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Abstract

Upper Confidence Bound (UCB) methods are one of the most effective methods
in dealing with the exploration-exploitation trade-off in online decision-making
problems. The confidence bounds utilized in UCB methods tend to be constructed
based on concentration equalities which are usually dependent on a parameter of
scale (e.g. a bound on the payoffs, a variance, or a subgaussian parameter) that
must be known in advance. The necessity of knowing a scale parameter a priori
and the fact that the confidence bounds only use the tail information can deteriorate
the performance of the UCB methods. Here we propose a data-dependent UCB
algorithm called MARS (Maximum Average of Randomly Sampled Rewards)
in a non-parametric setup for multi-armed bandits with symmetric rewards. The
algorithm does not depend on any scaling, and the data-dependent upper confidence
bound is constructed based on the maximum average of randomly sampled rewards
inspired by the work of Hartigan in the 1960s and 70s. A regret bound for the multi-
armed bandit problem is derived under the same assumptions as for the ψ-UCB
method without incorporating any correction factors. The method is illustrated and
compared with baseline algorithms in numerical experiments.

1 Introduction

The classical stochastic multi-armed bandit problem introduced by [21] has been studied extensively
in statistics, computer science, electrical engineering, and economics. New applications in machine
learning and data science such as personalized new recommendation and Monte-Carlo tree search
have generated renewed interest in the problem.

The problem is described as follows: The classical stochastic multi-armed bandit problem is an online
decision-making problem where each arm represents an action. At each round t ∈ {1, · · · , n} the
agent chooses an action (arm) At ∈ A and observe a reward Xt ∈ R where A is the set of available
actions and its finite cardinality is K ≥ 2. The reward Xt is a sample from an underlying distribution

∗The code to reproduce the results of the paper can be found at https://github.com/Masoud-Moravej/
MARS-NeurIPS2023.
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νAt with bounded mean µAt . Hence, a stochastic bandit is a set of distributions ν = {νi : i ∈ A}
which is unknown for the agent.

The agent aims to minimize the following regret over n rounds.

Rn = nmax
i∈A

µi − E

[
n∑

t=1

Xt

]
. (1)

with respect to the actions A1, . . . , An.

The minimization of the regret necessitates balancing the trade-off between exploration and ex-
ploitation where exploration means investigation to accumulate more information about arms and
exploitation means the maximization of the immediate performance. See the book [19] and survey
[7] for comprehensive discussion.

A class of algorithms for multi-armed bandit problems that strikes a balance between exploration and
exploitation is Upper Confidence Bound (UCB) methods [3, 4, 12, 1].

The UCB algorithm is based on the principle of optimism in the face of uncertainty. According to this
principle, one should construct probabilistically optimistic guesses for the expected payoff (mean)
of all actions and play the arm with the highest guess. The performance of the UCB algorithms in
dealing with the exploration-exploitation dilemma depends on the tightness of the upper confidence
bound. The literature includes several approaches which construct upper confidence bound based on
concentration inequalities such as Hoeffding-type inequalities [4] and self-normalized inequalities
[1].

As an example ψ-UCB Method introduced in [7] assumes that there exist a convex function ψ(·)
which satisfy the following conditions.

∀t, λ ≥ 0, logE{eλ(Xt−E{Xt})} ≤ ψ(λ) and logE{eλ(E{Xt}−Xt)} ≤ ψ(λ). (2)

Let ψ∗(·) be the Legendre–Fenchel transform of ψ(·), that is

ψ∗(ε) ≜ sup
λ∈R

(λε− ψ(λ)),

Then, with probability at least 1− δ,

µ̂i,s + (ψ∗)−1

(
1

s
log

(
1

δ

))
> µi

where µ̂i,s is the sample mean of rewards obtained by pulling arm i for s times.

At time t, using the obtained UCB and letting δ = 1/t2, we select

At = armaxi

[
µ̂i,Ti(t−1) + (ψ∗)−1

(
3 log(t)

Ti(t− 1)

)]
where Ti(t− 1) denotes the number of times action i was chosen by the learner after the end of round
t− 1. It was proved [7] that:

Rn ≤
∑

i:∆i>0

(
3∆i

ψ∗(∆i/2)
log(n) + 3

)
(3)

where ∆i is the suboptimality gap ∆i = maxi∈A µi − µi.

However, there are two weaknesses associated with the bounds obtained by concentration inequalities
as above. First, they are commonly conservative since they are not data-dependent and only care
about tail information of distribution. Second, those bounds usually depend on scaling factors or
functions, e.g. ψ(·) in ψ(·)-UCB and poor choices can make the bounds conservative.

1.1 Related Works

Recently several works have focused on non-parametric bandit algorithms based on subsampling
and bootstrapping [5, 6, 18, 17, 22]. Those works use the empirical distribution of the data instead
of fitting a given model to the data. The Garbage In, Reward Out (GIRO) method [18] relies on the
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history of past observed rewards and enhances its regret bound by augmenting fake samples into the
history. The Perturbed-History Exploration method (PHE) [17] serves as a faster and memory-efficient
alternative to GIRO. However, PHE has the limitation of being restricted to bounded distributions
and involves a tunable parameter. The Residual Bootstrap exploration (ReBoot) [22] perturbs the
history in order to improve the regret bound.

Bootstrapping Upper Confidence Bound uses bootstrap to construct sharper confidence intervals
in UCB-type algorithm [12]. However, a second-order correction is used to guarantee the non-
asymptotic validity of the bootstrap threshold. The second-order correction is not sharp, and it
includes scaling factors.

Another line of works which include the Best Empirical Sampled Average method (BESA) [5] and
the Sub-sampling Duelling Algorithms (SDA) [6] use subsampling to conduct pairwise comparison
(duels) between arms. BESA organize the duels between arms and find the winner by comparing the
empirical average of sub-sampled rewards. SDA extends the concept of BESA duels to a round-based
comparison by incorporating a sub-sampling scheme and it eliminates the need for forced exploration.

Apart from Reboot which was analysed for Gaussian distributions, and SDA which was analysed for
a family of distribution satisfying a balance condition (including Gaussian and Poisson), the other
algorithms were analysed for distributions with known bounded support.

1.2 Contributions

In this paper, we propose a new non-parametric UCB algorithm which is fully data-dependent
without any scale parameter. The proposed approach called MARS (Maximum Average Randomly
Sampled) constructs a data-dependent upper confidence bound by selecting the maximum average
among randomly sampled rewards. This upper confidence bound is inspired by Leave-out Sign-
dominant Correlation Regions (LSCR) method which construct non-asymptotic confidence regions
for parameters of dynamical systems [8, 9, 11, 15, 20, 16]. The upper confidence bound inspired by
LSCR is non-asymptotic and probabilistically guaranteed, i.e. it is larger than the true value with an
exact user-chosen probability and for a finite number of data points.

The problem-dependent regret bound of the method is given for multi-armed bandits where all
underlying distributions {νi, i ∈ A} are symmetrically distributed about their mean e.g. exponential,
uniform, or logistic distribution and inequality (2) is satisfied. As ψ(·) does not need to be known,
MARS avoids the problem with sub-optimal choice of ψ(·), and still achieves logarithmic regret.

1.3 Notation

A subset of positive integers up to and including a constant k is denoted as [k] ≜ {1, · · · , k}. ⌈x⌉
is the smallest integer greater than or equal to x. The cardinality of a set S is denoted by |S|, e.g.
|[k]| = k. I{A predicate} is the indicator function defined as

I{A predicate} =
{
1 if the predicate is TRUE,
0 otherwise,

Without loss of generality assume the first arm is optimal i.e. µ1 = maxi µi. Define the sub-optimality
gap ∆i = µ1 − µi for i ∈ {2, · · · ,K}. Further, let

Ti(t) =

t∑
s=1

I{As = i}

be the number of times action i was chosen by the learner after the end of round t. Xi,j is the reward
the jth time arm i is pulled. U(a, b) is a uniform distribution bounded by a and b (a < b), and B(a)
is a Bernoulli distribution with mean a.

The remainder of the paper is organized as follows. In the next section, a new randomized approach
to compute an upper confidence bound is presented. In Section 3 the non-parametric UCB algorithm
is introduced and a regret bound for the multi-armed bandit problem with symmetric rewards is
given. Section 4 explores the numerical performance of the proposed MARS method, and Section 5
concludes the paper.
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2 A New Randomized Upper Confidence Bound

In this section, an approach to compute a data-dependent upper confidence bound for a finite number
of observations is proposed.

Hartigan in [14] proposed an approach which is useful to compute confidence interval for an unknown
parameter. The confidence interval was computed by a number of estimates of the mean using
different subsets of the data. The estimates of the mean in [12] was computed using a number of
balanced sets of subsamples determined by group theory.

The paper [9] used random strings instead of balanced sets of subsamples which brings computational
advantage. Now, we use the method in [14] and [9] to propose a new non-asymptotic upper confidence
bound.

We have the observations {Xi,s}Ti
s=1 from arm i and we want to find an upper confidence bound

UCBi with probability 1− δ such that

Pr{UCBi(Ti, δ) ≥ µi} ≥ 1− δ

In this section Ti is assumed to be a fixed number of observations which does not depend on other
actions taken or observed rewards. In Section 3, the situation where Ti is dependent on the past
actions and observed rewards will be considered.

Before introducing the new upper confidence bound, let us define typical values.
Definition 1. The set of ascending-ordered and continuously distributed random variables
Z(1), Z(2), . . . , Z(M−1) is a set of typical values for µ if the probabilities that µ belongs to each of
following intervals are the same(

−∞, Z(1)

)
,
(
Z(1), Z(2)

)
, . . . ,

(
Z(M−1),∞

)
,

that is

Pr
{
µ ∈

(
−∞, Z(1)

)}
= Pr

{
µ ∈

(
Z(1), Z(2)

)}
= · · · = Pr

{
µ ∈

(
Z(M−1),∞

)}
=

1

M
.

Now, based on Theorem 1 in [9] the following theorem introduces a set of typical values for the
means of ith arm µi.

Theorem 1. We have the observations {Xi,s}Ti
s=1 from arm i and E{Xi,s} = µi for all s ∈

[Ti]. Assume that the observations {Xi,s} admit continuous distributions and are independent and
symmetrically distributed about their mean.

Then, a set of typical values for µi is given by

µ̂j
i =

1∑Ti

s=1 hj,s

Ti∑
s=1

hj,sXi,s for j ∈ [M − 1] (4)

where M ≤ 2Ti is a positive integer and {hj,t} are independent random sequences such that

Pr{hj,s = 0} = Pr{hj,s = 1} = 1

2
.

A string {hj,s}Ns=1 is discarded if it turns out to be equal to an already constructed string.

Proof. Follows along the same line as the Proof of Theorem 1 in [9]. See Section 1 in the supplement
for further details.

Theorem 1 shows that M − 1 estimates of mean computed by random sub-sampling are a set of
typical values for µi and partition the real line into equiprobable segments where µi belong to each
one of those segments with equal probability. As a consequence of Theorem 1 we conclude that

Pr{ max
j∈[M−1]

µ̂j
i > µi} = 1− 1/M.

M is a user-chosen parameter and hence the probability of the confidence bound can be tuned by
the user. Since M ≤ 2Ti the maximum confidence which can be achieved by computing subsample
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UCBi(Ti, δ) =


maxsXi,s w.p. δ2Ti

∞ w.p. 1− δ2Ti

, if Ti <
log(δ−1)
log(2)

maxj µ̂
j
i (t), otherwise

Table 1: Data-dependent and scale-free UCB.

means is 1− 1/2Ti and we can not get an upper confidence bound with arbitrary high confidence.
To overcome this problem, we use the fact that all means µi are bounded and the following upper
confidence bound is proposed.

Compute M = ⌈δ−1⌉ random subsample means as in (4). The non-parametric upper confidence
bound is given in Table 1.

The probability of the constructed upper confidence bound is presented in the next theorem.

Theorem 2. Let Ti be a fixed number of observations from arm i. For each i ∈ [K] assume {Xi,s}Ti
s=1

are independent random variables with continuous distribution functions which are symmetrically
distributed about its mean µi. Let the user-chosen parameter δ ∈ (0, 1) be chosen such that δ−1 is
an integer. Then for all Ti > 0 the following non-asymptotic equality holds

Pr{UCBi(Ti, δ) ≥ µi} = 1− δ (5)

Note that Ti is deterministic, and the probability is with respect to both {Xi,s} and {hj,s}.

Proof. See Section 2 in the supplement.

Theorem 2 shows that the probability of the proposed confidence region is exact and hence it is
not conservative. This result holds for a finite number of observations as long as the reward is
symmetrically distributed around its mean and Ti is a fixed given number.

Example 1 In Figure 1, we compare different approaches to calculate 95% UCB for the population
mean based on samples from a Gaussian and an uniform distribution. The upper confidence bounds
are calculated for different number of data points. The almost exact quantile is computed by finding
95% quantile of the population of sample means available by repeating experiment 10000 times.
Naive bootstrap threshold and bootstrapped threshold were computed by equation (2.6) in Remark
2.3 in [12].

The figures shows that for most sample sizes the MARS bound is sharper than naive bootstrapped
threshold, bootstrapped threshold, sub-Gaussian bound, and Hoeffding bound. The naive bootstrap is
sharper for small sample sizes, but as shown in [12], naive bootstrap do not produce reliable results
for small samples sizes. It is also notable that the MARS bound is probabilistically guaranteed for a
finite number of data points as shown in Theorem 2.

3 Algorithm and Regret Bound

The UCB method using the proposed upper confidence bound for n rounds is given in Algorithm 1.
At the initial rounds, the algorithm tends to adopt an optimistic outlook in the face of uncertainty.
This is reflected in the upper confidence bound, which is set to infinity or the highest reward observed.
As the number of rounds increases, the upper confidence bounds approach the mean reward for each
arm with high probability. Consequently, the algorithm progressively leans towards exploitation.

If two or more UCBs in line 15 of Algorithm 1 take on the same value, randomly choose an action
among the minimizers.

MARS necessitates keeping ⌈1/δ⌉ sub-sampled means for each arm. This leads to a memory
requirement of O(Kn) when δ = 1/n. The computational complexity of MARS is also depends
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Figure 1: 95% UCBs of sample means computed by different approaches. The underlying distribu-
tions are uniform between −1 and +1 in (a) and Gaussian with mean 0 and variance 1 in (b). The
results are averaged over 10000 realisations.

Algorithm 1 Maximum Average of Randomly Sampled (MARS)

Input: δ
1: M ← ⌈δ−1⌉ ▷ Initialization
2: ∀i ∈ [K], ∀j ∈ [M ] : Ti(0)← 0, Hj,i ← 0

3: for t← 1 to n do
4: for i← 1 to K do ▷ Computing upper confidence bound
5: if Ti(t− 1) = 0 then
6: UCBi(Ti(t− 1), δ)←∞
7: else if 0 < Ti(t− 1) < log(δ−1)

log(2) then
8: Draw x ∼ U(0, 1)
9: if x < δ2Ti(t−1) then

10: UCBi(Ti(t− 1), δ)←∞
11: else
12: UCBi(Ti(t− 1), δ)← maxsXi,s

13: else
14: UCBi(Ti(t− 1), δ)← maxj µ̂

j
i (t)

15: At ← argmaxiUCBi(Ti(t− 1), δ) ▷ Pulled arm
16: Pull Arm At and observe reward Xt

17: for i← 1 to K do ▷ Update statistics
18: if i = At then
19: Ti(t)← Ti(t− 1) + 1
20: for j ← 1 to M do
21: Draw hj,i ∼ B(0.5)
22: Hj,i ← Hj,i + hj,i

23: µ̂j
i (t)←

(Hj,i−1)µ̂
j
i (t−1)+hj,iXt

Hj,i

24: else
25: for j ← 1 to M do
26: Ti(t)← Ti(t− 1)

27: µ̂j
i (t)← µ̂j

i (t− 1)

on the choice of δ, as updating ⌈1/δ⌉ sub-sampled means is performed in each round. Notably, to
reduce the computational burden, the required Bernoulli variables in the algorithm can be generated
and stored before the start of the game.
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The Next theorem provides a regret bound for the proposed MARS algorithm when applied to
multi-armed bandit problems with symmetric distributions.
Theorem 3. Let Ti(n) > 0 be the total number of observation from arm i and δ = 1/n2. The
following assumptions about all arms i ∈ [K] are in place.

• {Xi,s}Ti(n)
s=1 are continuously distributed and independent random variables symmetrically

distributed about its mean µi. The observations Xi,s for each arm i ∈ [K] are independent
of the observations from other arms and actions.

• For all i ∈ [K] and s ∈ [Ti(n)], there is a convex function ψi(λ) such that:

logE{eλ(Xi,s−E{Xi,s})} ≤ ψi(λ)

Then the regret is bounded by

R(n) ≤
∑

i:∆i>0

(
3 +

3 log(n)

xi

)
∆i, (6)

where

xi = − log

(
1

2
+

1

2
exp(−ψ∗

i (∆i))

)
,

and ψ∗
i (·) is the Legendre–Fenchel transform of ψi(·), that is

ψ∗
i (ε) ≜ sup

λ∈R
(λε− ψi(λ)).

Note that the expectation in the regret is with respect to both {Xi,s} and {hj,s}.

Proof. See Section 3 in the supplement.

In Theorem 3 we set δ = 1/n2 to simplify analysis. A similar regret bound can also be achieved
using δt = 1/t2. It is also notable that the regret bound in Theorem 3 was achieved without any
knowledge about the functions ψi(λ) apart from its existence. In particular, it was not used when
the upper confidence bounds were computed. However, the ψ-UCB method assumed that ψi(λ)s are
known and used it in constructing the upper confidence bound.

The next corollary characterises a relationship between the regret bounds of the current method and
those of the ψ-UCB method.
Corollary 1. Provided that 0 < ψ∗

i (∆i) < 1.59, the regret bound (6) is simplified as follows

R(n) ≤
∑

i:∆i>0

(
3 +

6 log(n)

ψ∗
i (∆i)

)
∆i. (7)

Now, let for all arms i ∈ [K], the corresponding reward is σi-sub Gaussian. Then, ψ∗
i (∆i) =

(∆2
i )/(2σ

2
i ). Accordingly when (∆2

i )/(2σ
2
i ) < 1.59 the regret bound is simplified to

R(n) ≤
∑

i:∆i>0

(
3∆i +

12σi log(n)

∆i

)
. (8)

Proof. See Section 4 in the supplement.

As shown in equation (6), the regret bound for MARS is always O(log(n)) without relying on the
use of ψ(·). This demonstrates the effectiveness of the introduced non-parametric UCB method.
When ψ∗

i (∆i) < 1.59, the task becomes more challenging as identifying the optimal arms becomes
harder. In such scenarios, both the regret bounds for the proposed MARS and the ψ-UCB, which
employs ψ(·), become dependent on the function log(n)/ψ∗

i (∆i). Corollary 1 also explore the
effectiveness of MARS when dealing with subgaussian rewards. It demonstrates that even without
prior knowledge of the σi values, MARS successfully addresses bandit problems, achieving a regret
bound of O(

∑
i:∆i>0 log(n)/∆i) for challenging scenarios where (∆2

i )/(2σ
2
i ) < 1.59.
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4 Experiments

In this section, the performance of the proposed MARS method is compared with upper confidence
bound based on concentration inequalities (Vanilla UCB, See e.g. Chapter 7 and 8 in [19]), Thompson
sampling with normal prior (Normal-TS) [2], Bootstrapped UCB [12], Garbage In, Reward Out
(GIRO) [18], and Perturbed-History Exploration (PHE) [17]. The package PymaBandits2 was used
to implement these baseline methods.

The probability of confidence regions in the Vanilla UCB, Bootstrapped UCB, and the proposed
MARS UCB is set to 0.999, i.e. δ = 1/1000. In GIRO, the parameter a, which represents pseudo-
rewards per unit of history, is set to 1. Due to the high sensitivity of the PHE approach to the choice
of the tunable parameter a, simulations were performed for two values of a.

The number of arms is K = 5 and the means are

µ1 = 1, µ2 =
1

2
, µ3 =

1

3
, µ4 =

1

4
, µ5 =

1

5
.

First, consider the case where the rewards are Gaussian with variance 1 for all arms. The cumulative
regrets are show in Figure 2a. Since Normal-TS uses distribution knowledge and the variances are
correct it is the best as expected. The Vanilla UCB algorithm demonstrates comparable or superior
performance compared to both the Bootstrapped UCB, MARS, and GIRO. The performance of the
PHE approach is heavily dependent on the parameter a. When a = 2.1, it shows a linear regret.
However, for a = 5.1, it outperforms most other approaches, except for Thompson sampling.

Both Vanilla UCB and Normal-TS depend on the variances which were assumed known in the
previous simulation. We repeat the simulation with the variances incorrectly set to 2. The result
is shown in Figure 2b. Evidently MARS, GIRO, and Bootstrapped UCB outperform both Vanilla
UCB and Normal-TS when incorrect values for the variances are used. MARS demonstrates superior
performance over Bootstrapped UCB and GIRO after an initial set of rounds. Moreover, unlike GIRO
and Bootstrapped UCB, MARS does not require the full storage of reward history, resulting in lower
computational complexity. As previously observed, PHE with a value of 2.1 demonstrated the poorest
performance, whereas PHE with a value of 5.1 has the best performance.
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Figure 2: Cumulative regret for Gaussian bandit. The variances of rewards are true in (a) and wrong
in (b). The results are averaged over 2000 realizations.

The MARS and GIRO do not use the tail information of the rewards. However, Vanilla UCB, Normal-
TS, and Bootstrapped UCB use the distribution and the tail information of the rewards respectively
and their performance can deteriorate when the prior knowledge is wrong or conservative. To illustrate
this we repeated the simulation for the cases where the rewards admit uniform distribution over
[−1, 1]. The results are shown in Figure 3. It shows that MARS which does not use the distribution
of the rewards and the tail information, outperforms the other methods except PHE (a = 2.1) in
this case. An interesting observation is that PHE (a = 5.1) exhibits outstanding performance in a
Gaussian setup, yet it performs poorly in a Uniform setup, indicating a strong reliance on the tunable

2The package can be found at https://www.di.ens.fr/olivier.cappe/Code/PymaBandits.
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parameter. This dependence on the parameter could pose challenges in real-world applications where
the environment is unknown. In such cases methods like MARS and GIRO may be more practical
alternatives.
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Figure 3: Cumulative regret for uniform bandit. The results are averaged over 2000 realizations.

See Section 5 in the supplement for further simulations.

5 Conclusion

In this paper, a non-parametric and scale-free confidence bound was proposed based on random
sub-sampling of rewards. The confidence bound was used to propose a data-driven UCB algorithm.
A regret bound of the method for multi-armed bandit problems with symmetric distribution was
presented, and it was shown that the regret bound is always O(log(n)). Moreover, the regret bound
is O(

∑
i:∆i>0 log(n)/∆i) for a class of Bandit problems. Numerical experiments show that the

proposed method performs well, and it outperforms baselines algorithms when the prior information
is mis-specified.

Extending the method to other bandit and reinforcement learning problems are interesting topics
for future works e.g. evaluating the method on non-stationary bandits and contextual bandits using
the ideas in [13] and [9]. As MARS does not use any concentration inequalities in the construction
of the confidence bound, the application of MARS to bandits with heavy tail is another interesting
direction. Another interesting future direction is evaluation of the method on asymmetric rewads and
robustification of the approach following ideas in [10].
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