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1 Proof of Theorem 1

The following lemma given in [2] is useful for the proof of Theorem 1.

Lemma 1. [2] Given a stochastic matrix

H =


0 0 · · · 0
h1,1 h1,2 · · · h1,Ti

...
...

hM−1,1 hM−1,2 · · · hM−1,Ti
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where {hi,s} is introduced in Theorem 1. Let η = [η1, · · · , ηTi ]
⊤ be a vector independent

of H of mutually independent random variables symmetrically distributed about 0. Fix a
j̄ ∈ [0,M ], the matrix Hj̄ is defined as the M × Ti matrix whose rows are all equal to
the j̄th row of H. Then, Hη and (H − Hj̄)η have the same M-dimensional distribution
provided that the j̄th element of (H −Hj̄)η is repositioned as first element of the vector.

Now, let η = [η1, · · · , ηTi ]
⊤ = [Xi,1 − µi, Xi,2 − µi, · · · , Xi,Ti − µi]

⊤ and define ζ ≜
[ζ0, · · · , ζM−1]

⊤ = Hη. We know that ζ0 = 0 base on the definition of the matrix H.

Pick a variable ζj̄ . ζj̄ is in the rth position if the inequality ζj̄ > ζj (or ζj − ζj̄ < 0) holds
for exactly r − 1 choices of j ∈ {0, · · · ,M − 1}.

ζj − ζj̄ can be rewritten as

ζj − ζj̄ =

Ti∑
s=1

hj,sηs −
Ti∑
s=1

hj̄,sηs =

Ti∑
s=1

(hj,s − hj̄,s)ηs

Hence, the condition ζj̄ > ζj holding for r − 1 choices of j is the same as the condition
that r − 1 entries of (H − Hj̄)η are negative. From Lemma 1 we have that (H − Hj̄)η
and Hη have the same distribution. Therefore, the probability of the events that r − 1
entries of (H −Hj̄)η and Hη are negative are the same. But the event that r − 1 entries
of Hη are negative does not depend on j̄, showing that the probability of being in the rth
position is the same for any ζj̄ . Since j̄ can take on M possible values, this probability is
1/M , and hence

Pr{ζ0 = 0 is in the rth position} =
1

M
, for all r ∈ [M ]

Now, for all r ∈ [M ] we have

Pr{ζ0 = 0 is in the rth position} = Pr{0 > ζj holds true for r − 1 choices of j}

= Pr

{
0 >

Ti∑
s=1

hj,sηs holds true for r − 1 choices of j

}

= Pr

{
0 >

Ti∑
s=1

hj,s(Xi,s − µi) holds true for r − 1 choices of j

}

= Pr

{
µi >

∑Ti
s=1 hj,sXi,s∑Ti

s=1 hj,s
holds true for r − 1 choices of j

}
= Pr{µi > µ̂ji holds true for r − 1 choices of j} =

1

M
,

which shows that {µ̂ji} j = 1 . . . ,M − 1 is a set of typical values for µi.

2 Proof of Theorem 2

The following propositions are used to prove this theorem.
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Proposition 1. Suppose {ys}Ns=1 are independent and continuously distributed random
variables symmetrically distributed about its mean µ. Then

Pr{max
s
ys > µ} = 1− 1

2N

Proof. We have Pr{maxs ys ≤ µ} = Pr{All ys ≤ µ} since if there was any s such that
ys > µ

max
s
ys ≥ ys > µ

Since ys are independent and continuously distributed random variables we have

Pr{All ys ≤ µ} =
N∏
i=1

Pr{yi < µ} =

(
1

2

)N

Proposition 2. Assume {ys}Ns=1 are continuously distributed and independent random
variables symmetrically distributed about its mean µ. Define M − 1 random subsample
means as follows:

µ̂ji (N) =
1∑N

s=1 hj,s

N∑
s=1

hj,sys for j ∈ [M − 1],

where {hj,t} are independent random sequences such that

Pr{hj,s = 0} = Pr{hj,s = 1} =
1

2
.

and a string {hj,s}Ns=1 is discarded if it turns out to be equal to an already constructed
string.

The upper confidence bound is given by

UCBi(N, δ) = max
j
µ̂ji

has the following non-asymptotic property

Pr{UCBi(N, δ) ≥ µi} = 1− 1

M

Proof. Along the same line as the proof of Theorem 1 it can be shown that {µ̂ji (N)}M−1
j=1

is a set of typical values for µ. Hence,

Pr{max
j
µ̂ji ≥ µi} = 1− 1

M
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δ−1 is chosen as an integer, so M = δ−1. If Ti ≥ log(δ−1)
log(2) (equivalent 2Ti ≥ δ−1) using

Proposition 2 we have

Pr{max
j
µ̂ji (t) > µi} = 1− 1

M
= 1− δ.

Now, consider the case 0 < Ti <
log(δ−1)
log(2) (or 1 < 2Ti < δ−1). In this case, there is

not enough observations to achieve an upper confidence bound using Proposition 2. The
randomized UCB for this case has also an exact confidence as illustrated below:

Pr{UCBi(Ti, δ) > µi}
=Pr{UCBi(Ti, δ) > µi|UCBi(Ti, δ) = ∞}Pr{UCBi(Ti, δ) = ∞}
+ Pr{UCBi(Ti, δ) > µi|UCBi(Ti, δ) ̸= ∞}Pr{UCBi(Ti, δ) ̸= ∞}

=Pr{∞ > µi}(1− δ2Ti) + Pr{max
s
Xi,s > µi}(δ2Ti)

=(1− δ2Ti) + (1− 1

2Ti
)δ2Ti = 1− δ.

In the second equality, the boundedness of the means of the arms and Proposition 1 were
utilized.

3 Proof of Theorem 3

The steps in this proof closely follows the proof of Theorem 7.1 in [3].

Consider the following decomposition for the regret

Rn =

K∑
i=1

∆iE[Ti(n)]. (1)

To upper bound the regret, we bound the expected number of pulls E[Ti(n)] for sub-optimal
arms. Let us define a ’good’ event as

Gi =

{
µ1 < min

t∈[n]
UCB1(Ti(t), δ)

}
∩ {UCBi(ui, δ) < µ1}

where ui ∈ [n] is a deterministic value chosen later. The event Gi happens where we
never underestimate the UCB of the optimal arm (arm 1) and at the same time the upper
confidence bound of sub-optimal arm i after ui observations is less than the means of
optimal arm.

We are going to show

1. If Gi occurs Ti(n) ≤ ui

2. By choosing a proper ui the complement event Gc
i occurs with low probability

Thanks to the mentioned points which will be shown we have

E[Ti(n)] = E[I{Gi}Ti(n)] + E[I{Gc
i}Ti(n)] ≤ ui + P(Gc

i )n (2)
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In the latter inequality we used the fact that Ti(n) ≤ n.

Here (2) is shown. Let us first show Ti(n) ≤ ui when the event Gi occurs. By contradiction
suppose Ti(n) > ui where the event Gi occurs. Then arm i was played more than ui times
and there must exist a round t ∈ [n] such that Ti(t − 1) = ui and At = i. However, the
definition of event Gi implies

UCBi(t, δ) =UCBi(ui, δ)

< µ1 < UCB1(t, δ)

which meansAt = argmaxjUCBj(t−1) ̸= i. It is a contradiction and we have E[I{Gi}Ti(n)] ≤
ui.

Now, P(Gc
i ) is evaluated and it is shown that it is small. By the definition of Gi we have

Gc
i =

{
µ1 ≥ min

t∈[n]
UCB1(t, δ)

}
∪ {UCBi(ui, δ) ≥ µ1} (3)

The first set can be included in the following set by union trick.{
µ1 ≥ min

t∈[n]
UCB1(t, δ)

}
⊂
⋃
s∈[n]

{µ1 ≥ UCB1(s, δ)}

Then using Theorem 2 we obtain:

P
(
µ1 ≥ min

t∈[n]
UCB1(t, δ)

)
≤ P

 ⋃
s∈[n]

{µ1 ≥ UCB1(s, δ)}


≤

n∑
s=1

P (µ1 ≥ UCB1(s, δ)) = nδ (4)

Notice that s the values 1 to n that s can take in (4) are deterministic.

The next step is to bound the probability of the second set in (3). First we introduce a
lemma which is useful in finding that bound.

Lemma 2. Suppose {ys}Ns=1 are independent random variables with mean µ and there
exist a convex function ψ(λ) such that for all s and λ > 0

logE{eλ(ys−E{ys})} ≤ ψ(λ) and logE{eλ(E{ys}−ys)} ≤ ψ(λ).

{hs}Ns=1 are independent random variables such that

Pr{hj = 0} = Pr{hj = 1} =
1

2
.

Then,

P

(
1∑N

j=1 hj

N∑
s=1

hsys − µ > ε

)
≤ exp(−xN),

where

x = − log

(
1

2
+

1

2
exp(−ψ∗(ε))

)
,

and ψ∗(·) be the Legendre–Fenchel transform of ψ(·).
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Proof. Using Markov’s inequality we have

P

(
1

N

N∑
s=1

ys − µ > ε

)
≤ exp(−ψ∗(ε)N), (5)

In this lemma, we use ω to show the dependence of some empirical variables on the
observed realization. Let H(ω) ≜

∑N
j=1 hj .

P

(
1∑N

j=1 hj

N∑
s=1

hsys − µ > ε

)

=
N∑

J=0

P

 1

H(ω)

H(ω)∑
s=1

ys − µ > ε

∣∣∣∣H(ω) = J

P (H(ω) = J) (The law of total probability)

≤
N∑

J=0

exp(−Jψ∗(ε))

(
N

J

)(
1

2

)J (1

2

)N−J
((5) and H(ω) has a
binomial distribution)

=

N∑
J=0

(
N

J

)(
1

2
exp(−ψ∗(ε))

)J (1

2

)N−J

=

(
1

2
+

1

2
exp(−ψ∗(ε))

)N

= exp(−xN)

We return to upper bound the probability of the second set in (3). Assume that ui is
chosen large enough such that

ui ≥
log(δ−1)

log(2)
=

2 log(n)

log(2)
. (6)

Then the following equality holds

UCBi(ui, δ) = max
j
µ̂ji (ui),

and we have

P (UCBi(ui, δ) ≥ µ1) = P
(
max

j
µ̂ji (ui) ≥ µ1

)
≤

M−1∑
j=1

P
(
µ̂ji (ui) ≥ µ1

)

≤
M−1∑
j=1

P
(
µ̂ji (ui)− µi ≥ ∆i

)
≤M exp(−xiui) (7)

where

xi = − log

(
1

2
+

1

2
exp(−ψ∗

i (∆i))

)
.

The last inequality was found using Lemma 2. Note that ui is deterministic in this setting.
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Now, using (4), (7), and the choice δ = 1/n2 the inequality (2) is rewritten as

E[Ti(n)] ≤ ui + n2δ + nM exp(−xiui)
≤ ui + 1 + n3 exp(−xiui)

We need to chose ui such that (6) holds. Considering the fact that xi < 0.7 by its definition
we set

ui =

⌈
3 log(n)

xi

⌉
>

2 log(n)

log(2)
.

By substituting ui the regret (1) is rewritten as

Rn =
∑

i:∆i>0

∆i(ui + 1 + n3 exp(−xiui)) ≤
∑

i:∆i>0

∆i

(⌈
3 log(n)

xi

⌉
+ 1 + n3/n3

)

≤
∑

i:∆i>0

∆i

(
3 +

log(n3)

xi

)

4 Proof of Corollary 1

The aim is to find a lower bound for xi = − log
(
1
2 + 1

2 exp(−ψ
∗
i (∆i))

)
. Since for all Z > 0,

log(Z) ≤ Z − 1 we have

xi = − log

(
1

2
+

1

2
exp(−ψ∗

i (∆i))

)
≥ 1

2
− 1

2
exp(−ψ∗

i (∆i))

For all Z ∈ [0 1.59] the inequality exp(−Z) ≤ 1 − Z/2 holds. Hence, exp(−ψ∗
i (∆i)) ≤

1− ψ∗
i (∆i)/2. The lower bound for xi is simplified as follows:

xi ≥
1

2
− 1

2
exp(−ψ∗

i (∆i)) ≥
1

2
− 1

2
+
ψ∗
i (∆i)

2
≥ ψ∗

i (∆i)

2
. (8)

Using the lower bound for xi we have

R(n) ≤
∑

i:∆i>0

(
3 +

3 log(n)

xi

)
∆i ≤

∑
i:∆i>0

(
3 +

6 log(n)

ψ∗
i (∆i)

)
∆i,

where 0 < ψ∗
i (∆i) < 1.59. For sub Gaussian pay off ψ∗

i (∆i) = (∆2
i )/(2σ

2
i ) and substituting

this yields (8) in the main paper.

5 Numerical Experiments

Here, we present additional numerical experiments showing the performance of MARS
compared to other approaches.
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Method Run time (seconds)

UCB Vanilla 2.44
Thompson 3.82

PHE 5.51
MARS 23.48
GIRO 149.15

Table 1: Runtimes of algorithms on uniform bandit.

5.1 Computational Complexity of MARS

To assess the computational complexity of MARS in comparison to other methods, we
present the runtime of all approaches used in the experiment shown in Figure 3 in the
paper.

Table 1 displays the average runtime of different approaches for the multi-armed bandit
with a Uniform setup when the number of rounds is set to 2000. In MARS, the parameter
δ is set to 1/1000, requiring updates of 1000 subsampled means in each round. As a result,
it takes more time compared to Vanilla UCB, Thompson Sampling, and PHE. However,
MARS is faster than approaches like GIRO, which store the full memory of rewards.

5.2 Reward with Truncated Gaussian Distribution

The numerical experiment conducted in Section 3 of the main paper is replicated in Figure
1, utilizing Gaussian rewards truncated within the range of [−1, 1].

In line with the uniformly distributed rewards presented in the main paper, the results
shows that MARS outperforms the other methods except PHE (a = 2.1) thanks to not
utilizing reward distribution and tail information.

5.3 Reward with Exponential Distribution

MARS is a well-suited method for handling a wide range of symmetrically distributed
rewards, as it does not rely on tail information. In this context, we replicate the numerical
experiment from Section 3 of the main paper, using exponentially distributed rewards. In
this experiment, we also include a comparison of MARS with the BESA approach using
sub-sampling [1], to provide a comprehensive evaluation.

Figure 2 clearly demonstrates that MARS outperforms the other methods including BESA,
PHE (a = 2.1), and PHE (a = 5.1).

5.4 Reward with Bernoulli (non-symmetrical) Distribution

To evaluate the robustness of MARS and its effectiveness where the assumption of sym-
metric reward distributions is not met, MARS is implemented on a Bernoulli setup where
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Figure 1: Cumulative regret for truncated-Gaussian bandit. The results are averaged over
2000 realizations.
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Figure 2: Cumulative regret for exponential bandit. The results are averaged over 2000
realizations.

the number of arms is K = 2 and the means are µ1 = 0.5 and µ2 = 0.01. The findings
are shown in Figure 3. The results indicate that although the setup does not meet the
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symmetric assumption, MARS outperforms Vanilla UCB and Thompson sampling. Its
performance is also comparable to that of BESA.

0 250 500 750 1000 1250 1500 1750 2000
Round

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Re

gr
et

Vanila-UCB
Normal-TS
MARS
BESA

Figure 3: Cumulative regret for Bernoulli bandit. The results are averaged over 2000
realizations.
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