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Abstract

We consider the problem of guaranteeing maximin-share (MMS) when allocating
a set of indivisible items to a set of agents with fractionally subadditive (XOS)
valuations. For XOS valuations, it has been previously shown that for some in-
stances no allocation can guarantee a fraction better than 1/2 of maximin-share to
all the agents. Also, a deterministic allocation exists that guarantees 0.219225 of
the maximin-share of each agent. Our results involve both deterministic and ran-
domized allocations. On the deterministic side, we improve the best approximation
guarantee for fractionally subadditive valuations to 3/13 = 0.230769. We develop
new ideas on allocating large items in our allocation algorithm which might be of
independent interest. Furthermore, we investigate randomized algorithms and the
Best-of-both-worlds fairness guarantees. We propose a randomized allocation that
is 1/4-MMS ex-ante and 1/8-MMS ex-post for XOS valuations. Moreover, we
prove an upper bound of 3/4 on the ex-ante guarantee for this class of valuations.

1 Introduction

Fair allocation has been a central problem in economics for decades. This problem arises naturally in
real-world applications such as advertising, negotiation, rent sharing, inheritance, etc Caragiannis
et al. (2019); Dehghani et al. (2018); Dickerson et al. (2014); Foley (1967); Nash Jr (1950); Varian
(1973). In discrete fair division, the basic scenario is that we want to distribute a set M of m
indivisible items among n agents, such that the allocation is deemed fair by the agents. Each agent i
has a valuation function vi : 2

M → R+ that represents her happiness for receiving a subset of items.

How do we evaluate fairness? This question has been the subject of intense debates in various contexts,
including philosophy, economics, distributive justice, and mathematics. Since the introduction of
the cake-cutting1 problem Steinhaus (1948), scientists have suggested several different notions to
evaluate fairness. The challenge is that a fairness notion must be both reasonable in terms of justice
and implementable in practice. Conceived by Steinhaus, proportionality is one of the most natural

1Cake-cutting is the continuous version of the fair allocation problem where the resource is a divisible cake.
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and prominent notions. An allocation is proportional if the share allocated to every agent is worth at
least 1/n of her value for the entire resource.

Unfortunately, despite many positive results on proportionality for cake-cutting, simple examples
indicate that proportionality is not a proper fairness criterion for the case of indivisible items. For
example, when there is one item and two agents, one agent receives nothing, though her proportional
share is non-zero assuming that the item has positive value for both of the agents. An alternative form
of proportionality adopted to deal with indivisibilities is Maximin-share (MMS). For every agent i,
the maximin-share of agent i, denoted by MMSi is defined as follows:

MMSi = max
⟨Π1,Π2,...,Πn⟩∈Ω

min
1≤j≤n

vi(Πj),

where Ω is the set of all partitions of M into n parts. It is known that even when all the valuations
are additive, MMS allocations, in which each agent i gets at least MMSi, need not exist Feige et al.
(2022); Kurokawa et al. (2018); Procaccia and Wang (2014). Nevertheless, several studies in recent
years show that it is possible to guarantee a constant factor of maximin-share to all agents for various
classes of valuation functions, including additive, submodular, and fractionally subadditive. See
Table 1 for the state-of-the-art guarantees on the maximin-share. For Submodular valuation class,
a 10/27-MMS allocation can be computed in polynomial time. For all other classes of valuation
functions mentioned in Table 1, the states-of-the-art are existential results.

Table 1: A summary of the results for MMS in different valuation classes.
Valuation Class Approximation Guarantee Upper bound

Additive 3
4 + 1

3836 Akrami and Garg (2024) 39
40 Feige et al. (2022)

Submodular 10
27 Uziahu and Feige (2023) 3

4 Ghodsi et al. (2018)

Fractionally Subadditive 0.219225 Seddighin and Seddighin (2022) 1
2 Ghodsi et al. (2018)

Subadditive 1
log n log log n Seddighin and Seddighin (2022) 1

2 Ghodsi et al. (2018)

Let us revisit the instance with one item and two agents. Suppose that the item has value 6 for both
agents. By definition, the proportional share of each agent is 6/2 = 3, and since one agent receives
no item, satisfying proportionality or any approximation of it is impossible. On the other hand, we
have MMS1 = MMS2 = 0. Thus, allocating the item to any agent satisfies maximin-share. Indeed,
we can circumvent the non-guaranteed existence of fair allocation by reducing our expectation of
fairness to maximin-share. However, regardless of how we allocate the item, one agent receives one
item, and the other receives nothing. Therefore, having one agent with zero utility is inevitable for
any deterministic allocation in this example. The question then arises: can we do better? One way to
improve the allocation is to use randomization and obtain a better guarantee in expectation (ex-ante).
For example, we can allocate the item to each agent with probability 1/2. This way, the expected
utility of each agent is equal to 3. In economic terms, this allocation satisfies proportionality ex-ante.
Note that one agent receives no item ex-post (that is, after fixing the outcome); however, it guarantees
proportionality ex-ante to both agents.

Considering random allocations and ex-ante fairness makes the problem much handier. For instance,
assuming there are n items and n agents, allocating each item to each agent with probability
1/n satisfies proportionality ex-ante. However, this randomized allocation has no ex-post fairness
guarantee: with a non-zero probability, the outcome allocates all the items to one agent, and the rest
of the agents receive no item. It is tempting to find allocations that simultaneously admit ex-ante and
ex-post guarantees. The support of such an allocation is limited to outcomes with some desirable
fairness guarantee. For example, consider the following random allocation: we choose a random
permutation of these n items and allocate the ith item in the permutation to agent i. This allocation
satisfies proportionality ex-ante and maximin-share ex-post.

Recently, several studies have investigated randomized allocations with both ex-ante and ex-post
guarantees. Some notable results with the focus on additive valuations are (i) an ex-ante envy-
free and ex-post EF1 allocation algorithm Freeman et al. (2020), (ii) an ex-ante proportional and
ex-post 1/2-MMS allocation algorithm Babaioff et al. (2022), and (iii) an ex-post 3/4-MMS and
ex-ante 0.785-MMS allocation algorithm Akrami et al. (2023b). Very recently, Feldman et al. (2023)
studied best-of-both-worlds for subadditive valuations and gave an allocation algorithm with ex-ante
guarantee of 1/2-envy-freeness and ex-post guarantee of 1/2-EFX and EF1.
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In this paper, our goal is to explore fair deterministic and randomized allocations for fractionally
subadditive valuation functions. A valuation function vi(·) is fractionally subadditive (XOS), if there
exists a set of several additive valuation functions ui,1, ui,2, . . . , ui,ℓ : 2

M → R≥0 such that for every
set S we have vi(S) = max1≤k≤ℓ ui,k(S). Fractionally subadditive is a super-class of different set
functions such as additive, gross substitute, and submodular. In addition, fractionally subadditive is a
subclass of subadditive set functions.

The fairness notion we consider is maximin-share. Indeed, we are looking for allocations that satisfy
an approximation of maximin-share both ex-ante and ex-post for fractionally subadditive valuations.
Of course, we expect our ex-ante guarantee to be stronger than the ex-post one. Moreover, we
improve the ex-post guarantee (deterministically) for this class of valuations. We refer to the next
subsection for an overview on our results and techniques.

1.1 Our Results and Techniques

In this paper, we provide improved guarantees for maximin-share in the fractionally subadditive
setting. We investigate both randomized and deterministic allocation algorithms.

Randomized Allocations For randomized allocations, we take one step toward extending the best-
of-both-worlds idea for fairness concepts to valuations more general than additive. For the additive
setting, Babaioff et al. (2022) proved the existence of randomized allocations that are proportional ex-
ante and 1/2-MMS ex-post. However, as we show in Section 3, though guaranteeing proportionality
ex-ante is easy for XOS valuations, this notion is not always a proper choice as a fairness criterion.
In fact, for some instances, proportionality can be as small as O(1/n) of the MMS value, which is
highly undesirable. Therefore, here we focus on guaranteeing MMS both ex-ante and ex-post. In
contrast to the additive setting, for XOS valuations guaranteeing MMS ex-ante is not easy. Recall
that in the additive setting, a fractional allocation that allocates a fraction 1/n of each item to each
agent is proportional and consequently MMS. However, for some XOS instances this allocation is
O(1/n)-MMS (Observation 3.2). Indeed, we show that there are instances for which guaranteeing
MMS ex-ante is not possible. More precisely, we show that there are instances that no randomized
allocation can guarantee a factor better than 3/4 of maximin-share to all agents (Lemma 3.3). On the
positive side, we propose an algorithm that finds a randomized allocation which is 1/4-MMS ex-ante
and 1/8-MMS ex-post (Theorem 1.1). The idea to prove the ex-ante approximation guarantee of our
allocation is inspired by Ghodsi et al. (2018). In the beginning of the algorithm, as long as there
exists a remaining agent i who likes a remaining item bj at least 1/2 of her MMS value, we allocate
bj to i and remove them from M and N . By the end of this phase, we get an upper bound on the
value of the remaining items for the remaining agents. Let v̄i(·) = min{ 1

2 , vi(·)} for all agents i. In
the second phase, we find a half-integral allocation that maximizes social welfare with respect to
these new valuations v̄i. For every i, v̄i(·) is the same as vi(·), except that for every bundle X with
vi(X) > 1/2 we have v̄i(X) = 1/2. Then, we convert this fractional allocation into a randomized
one. To prove the ex-post guarantee, the fact that the allocation is half-integral plays a key role.

Theorem 1.1. There exists a randomized allocation that is 1/4-MMS ex-ante and 1/8-MMS ex-post.

Deterministic Allocations Since the impossibility result on MMS by Procaccia and Wang (2014),
there has been a considerable effort in the line of improving the approximate MMS factor for various
classes of the valuation functions Akrami and Garg (2024); Akrami et al. (2023a); Barman and
Krishnamurthy (2020); Garg and Taki (2021); Ghodsi et al. (2018); Kurokawa et al. (2018). However,
all these results and their techniques apply to less general classes of valuation functions than XOS. In
this work, we give a deterministic algorithm which outputs an allocation with 3/13-MMS guarantee
when valuation functions are XOS. This way, we improve the state-of-the-art on approximate MMS
for XOS valuations from 0.219225 Seddighin and Seddighin (2022) to 3/13 = 0.230769. In order
to do so, like in our randomized algorithm, we first allocate large items. However, in addition to
allocating single large items, here we also allocate pairs and triples of items if they satisfy some agent
up to 3/13 factor of their MMS value. This way we get a stronger upper bound on the value of most
of the remaining items. In the last step, we output an allocation which maximizes the social welfare
with respect to valuations v̄i(·) = min{ 6

13 , vi(·)} for the remaining agents and items. Note that this
last step is also in correspondence with the last step of the randomized algorithm. Here we cap the
value of the bundles with 6/13 (instead of 1/2) and we output an integral allocation with maximum
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social welfare (instead of a half-integral allocation with maximum social welfare). Moreover, here
we need to do a more careful analysis to show that the output is indeed a 3/13-MMS allocation.
Theorem 1.2. Given an instance with XOS valuations, there exists a 3/13-MMS allocation.

Both of our results are constructive; however, their running times are not polynomially bounded. One
step that cannot be done in polynomial time is computing the MMS values of the agents and another
one is computing an allocation with maximum social welfare.

1.2 Further Related Work

Maximin-share fairness notion. Budish (2011) introduced the MMS notion. As we already
mentioned, there are instances with additive valuations for which no MMS allocation exists Feige
et al. (2022); Kurokawa et al. (2018); Procaccia and Wang (2014). Therefore, several studies
considered the approximation guarantees. For additive valuations, the first approximation guarantee,
2/3-MMS, is given by Kurokawa et al. (2018). The approximation factor improved over time
by Ghodsi et al. (2018) to 3/4, and then to 3/4 + o(1) by Garg and Taki (2021) and Akrami et al.
(2023a). The best-known result for this valuation classed is 3/4 + 3/3836 which was very recently
proposed by Akrami and Garg (2024). Moreover, there are several works on MMS approximations
for submodular valuations Barman and Krishnamurthy (2020); Ghodsi et al. (2018), and subadditive
valuations Ghodsi et al. (2018); Seddighin and Seddighin (2022). Also, Farhadi et al. (2019) proved
the tight bound of 1/n-MMS for the setting where agents can have different entitlements.

Fractionally subadditive valuations. A 1/5-MMS approximation algorithm for fractionally sub-
additive valuations proposed by Ghodsi et al. (2018), and improved later to 0.2173913-MMS approx-
imation by Seddighin and Seddighin (2022). Fractionally subadditive valuations for hereditary set
systems have been studied by Li and Vetta (2018). Different other notions of fairness have been
studied for this class of valuation. Feige (2009) studied maximizing social welfare. Also, Hoefer
et al. (2023) proved the existence of randomized allocations which are proportional ex-ante and
proportional up to one item (PROP1) ex-post.

Best-of-both-worlds fairness. Aleksandrov et al. (2015) first explored this line of research in the
context of the food bank problem for a special case of additive valuations. Freeman et al. (2020)
proposed a randomized polynomial-time algorithm for additive valuations that is envy-free ex-ante
and EF1 ex-post. Afterward, Aziz (2020) modified this algorithm to also get the Probabilistic Serial
fractional outcome Bogomolnaia and Moulin (2001) as well as a weak notion of efficiency with
a simpler proof. Babaioff et al. (2022) provided an allocation algorithm in which the expected
value of each agent’s bundle is at least a 1/n-fraction of her value for the set of all items (ex-ante
proportional) and ex-post proportional up to one item and 1/2-MMS allocations for the additive
valuations. Feldman et al. (2023) gave an allocation algorithm for subadditive valuations with
guarantees of 1/2-envy-freeness ex-ante and 1/2-EFX and EF1 ex-post. Moreover, studies have been
conducted for additive valuations with binary marginals Aziz (2020); Halpern et al. (2020), and for
matroid rank valuations Aziz et al. (2023); Babaioff et al. (2021).

2 Preliminaries

A fair division instance is denoted by I = (N ,M,V) where N = [n] is a set of n agents, M is a set
of m indivisible items and V = (v1, . . . , vn) is a vector of valuation functions. Each agent i has a
valuation function vi : 2

M → R≥0 that represents her value for every bundle of items. Thus, for every
set S of items, vi(S) shows the value of S to agent i. We denote the jth item by bj . An allocation
of items is a partition of M into n parts (i.e., bundles) where the ith bundle is the share allocated
to agent i. For an allocation A, we denote the bundle of agent i by Ai. Here we assume that the
valuations are monotone, i.e., for every two sets S and T such that S ⊆ T , we have vi(S) ≤ vi(T ),
and normalized, i.e., vi(∅) = 0 for all i ∈ N . Our discussion in this paper involves two classes of
valuation functions: additive and fractionally subadditive valuation functions. A valuation function
vi(·) is additive, if for every set S of items, we have vi(S) =

∑
bj∈S vi({bj}).

Definition 2.1 (XOS). A valuation function vi(·) is fractionally subadditive (XOS), if there exists a
set of several additive valuation functions ui,1, ui,2, . . . , ui,ℓ : 2

M → R≥0 such that for every set S
we have vi(S) = max1≤k≤ℓ ui,k(S).
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Given an allocation A, we denote by ui,i′ , an additive function of vi that defines vi(Ai), i.e.,
vi(Ai) = ui,i′(Ai). Another term we frequently use in this paper is contribution; which is defined to
evaluate the marginal value of one set to another.
Definition 2.2 (Contribution). For every sets S, T of items such that S ⊆ T , we define the marginal
contribution of S to T with respect to valuation function v, denoted by CT

v (S) as CT
v (S) = v(T )−

v(T \ S), i.e., the contribution of S to T is the decrease in the value when S is removed from T .

With abuse of notation, for an allocation A of items to agents with valuation vector V = (v1, . . . , vn)
and every set S of items, we define the contribution of S to A with respect to V , denoted by CA

V (S)
as CA

V (S) =
∑

1≤i≤n C
Ai
vi (Ai ∩ S). However, since an XOS valuation function might include many

additive functions, this equation is not always practical. Therefore, we bound CA
V (S) as follows.

Observation 2.3. Given an allocation A of items to agents with valuation vector V , and every set S
of items, we have CA

V (S) ≤
∑

1≤i≤n ui,i′(Ai ∩ S).

Our goal is to allocate the items to the agents in a fair manner. Here we discuss two share-based notions
of fairness, namely proportionality, and maximin-share. For agent i, we define the proportional share
of agent i, denoted by πi as πi = vi(M)/n. We also define the maximin-share of agent i, denoted by
MMSi as

MMSi = max
⟨Π1,Π2,...,Πn⟩∈Ω

min
1≤j≤n

vi(Πj),

where Ω is the set of all partitions of M into n bundles. Moreover, if for a partition Π =
⟨Π1,Π2, . . . ,Πn⟩ of M into n bundles we have vi(Πj) ≥ MMSi for all j ∈ [n], we say Π is
an “MMS partition” of agent i. For brevity, in the rest of the paper, we assume that the valuations are
scaled so that for each agent i, we have MMSi = 1. We also define approximate versions of these
two notions as follows. For a constant α > 0, we say an allocation is α-proportional, if it guarantees
to each agent i a bundle with value at least απi. Likewise, in an α-MMS allocation, the value of the
share allocated to each agent i is at least α.

Randomized allocation. In this paper, we also consider randomized allocations. A randomized
allocation is a distribution over a set of deterministic allocations. For a randomized allocation R,
we denote by D(R) the set of allocations in the support of R. Given a randomized allocation R,
the expected welfare of agent i for R is defined as vi(R) =

∑
A∈D(R) vi(Ai) · pA, where pA is the

probability of allocation A in R.

Fractional allocation. En route to proving our results, we leverage another relaxed form of alloca-
tion called fractional allocation. In a fractional allocation, we ignore the indivisibility assumption and
treat each item as a divisible one. Formally, a fractional allocation F is a set of nm variables fi,j
indicating the fraction of item bj allocated to agent i. Therefore, we expect allocation F to satisfy the
following constraints:

∀j
∑

1≤i≤n

fi,j ≤ 1 (we have one unit of each item)

∀i,j 0 ≤ fi,j (each agent receives a non-negative share of each item)

A fractional allocation is complete if
∑

i fi,j = 1 for all items bj , i.e., all items are completely
allocated. Given a fractional allocation F , we define the utility of agent i for F in the same way as
we calculate it for integral allocations: vi(F) = maxk

∑
1≤j≤m ui,k({bj})fi,j . Complete fractional

allocations give rise to randomized allocations in the standard way, i.e., the probability pA of an
allocation A is defined as

pA =
∏

1≤i≤n

∏
bj∈Ai

fij . (1)

Lemma 2.4. Let F be a complete fractional allocation and let randomized allocation R be defined
by (1). Then given an XOS valuation function vi, vi(R) ≥ vi(F) for all 1 ≤ i ≤ n.

We also need to redefine contribution for fractional allocations and fractional bundles. Suppose that
F is a fractional allocation and S is a fractional set of items. Since items are fractionally allocated,
the term contribution must be defined more precisely. For example, suppose that set S consists of a
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fraction 0.4 of item bj , and in allocation F , 0.2 of bj belongs to agent i1, 0.5 of bj belongs to agent
i2, and 0.3 of bj belongs to agent i3. Here we should exactly determine that this 0.4 fraction of item
bj in S corresponds to the share of which agent or agents. One reasonable strategy is to choose the
share of each agent in a way that after removal of S from F we have the smallest possible decrease in
the social welfare. Based on this strategy, assuming that sj is the fraction of item bj in S, we define
the contribution of S to F , denoted by CF

V (S) as the answer of the following optimization program:

minimize
∑

1≤i≤n

vi(F)− vi(F ′)

subject to
∑

1≤i≤n

fi,j − f ′
i,j = sj ∀j

0 ≤ f ′
i,j ≤ fi,j ∀i,j (2)

Generally, it is hard to deal with the above optimization program. Here, we use an important property
of CF

V (·) to obtain our results.

Lemma 2.5. Let F be an arbitrary fractional allocation and assume that for every agent i,
vi(·) is XOS. Then, for every partition of the items into fractional sets S1, S2, . . . , St, we have∑

1≤k≤t C
F
V (Sk) ≤

∑
1≤i≤n vi(F).

For a randomized allocation, we define two types of fairness guarantees, namely ex-ante and ex-post
as in Definitions 2.6 and 2.7.

Definition 2.6 (ex-ante). Given a randomized allocation R, we say R is α-MMS ex-ante, if for every
agent i, we have vi(R) ≥ α. Similarly, R is α-proportional, if for every agent i, vi(R) ≥ απi.

Definition 2.7 (ex-post). An allocation R is α-MMS ex-post, if for every allocation A ∈ D(R), we
have that allocation A is α-MMS. Also, we say R is α-proportional ex-post if every allocation in the
support of R is α-proportional.

One tool that we refer to in this paper is the result of Babaioff et al. (2022) for converting a fractional
allocation into a faithful randomized allocation.

Theorem 2.8 (Proved by Babaioff et al. (2022)). Assume that the valuations are additive and let F
be a fractional allocation. Then there exists a randomized allocation R such that the ex-ante utility
of the agents for R is the same as the utility of the agents in F , and for every allocation A in the
support of R the following holds: ∀i, vi(Ai) ≥ vi(R)−maxj:fi,j /∈{0,1} vi({bj}).

In this paper, we use a more delicate analysis of the method used in Theorem 2.8 to convert fractional
allocations into randomized ones. This helps us improve our ex-post approximation guarantees.

3 Ex-ante Guarantees

In this section, our goal is to explore the possibility of designing randomized allocation that is α-MMS
ex-ante or α-proportional ex-ante. Note that, in contrast to the additive case, for XOS valuations
there is no meaningful correspondence between proportionality and maximin-share; proportional
share can be larger or smaller than maximin-share. Recall that for the additive case, we always have
πi ≥ MMSi and therefore, maximin-share is implied by proportionality. For fractionally subadditive
valuations, however, πi can be as small as MMSi/n.

For the additive setting, a simple fractional allocation that allocates a fraction 1/n of each item to
each agent guarantees proportionality and consequently maximin-share. Using Theorem 2.8 one can
convert this allocation to a randomized allocation that is proportional ex-ante. In Observation 3.1 we
show that proportionality can be guaranteed ex-ante for XOS valuations.

Observation 3.1. Every randomized allocation that allocates each item with probability 1/n to each
agent is proportional ex-ante.

In contrast to the additive setting, finding an allocation that guarantees maximin-share is not trivial.
Indeed, the simple fractional allocation that guarantees proportionality in Observation 3.1 can be as
bad as O(1/n)-MMS.
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Observation 3.2. Given any instance I , let F(I) be the fractional allocation that allocates a fraction
1/n of each item to each agent. Then, there exists an instance I such that the maximin-share guarantee
of F(I) is O(1/n).

Generally, there are two main challenges in the process of designing a randomized allocation that
guarantees an approximation of maximin-share. In contrast to the additive setting, finding a fractional
or randomized allocation that approximates maximin-share is not easy. As well as that, transforming
a fractional allocation into a randomized one is not straightforward. Indeed, as we show in Lemma
3.3, neither fractional allocations nor randomized allocations can guarantee MMS. We prove an upper
bound on the best approximation guarantee of each one of these allocation types.

Lemma 3.3. For XOS valuations, the best MMS guarantee for fractional allocations and the best
ex-ante MMS guarantee for randomized allocation is upper bounded by 3/4.

Before we prove our lower bound on the maximin-share guarantee for randomized allocations, we
note that another challenge about XOS valuations is that in sharp contrast to additive valuations,
transforming a fractional allocation to a randomized one is not easy. Indeed, we can show that
for a fractional allocation F there might be randomized allocations R and R′ with different utility
guarantees for the agents, such that in both R and R′ the probability that each item bj is allocated to
agent i is equal to fi,j . Example 3.4 gives more insight into this challenge.

Example 3.4. Consider the following instance: there are n2 items. The valuation of agent i is an
XOS set function consisting of n additive valuation functions as follows: partition the items into n
bundles each with n items. For each additive function ui,k, the value of each item in the kth bundle is
1/n and the value of the rest of the items is 0. Define allocations R and R′ as follows: (i): allocation
R allocates each item to each agent with probability 1/n, and (ii): allocation R′ considers a random
permutation of the bundles in the optimal MMS partition of the agents and allocates the ith bundle
in the permutation to agent i. In both of these allocations, each item is allocated to each agent with
probability 1/n. However, the maximin-share guarantee of R is O(log n/n). On the other hand,
allocation R′ guarantees value 1 to all agents.

Despite these hurdles, in Theorem 3.5 we show that there exists a randomized allocation that
guarantees 1/4-MMS to all the agents ex-ante. To prove Theorem 3.5, we first show that a fractional
allocation exists that is 1/4-MMS. Next, we convert it to a randomized allocation. Theorem 3.5 along
with Lemma 3.3 leave a gap of [1/4, 3/4) between the best upper bound and the best lower-bound
for the maximin-share guarantee of fractional allocations in the XOS setting.

Theorem 3.5. There exists a randomized allocation that is 1/4-MMS ex-ante.

4 Ex-ante and Ex-post Guarantees

Unfortunately, the randomized allocation obtained by Theorem 3.5 has no ex-post fairness guarantee.
The issue is that we use Theorem 2.8 to convert the fractional allocation into a randomized one.
However, Theorem 2.8 only guarantees that the ex-post value of each agent is at least the value of her
fractional allocation minus the value of the heaviest item which is partially (and not fully) allocated
to her in the fractional allocation. However, currently, we have no upper bound on the value of the
allocated items, and therefore, the ex-post value of an agent might be close to 0. To resolve this, we
allocate valuable items beforehand to keep the value of the remaining items as small as possible.
In Lemma 4.1 we explain a simple and very practical fact that is frequently used in the previous
studies. Ghodsi et al. (2018); Seddighin and Seddighin (2022); Barman and Krishna Murthy (2017);
Amanatidis et al. (2019).

Lemma 4.1. Removing one item and one agent from the instance does not decrease the maximin-share
value of the remaining agents for the remaining items.

Given that our goal is to construct a randomized allocation which is 1/4-MMS ex-ante, by Lemma
4.1 we can assume without loss of generality that the value of each item to each agent is less than 1/4;
otherwise, we can reduce the problem using Lemma 4.1. However, a combination of this assumption
and Theorem 3.5 still gives no ex-post guarantee.To improve the ex-post guarantee, we revisit the
proof of Theorem 2.8 and show that for our setting, a stronger guarantee can be achieved using the
matching method for converting a fractional allocation into a randomized one.
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Lemma 4.2. Assume that the valuations are additive and let F be a complete fractional allocation
with fij ∈ {0, 1/2, 1} for all i and j. Then there is a randomized allocation R with D(R) =
{A1,A2}, such that

• For every agent i we have vi(R) = vi(F).

• For every agent i we have

min

{
vi(A1

i ), vi(A2
i )

}
≥ vi(R)− max{vi(bj) | fij = 1/2}

2
.

In Lemma 4.2, we show that we can find a fractional allocation with a special structure that makes
the transformation step more efficient. These ideas together help us achieve a randomized allocation
with 1/4-MMS guarantee ex-ante and 1/8-MMS guarantee ex-post. In order to do so, we use the
following algorithm:

1. While there exists an item bj with value at least 1/4 to an agent i, allocate bj to agent i and
remove i and bj respectively from N and M.

2. For the remaining agents [n] and items proceed as follows: for every agent i, define v̄i as
follows: for every subset S of items, v̄i(S) = min(t, vi(S)). Let v̄ = (v̄1, . . . , v̄n) and
return a half-integral allocation F that maximizes the social welfare with respect to v̄, i.e.,
F = argmaxF∈Π

∑
i∈N ′ v̄i(Fi) where Π is the set of all half-integral allocations of the

remaining items to the remaining agents.
3. Convert F into a randomized allocation using Lemma 4.2.

The goal in Step 2 is to find a fractional allocation that is 1/4-MMS. However, we want this allocation
to have a special structure that facilitates constructing the randomized allocation. Therefore, instead
of directly choosing the allocation that maximizes social welfare, we consider v̄i as the valuation
function of agent i and return a half-integral allocation F .
Lemma 4.3. F is 1/4-MMS.

Now we are ready to prove Theorem 1.1.
Theorem 1.1. There exists a randomized allocation that is 1/4-MMS ex-ante and 1/8-MMS ex-post.

Proof. The ex-ante guarantee follows from Lemmas 4.3 and 1.

Let A1 and A2 be the integral allocations obtained by Lemma 4.2. Consider any agent i, and let ui,i′

be such that vi(R) =
∑

j fijui,i′(bj). Then, by Lemma 4.2 for r ∈ {1, 2} we have

ui,i′(Ar
i ) ≥ ui,i′(Rℓ

i)−
max{ui,i′(bj) | fi,j = 1/2}

2
and since by Lemma 4.1 we know the value of each item for each agent is less than 1/4, we have

vi(Aℓ
i) ≥ vi(Ri)−

maxj vi(bj)

2
>

1

4
− 1

8
=

1

8
.

Hence, the ex-post guarantee holds as well.

5 3/13-MMS Allocation

In this section, our goal is to improve the approximation guarantee of MMS for deterministic alloca-
tions in the fractionally subadditive setting. We show that guaranteeing a factor 3/13 ≈ 0.230769 of
maximin-share to all the agents is always possible. Before this work, the best approximation guarantee
for maximin-share in the XOS setting was 0.219225-MMS Seddighin and Seddighin (2022).

Our algorithm for improving the ex-post guarantee is based on our previous algorithms plus two
additional steps and a more in-depth analysis. In this algorithm, before finding the allocation that
maximizes social welfare, we strengthen our upper bound on the value of items. For this, we add
two more steps to our algorithm in which we satisfy some of the agents with two items and three
items. In contrast to the first step (i.e., allocating single items to agents), these steps might decrease
the maximin-share value of the remaining agents for the remaining items. Let t = 6/13. The goal is
to find a t/2-MMS allocation. Our allocation algorithm is as follows:
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1. If there exists an item bj with value at least t/2 to an agent i, allocate bj to agent i and
remove i and bj respectively from N and M.

2. If there exists a pair of items bj , bk with the total value of at least t/2 to some agent i,
allocate {bj , bk} to agent i and remove i and {bj , bk} from N and M respectively.

3. If there exists a triple of items bj , bk, bs with the total value of at least t/2 to some agent i,
allocate {bj , bk, bs} to agent i and remove i and {bj , bk, bs} from N and M respectively.

4. For the remaining agents N ′ and items M′, proceed as follows: for every agent i, define
v̄i as follows: for every subset S of items, v̄i(S) = min(t, vi(S)). Let v̄ = (v̄1, . . . , v̄n)
and return an allocation A that maximizes the social welfare with respect to v̄, i.e., A =
argmaxA∈Π

∑
i∈N ′ v̄i(Ai) where Π is the set of all allocations of M′ to N ′.

In the rest of this section, we analyze the above algorithm. By Lemma 4.1, after Step 1, the MMS
value of all the agents is at least 1. Let n be the number of remaining agents after Step 1. We
denote by n1 and n2, the number of agents that are satisfied in Steps 2 and 3 respectively and let
n′ = n − n1 − n2 = |N ′| be the number of remaining agents after Step 3. In contrast to the first
step, Step 2 and 3 might decrease the maximin-share value of the remaining agents for the remaining
items. However, we prove that the remaining items satisfy special structural properties.

Observation 5.1. Since no item can satisfy any remaining agent after Step 1, for every agent i and
every item bj , we have vi({bj}) < t/2.

Also, by the method that we allocate the items in Step 3, after this step Observation 5.2 holds.

Observation 5.2. Since after Step 3, no triple of items can satisfy an agent, for every different items
bj , bk, bs and every agent i we have vi({bj , bk, bs}) < t/2.

Note that since the valuations are XOS, Observation 5.2 implies no upper bound better than t/2 on
the value of a single item to an agent. For example, consider the following extreme scenario: for a
small constant ϵ > 0, the value of every subset of items to agent i is equal to t/2− ϵ. It is easy to
check that this valuation function is XOS. For this case, the value of every triple of items is also equal
to t/2− ϵ, but this implies no upper bound better than t/2 on the value of a single item.

Lemma 5.3. Fix a remaining agent i and consider the n bundles with value at least 1 in an MMS
partition of agent i after Step 1. Put these bundles into 4 different sets B0, B1, B2, B≥3, where for
0 ≤ ℓ ≤ 2, set Bℓ contains bundles that lose exactly ℓ items in Steps 2 and 3, and B≥3 contains
bundles that lose more than 4 items in these steps. After Step 3, the following inequality holds:
n′ ≤ |B0|+ 2

3 |B1|+ 1
3 |B2|.

Finally, in Step 4, we find the integral allocation A that maximizes social welfare with respect
to v̄ for the remaining agents. Let Z =

∑
i∈N ′ v̄i(Ai). Since for each remaining agent i, v̄i(Ai)

is upper-bounded by t, we have Z ≤ n′t. If for every agent i, vi(Ai) ≥ t/2 holds, then A is
t/2-MMS, and we are done. Therefore, for the rest of this section, assume that for an agent i∗, we
have vi∗(Ai∗) < t/2.

Let B0, B1, and B2 be the sets defined for agent i∗ in Lemma 5.3. In Lemma 5.4, we give lower
bounds on the contribution of the bundles in B0, B1 and B2 to A respectively.

Lemma 5.4. After Step 3, for all bundles

• X ∈ B0, there exists a partition of X into X1 and X2 such that CA
v̄ (X1) + CA

v̄ (X2) ≥ t.

• X ∈ B1, there exists a partition of X into X1 and X2 such that CA
v̄ (X1)+CA

v̄ (X2) ≥ 2
3 t.

• X ∈ B2, CA
v̄ (X) ≥ 1

2 t.

Theorem 1.2. Given an instance with XOS valuations, there exists a 3/13-MMS allocation.

Proof. Let A be the output of our Algorithm. Towards a contradiction, assume for agent i∗,
vi∗(Ai∗) < 3/13 = t/2. For all agents i which are removed during the first three steps, we
have vi(Ai) ≥ t/2 = 3/13. Therefore, i∗ ∈ N ′. For all X ∈ B0, let X1 and X2 be as defined in
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Lemma 5.4. We have

t(n′ − 1

2
) >

∑
i∈N ′

v̄i(Ai) (for all i ∈ N ′, v̄i(Ai) ≤ t and v̄i∗(Ai∗) < t/2)

≥
∑

X∈B0

(
CA

v̄ (X1) + CA
v̄ (X2)

)
+

∑
X∈B1

(
CA

v̄ (X1) + CA
v̄ (X2)

)
+

∑
X∈B2

CA
v̄ (X)

(Lemma 2.5)

≥ t|B0|+
2

3
t|B1|+

1

2
t|B2| ≥ tn′. (Lemma 5.4 and Lemma 5.3)

6 Conclusion

In this paper, we developed randomized and deterministic allocations that guarantee approximations
of maximin-share for fractionally subadditive valuations.

For deterministic allocations, to achieve a better approximation with the same technique, one idea
would be to allocate more items to agents in the first phase. We believe it is promising that this
extension gives a better approximation factor. However, extending the analysis is not trivial, and new
ideas will be necessary to prove its correctness. A more fundamental obstacle lies in the fact that,
regardless of the number of items allocated in the first phase, the approximation factor converges to
1/4. Therefore, developing new techniques is imperative to improve the approximation factor beyond
1/4.

For randomized allocations, our goal was to guarantee a fraction of MMS ex-ante, and a smaller
fraction of MMS ex-post. Several interesting questions remain open. The most straight-forward
direction is to improve approximation guarantees for both ex-ante and ex-post cases. None of our
results are proved to be tight. Another notable point is that the running time of none of our algorithms
is polynomially bounded. Are there efficient algorithms which achieve the same guarantees?
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