task name: simple_arithmetic_json

Instruction: 5 + 0 =
Target: 5

Instruction: 348 + 227 =
Target: 575

Task name: sufficient_information

Instruction: Ed, Jeff, E-Jay, and Michael are in a circle. Ed is on Jeff’s left. Is Mike on Ed’s left?
Target: I do not know

Instruction: Jake is ten feet away from me. Brynn is one hundred feet from Jake. Am I closer to Jake or Brynn?
Target: Jake

Table 4: Tasks on which Cappy’s score shows obvious disadvantage compared with FLAN-T5-XXL’s
self-scoring.

connections. This might presents a considerable challenge to a model’s "memory" capability. In
the case of simple_arithmetic_json and sufficient_information tasks, the focus is on
testing mathematical and commonsense logical abilities. The abilities of momorizing, math, and
commonsense, have been demonstrated to be key advantages of LLMs [31, 9], and they are difficult
to acquire through downstream training alone. Consequently, it is not surprising that the LLM’s
self-scoring outperforms Cappy’s scoring in these tasks.

4.2.2 Performance Scaling with the Number of Samples

Samples 1 4 17

Self-scoring 26.90 31.15 32.02
CappyLARGE(ours) 26.90 33.64 36.93

Table 5: Performance of BIG-Bench adapta-
tion on a frozen FLAN-T5-XXL with differ-
ent numbers of samples.

We study the relation between the adaptation per-
formance and number of model generation samples.
Specifically, we conduct this on a frozen FLAN-T5-
XXL model, with three different numbers of sam-
ples, including 1 or 4 neucleus samples, or all the
17 samples as described in Section 4.2. Results are
shown in Table 5, we can see that as the number
of samples increases, Cappy consistently enhances
task performance significantly, but the baseline Self-
scoring doesn’t provide significant performance boost
increasing from 4 to 17 samples.

4.2.3 Ablation Study

Frozen FLAN-T5
XL XXL

CappyLARGE 33.38 36.56
- w/o Cappy pretraining 32.03 (-1.35) 35.01 (-1.55)
- w/o Data augmentation using LLM 28.66 (-4.72) 32.88 (-3.67)

Table 6: Performance of BIG-Bench adaptation, before and after the
ablation of Cappy’s pretraining and data augmentation using LLM,
numbers in the brackets are the performance drop.

To verify the importance
of the two key components
in our proposed methodol-
ogy, we carry out an abla-
tion study, utilizing FLAN-
T5-XL and -XXL’s adapta-
tion on BIG-Bench tasks.
Specifically, in the down-
stream adapation, we ablate
the pretraining of Cappy
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that we described in Sec. 3.2, by using RoBERTa as the model initialization instead of Cappy.
We also ablate the data augmentation using LLM, described in Sec. 3.2 during the downstream
regression data construction for Cappy.

Table 6 shows the results. The ablation of either pretraining or data augmentation using LLM results
in a noticeable decline in performance, thereby highlighting the significance of both these components
within our proposed approach. Further, the performance decline scale reveals that the impact of data
augmentation is more significant than the pretraining in the downstream adaptation of LLM.

5 Conclusion and Discussions

We deliver a lightweight pretrained scorer, Cappy, to enhance the performance and efficiency of
multi-task LLMs. Cappy takes an instruction and a candidate response as input, and produces a score
between 0 and 1. The score indicates an estimated correctness of the response with regard to the
instruction. A weakly-supervised approach is proposed for the construction of Cappy’s pretraining
data in regression style. We suggest a candidate selection manner to apply Cappy into practical
task-solving. Specifically, Cappy can be utilized either independently or in collaboration with an
existing multi-task LLM, serving as an auxiliary component. Our experiments demonstrate that Cappy
outperforms much larger multi-task LLMs, on 11 language understanding tasks. Besides, Cappy
boosts FLAN-T5’s performance on the adaptation to 45 complex tasks drawn from BIG-Bench,
without requiring to finetune the LLM. Moreover, Cappy can effectively collaborate with other
LLM adaptation strategies such as finetuning and in-context learning, providing further performance
enhancement.

Limitations and Future Directions

In Section 4.2.1, we have analyzed certain limitations of Cappy, specifically in the realm of mathe-
matics and complex logical problems. Here, We detail some other limitations and future directions.
Rouge-L Score for Weak Supervision In the construction of Cappy’s pretraining data, Rouge-L
serves as the metric to evaluate the correctness of model generations. However, Rouge-L may not be
the optimal proxy for correctness of model generations, and there is no consensus across the ML and
NLP community on the best metric across all the tasks. Presently, Rouge-L is commonly used in
multi-task scenarios to report model performance for generation-style tasks [10]. Although Cappy’s
performance in our experiments demonstrate Rouge-L to be a reasonable design choice, investigating
the most suitable metric for multi-task applications remains a highly valuable research direction.

Answer Aggregation Across Multiple Generations The primary contribution of this work is the
development and application of the pretrained model, Cappy, for multi-task applications. For sample
selection from multiple model generations, we use a straightforward argmax manner that picks the
sample with the largest score. However, recent research with nicely designed answer aggregation
techniques [28] suggests potential avenues for refining the answer aggregation with Cappy, to further
improve the performance of multi-task learning.

Not Handling Tasks Outside the LLM’s Expertise The aim of Cappy is to enhance the perfor-
mance of tasks where the backbone LLM has a fundamental understanding of data inputs. However,
Cappy doesn’t impact the intrinsic ability of the LLM. It is also worth noticing that many multi-task
LLMs, such as FLAN-T5 used in our experiments, already exhibit proficiency across a wide range of
domains, encompassing areas like medicine, law, and coding.

Single LLM Adaptation In the experiments of this work, we adapt a single LLM to several
domains with Cappy. In the future, Cappy as a pretrained model can potentially be used in other
creative ways beyond on single LLMs. For example, Cappy may work as a filter for generations from
multiple LLMs. In this case, Cappy plays a role that selects the best LLM regarding a specific input.

Resolving More Human-like Instructions and Leveraging Human Feedback In this work, our
focus is multi-task learning where tasks are well-defined. In the future, Cappy can be potentially
applied to resolve more "human-like" instructions where the tasks are often vaguely defined. To this
end, it would be highly benefitial to leverage costly but high-quality human feedback data, which
would require further algorithmic design. This is worth our further exploration.
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A Comparison of Cappy with other adaptation methods

Cappy doesn’t mean to beat other adaptation methods such as finetuning, in-context learning, and
prompt tuning. Compared with these approaches, adaptation with Cappy is an alternative that is free
from the constraints associated with storage, device memory, model accessibility, and training sample
limitations. Moreover, Cappy makes no assumption about the backbone model, enabling seamless
integration with other adaptations and providing steady and significant performance promotion at
little additional cost. To illustrate this, we include an experiment below that combines Cappy with
in-context learning and prompt-tuning, respectively.

Setting Rouge-L

Frozen FLAN-T5-Large + CappyLARGE(ours) 30.75

In-context learning + Nucleus 23.65
In-context learning + Self-scoring 27.00
In-context learning + CappyLARGE(ours) 31.84

Prompt-tuning + Nucleus 34.00
Prompt-tuning + Self-scoring 38.43
Prompt-tuning + CappyLARGE(ours) 42.71

Table 7: Big-Bench performance under multiple adaptation
settings with FLAN-T5-Large

Specifically, we add more compari-
son with prompt tuning and in-context
learning in our BIG-Bench adaptation
experiment with FLAN-T5-Large as
the backbone model. For prompt tun-
ing, we apply prefix tuning, which is
usually considered suitable for gener-
ation tasks, with 20 virtual tokens. As
demonstrated by the results presented
in Table 7, Cappy offers further perfor-
mance boost on top of both in-context
learning and prompt tuning.
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