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Abstract

In an era of more diverse data modalities, multi-view clustering has become a
fundamental tool for comprehensive data analysis and exploration. However, exist-
ing multi-view unsupervised learning methods often rely on strict assumptions on
semantic consistency among samples. In this paper, we reformulate the multi-view
clustering problem from an information-theoretic perspective and propose a gen-
eral theoretical model. In particular, we define three desiderata under multi-view
unsupervised learning in terms of mutual information, namely, comprehensiveness
, concentration, and cross-diversity. The multi-view variational lower bound is
then obtained by approximating the samples’ high-dimensional mutual informa-
tion. The Kullback–Leibler divergence is utilized to deduce sample assignments.
Ultimately the information-based multi-view clustering model leverages deep neu-
ral networks and Stochastic Gradient Variational Bayes to achieve representation
learning and clustering simultaneously. Extensive experiments on both synthetic
and real datasets with wide types demonstrate that the proposed method exhibits
more stable and superior clustering performance than state-of-the-art algorithms.

1 Introduction

Multiple views of data are often collected by different measurement methods to represent various
properties of objects in many practical applications. For example, for images or videos, various visual
features such as HOG [1], SIFT [2], and LBP [3] can be acquired by traditional filters and form a
kind of multi-view data. These features can be collected from different domains or generated from
various sensors. In general, different views can complement each other due to limitations or biases in
measurement methods that would result in insufficient information contained in individual views [4].

The ever-increasing network activity brings massive unlabeled data, which makes clustering, the
traditional task of machine learning, one of the hot topics in unsupervised learning. Importantly,
in clustering task, learning the comprehensive and discriminative representations is crucial for
partitioning the samples. Compared to single-view clustering, multi-view clustering (MVC) is widely
studied as it exploits complementary information between different views to improve the ultimate
performance. Most multi-view clustering algorithms learn the consistent representation among
multiple views to realize clustering. The benchmark techniques include view co-regularization [5],
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Canonical Correlation Analysis (CCA) [6, 7] and low-rank tensor decomposition [8]. Although
different methods have achieved superior clustering performance, they lack a unified theoretical
framework to help us further understand multi-view clustering.

Recently, Information Bottleneck (IB) [9] have attracted increasing attention in deep neural network
research. The information bottleneck is an information theory principle that helps explain the puzzling
success of today’s artificial intelligence algorithms. This motivates us to explain multi-view learning
using information bottleneck theory. In this paper, we extend from supervised information bottleneck
theory to unsupervised learning, and construct a general information-theoretic multi-view clustering
framework. The main contributions of our work are illustrated as follows,

• In unsupervised scheme, we define three requirements for multi-view representation learning
from the view of information theory, comprehensiveness, concentration, and cross-diversity.
Consequently, a general information-based multi-view clustering model (IMC) is proposed
to achieve representation learning and clustering simultaneously.

• We present a multi-view VAE scheme to solve IMC by leveraging deep neural networks
and Stochastic Gradient Variational Bayes (SGVB). Specifically, the multi-view mutual
information is approximated by a variational lower bound, which can be expressed as a
unified multi-view representation obtained through multiple variational autoencoders and
sampling, followed by a self-training strategy for clustering.

• Experimental results show that the proposed method is effective in learning informative yet
minimal representations and exhibits satisfactory generalization ability.

2 Variants of Information Bottleneck

2.1 Information bottleneck

The information bottleneck principle [9] aims to obtain the most compressed representation of data
while retaining task-relevant information. To achieve this, for given input data x with label y, the
corresponding codeword z decided by p(z|x) can be obtained by optimizing the objective of the
information bottleneck,

min
p(z|x):I(Z;Y )≥I∗

I(Z;X) = max
Z

I(Z;Y )− βI(Z;X) := LIB . (1)

where I(Z;X) represents the mutual information between two random variables X and Z, which
implicitly measures the level of compression in the representation Z. LIB is to identify the optimal
encoding p(z|x) that minimizes I(Z;X) while ensuring I(Z;Y ) exceeds a minimal threshold value
I∗. This constrained problem can then be transformed into a non-constraint problem by incorporating
a trade-off factor β that balances I(Z;Y ) and I(Z;X). Such scheme yields sufficient and minimal
representations that maximize task-relevant information while minimizing task-irrelevant information,
thus balancing prediction and generalization performance.

2.2 Unsupervised information bottleneck

When the sample labels are unavailable, our aim is to compress each sample’s description to the
greatest extent possible while simultaneously maximizing the retention of the principal component
information of the data. The unsupervised information bottleneck objective is described in [10],

max
Z

I(Z;X)− βI(Z; i)
(a)

≥ Ep(x)
[
Ep(z|x) [log q(x|z)]− βDKL(p(z|x)||q(z))

]
:= LUIB . (2)

where (a) forms the lower bound of LUIB , which is achieved by substituting the intractable posterior
p(x|z) and marginal p(z) with respective variational posterior q(x|z) and marginal q(z). Note that
the lower bound is essentially identical to βVAE [11]. The detailed derivation process is shown in
Appendix A.

In clustering tasks, one aims to discover the underlying structure of data and divide it into distinct
clusters. The current deep clustering methods firstly extract deep low-dimensional embeddings and
then apply standard clustering techniques. Theoretically, the deep clustering method is expected to
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follow the information bottleneck principle while preserving the original data clustering structure.
Therefore, one can tailor Eq. (2) to realize deep clustering,

max
Z

I(Z;X)− βI(Z; i)

≥Ep(x)
[
Ep(z|x) [log q(x|z)]− βDKL(p(z|x)||q(z))− γEp(z|x)[DKL(p(c|x)||q(c|z))]

]
:=LIBC = LUIB − γEp(x)

[
Ep(z|x)[DKL(p(c|x)||q(c|z))]

]
. (3)

Here we introduce a discrete variable c to represent the cluster and denote p(c|x) as the cluster
distribution implied by the data. We aim for the cluster inferred by embedding z to be close to the
original cluster distribution. To measure this, we add KL divergence term with the balance factor
γ. It is worth noting that the gap between LIBC and LUIB lies in the preservation of the clustering
structure in the process of information compression.

Connection to DEC. Deep Embedding for Clustering (DEC) [12] begins with pre-training an auto-
encoder to learn low-dimensional representations, and the soft cluster assignment computed by the
embeddings (as q(c|z) in Eq. (3)) is determined by the Student’s t-distribution. The clustering loss is
designed via KL divergence to approach the auxiliary target distribution (as p(c|x) in Eq. (3)). By
setting β = 0 and γ = 1, and using the pre-training strategy, we obtain the DEC model.

Connection to VaDE. Variational Deep Embedding (VaDE) [13] combines VAEs and Gaussian
mixture models and encodes the initial data distribution as a learned Gaussian mixture distribution in
the latent variable space. By setting β = 1 and γ = 1, we get the VaDE model.

3 Information-based Multi-view Clustering

Let X = {X(v)}mv=1 be a dataset consisting of m views, where each view collection comprises
n independent and identically distributed (i.i.d) samples, X(v) = {x(1)

1 ,x
(2)
2 , ...,x

(v)
n }. Consider

Z = {Z(v)}mv=1 presenting view-peculiar compressed representations for X and c ∈ {1, ...,K}
designating a categorical random variable and represent the index of the actual cluster. For multi-
view clustering, we first learn a unified latent representation Z across all views, which satisfies
comprehensiveness, concentration and cross-diversity. Additionally, the multi-view representation is
needed to preserve the original data structure information related to clusters followed by performing
clustering.

3.1 Unified multi-view representation learning

We first define the desiderata for multi-view representation as follows.
Definition 3.1 (Comprehensive, concentrative and cross-diverse multi-view representation).
Comprehensiveness. Given the multi-view observations X , a representation, Z, is comprehensive if
each view observation can be predicted by Z,

Z∗ = argmax
Z

I(Z;X ). (4)

Concentration. For each view data X(v), their view-peculiar compressed representation Z(v) is
concentrative if the redundant information for each view is eliminated,

Z(v)∗ = argmin
Z(v)

I(Z(v);X(v)). (5)

Cross-diversity. View-peculiar latent representations Z can be cross-diverse if they avoid duplication
of information within the view,

Z∗ = argmax
Z

I(Z;Z). (6)

To more intuitively grasp the definition of multi-view representations, we depict the three requirements
for representation learning from the perspective of information theory. As illustrated in Fig 1, taking
dual-view data as an example, the information carried by X(1) and X(2) are H(X(1)) and H(X(2))
respectively, which are fixed. To effectively convey the combination of the two views, the unified
representation Z achieves informativeness by maximizing the mutual information between Z and
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(a) Comprehensiveness (b) Concentration

(c) Cross-diversity

Figure 1: Illustration of three desiderata for learning multi-view representations.

X(1)X(2). Additionally, to remove redundant information from each view, we minimize I(Z(1);X(1))
and I(Z(2);X(2)) respectively for maximum compression of the respective view information. Ideally,
semantically irrelevant information specific to each view is removed while complete semantically
relevant information is retained.

To balance comprehensiveness and concentration, we introduce mutual information between Z and
Z(1)Z(2) as a cross-diversity indicator,

I(Z;Z(1),Z(2)) = I(Z;Z(1)) + I(Z;Z(2))−
[
I(Z(1);Z(2))− I(Z(1);Z(2)|Z)

]
, (7)

where we denote DZ(Z
(1);Z(2)) = I(Z(1);Z(2)) − I(Z(1);Z(2)|Z), representing the duplicate

information between views. As showed in Fig 1 (c), one can approach cross-diversity by maximizing
I(Z;Z(1)), I(Z;Z(2)) and minimizing DZ(Z

(1);Z(2)).
Proposition 3.1 (Cross-diversity is sufficient for comprehensiveness and concentration, respec-
tively). Given two Markov chains X(1) −
− Z(1) −
− Z and X(2) −
− Z(2) −
− Z, maximization
of I(Z;Z(1),Z(2)) is sufficient for maximization of I(Z;X(1),X(2)) when Z(1),Z(2) are fixed and
minimization of

∑2
v=1 I(Z

(v);X(v)) when Z is fixed, respectively.

Proof. Under the two Markov chains accompanied by loss of information, we have,

I(Z;X(1),X(2))
(b)

≤ I(Z(1);X(1)) + I(Z(2);X(2)),

Next we rewrite the cross-diversity indicator,

I(Z;Z(1),Z(2)) = H(Z(1),Z(2))−H(Z(1),Z(2)|Z)
= H(Z(1)) +H(Z(2))− I(Z(1);Z(2))−H(Z(1),Z(2)|Z)
≤ H(Z(1)) +H(Z(2)),

Since I(Z;Z(1),Z(2)) achieves the maximum value, i.e. I(Z;Z(1),Z(2)) = H(Z(1)) + H(Z(2)).
We denote I(Z;Z(1),Z(2)) as T,

I(Z;X(1),X(2)) = I(T;X(1),X(2))

= H(T)−H(T|X(1),X(2))

(c)

≥ H(Z(1)) +H(Z(2))−H(Z(1),Z(2)|X(1),X(2))

= H(Z(1))−H(Z(1)|X(1)) +H(Z(2))−H(Z(2)|X(2))

= I(Z(1);X(1)) + I(Z(2);X(2)),
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(a) Special case

(b) General case (c) The architecture of dual-view instance of IMC

Figure 2: (a) Cluster information is only related to common information between multiple views.
(b) View-peculiar information also includes semantic features. (c) Multi-view variational autoen-
coders and a fusion network are incorporated to perform representation learning and clustering
simultaneously.

To satisfy both inequalities (b) and (c), the equation holds, i.e., I(Z;X(1),X(2)) = I(Z(1);X(1)) +
I(Z(2);X(2)). Therefore, when I(Z;Z(1),Z(2)) is maximized, fixing Z(1),Z(2), I(Z;X(1),X(2))
maximization holds, and conversely, fixing Z, I(Z(1);X(1))+I(Z(2);X(2)) minimization holds.

With these desiderata, the unified multi-view representation learning can be formulated as follows,

max
Z,Z

I(Z;X )−
m∑
v

I(Z(v);X(v)) + βI(Z;Z)

(d)

≥ Ep(X )

[
Ep(z|X ) [log q(X |z)]−

m∑
v

DKL(p(z
(v)|x(v))||q(z(v)))

]
+ βI(Z;Z), (8)

where (d) leverages the variational technique to construct the lower bound of the first two terms
(deviation can be found in Appendix B), the β is the balance coefficient that controls the cross-diversity
of representation and balances the comprehensiveness and concentration. Mutual information between
Z and multiple representations Z(1), ...,Z(m) can further be expressed by,

I(Z;Z) =

m∑
v=1

I(Z;Z(v))−
m∑
v=1

m∑
t̸=v

DZ(Z
(v),Z(t)). (9)

3.2 Generalized multi-view clustering framework

For the multi-view clustering task, previous works [14, 15] considered category-related or semantic-
related information to be relevant only to the multi-view consensus part. As shown in Fig. 2 (a), the
part where two views intersect contains all the information related to cluster c in the multi-view data.
However, this is only a special case. More generally, the respective views contain specific semantic
information that can complement each other. This is why a comprehensive understanding of an object
or event requires different views. As shown in Fig. 2 (b), we cannot determine if the view-common
or view-peculiar parts of the views contain more semantic information, we can only assume that they
all contain this information.

Next, we seek to learn the unified multi-view representation without losing the original clustering
structure of the data. For examples, we assume that the data obeys a Gaussian mixture distribution, or
that the data has a tight intra-class structure and a relaxed inter-class structure. We add a clustering
term to Equation (8) for measuring the distance between the posterior distribution of a given original
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data to clusters and the posterior distribution of a given multi-view representation to clusters. Then,
the objective of information-based multi-view clustering can be formulated as,

LIMC =Ep(X )

[
Ep(z|X ) [log q(X |z)]︸ ︷︷ ︸

data reconstruction

−
m∑
v

DKL(p(z
(v)|x(v))||q(z(v)))︸ ︷︷ ︸

multi-regularization

− γ Ep(z|X ) [DKL(p(c|X )||q(c|z))]︸ ︷︷ ︸
clustering

]
+ β I(Z;Z)︸ ︷︷ ︸

information shift

. (10)

Note that Equation (10) can be regarded as four items representing specific roles: data reconstruction,
multi-regularization, information shift and clustering. The data reconstruction item maximizes the
expectation of the log-likelihood to achieve comprehensive so that the multi-view representation retain
more information of the data. The multi-regularization term makes the multi-view representation
forget the information of the original data by minimizing the KL divergence of the posterior distri-
bution and the variational distribution to meet the requirement of concentration. Information shift
item adjusts the information relationship between multi-view representations to achieve cross-diverse.
The clustering item measures the degree to which the data retains the original data structure after
dimensionality reduction.

3.3 Numerical scheme to solve IMC

Following VAE [16], we use a deep neural network to estimate the parameters of the unknown
distribution to instantiate IMC, as shown in Fig. 2 (c). According to the Markov chain X(v) −
−
Z(v) −
− Z−
−X(v), the posterior p(z|X ) and likelihood q(X |z) can be factorized as, respectively,

p(z|X ) =

∫ ∫
...

∫
pψ(z|{z(v)}mv=1)

m∏
v=1

pθ(v)(z(v)|x(v))dz(1)dz2 ...dzm ,

= Ep
θ(1)

(z(1)|x(1))Ep
θ(2)

(z(2)|x(2))...Ep
θ(m) (z(m)|x(m))

[
pψ(z|{z(v)}mv=1)

]
,

q(X |z) =
m∏
v=1

qϕ(v)(x(v)|z),

where pθ(v)(z(v)|x(v)) denotes the view-peculiar encoder with parameter θ(v), qϕ(v)(x(v)|z(v)) de-
notes the view-peculiar decoder with parameter ϕ(v). To obtain the unified multi-view representations
from view-peculiar representations, we design a fusion module pψ(z|{z(v)}mv=1) parameter with
multiple fully connected layers as ψ.

For clustering item, we adopt the same strategy as DEC [12], replace q(c|z) with Student’s t-
distribution, and set target p(c|X ) with auxiliary distribution,

qik =
(1 + ∥zi − uk∥2)−1∑
j(1 + ∥zi − uj∥2)−1

,

pik =
q2ik/

∑
i qik∑

j(q
2
ij/

∑
i qij)

, (11)

where qik measures the similarity between the representation zi and cluster center uk. pik enhances
the data points assigned with high confidence to improve the purity of the cluster.

For optimization IMC using Stochastic Gradient Variational Bayes (SGVB), the sampling op-
erations of ({z(v)}mv=1, z) should be mapped to the deterministic functions. According to the
reparameterization trick [16] for the continuous variable, we sample the t-th latent representations
by,

z
(v)
t = µϕ(v) +Rϕ(v)ϵ

(v)
t , where Rϕ(v)RT

ϕ(v) = Σϕ(v) , ϵ
(v)
t ∈ N (0, I) (12)

zt = µψ +Rψϵt, where RψR
T
ψ = Σψ, ϵt ∈ N (0, I) (13)
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Algorithm 1 Optimization Procedure of IMC
Input: Multi-view dataset X ; Setting T = 1 and dimensionality of the latent variables.
Parameter: Initialize parameters {ϕ(v)}, {θ(v)}, ψ with random values, cluster centers u =
{u1, ...,uK} by K-means.

1: while not reaching the maximal epochs do
2: for i in n samples do
3: for v in m views do
4: Calculate (µϕ(v) , Σϕ(v)) through v-th encoder and then sample z

(v)
it by Equation (12);

5: end for
Calculate (µψ, Σψ) through the fusion module and then sample zit by Equation (13);

6: for v in m views do
7: Generate x(v) by v-th decoders.
8: end for
9: end for

10: Update {ϕ(v)}, {θ(v)}, ψ, u by maximizing Equation (14).
11: end while
Output: The cluster for each sample ci by selecting the index of maximum probability value q(ci|zi).

where µϕ(v) and Rϕ(v) are the outputs of the v-th encoder, µψ and Rψ are the outputs of the fusion
module, respectively.

By using Monte-Carlo estimators, the objective of IMC can be further written as,

max
{θ(v)},{ϕ(v)},ψ,u

LIMC =
1

n

n∑
i=1

[
1

T

m∑
v=1

T∑
t=1

[
log qϕ(v)(x

(v)
i |zit)− log pθ(v)(z

(v)
it |x(v)

i )

+ logN (0, I)
]
− γ

K∑
k=1

pik log
pik
qik

]
+ βIJS(Z;Z), (14)

where T denotes the number of Monte Carlo samples and is usually set to be 1. Additionally,
variational distribution q(z(v)) is set to multivariate standard normal distribution, i.e., q(z(v)) =
N (0, I). The mutual information between representations I(z;Z) can be maximized by using sample-
based differentiable mutual information lower bound, Jensen-Shannon estimator [17]. The partial
derivatives of each parameter combination are then calculated for the stochastic backpropagation
technique. The concrete optimization procedure of IMC is summarized in Algorithm 1.

4 Related Work

Recently, several works have been devoted to the problem of multi-view representation learning based
on information theory. For supervised methods, [18] analyses the consistency and complementary
characteristics of multi-view features from the information bottleneck theory, and strengthen the
discriminative power of the encoder through the margin maximization method to balance the accuracy
and complexity of the multi-view model. [19] seeks to fuse the features of each view to obtain a
joint representation through a deep neural network, and maximize the mutual information between
labels and joint representations to preserve the target information. Given a graph and its labels, [20]
proposes a Graph Information Bottleneck (GIB) framework to efficiently infer the most informative
yet compressed subgraph for recognition.

While in the unsupervised scheme, [14] proposes a multi-view representation learning method based
on information bottleneck theory, Multi-view Information Bottleneck (MIB). MIB assumes that the
shared part of the two views is the target information, and the part not shared by the two views is
the superfluous information, followed by leveraging off-the-shelf information bottleneck technique
to learn robust representations. [21] explores the potential relationship and intrinsic information
between different views, and discarded redundant information from multi-view data with the help
of the information bottleneck principle to balance the consistency and complementarity between
multiple views. Under the framework of information theory, Completer [22] maximizes multi-view
shared mutual information for consistent learning, and minimizes conditional entropy to recover
missing view with available data. [23] regards each view source data as a self-supervised signal for
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learning latent representations, removing redundant information from the view itself while retaining
consistent information for shared features across multiple views. A multivariate mutual information
term is employed to decompose view-specific representations, which further ensures that the multi-
view fusion self-expression matrix via view-common features is compact and informative. The
aforementioned unsupervised multi-view representation learning methods aim to learn consistent
information shared across multiple views, as shown in Fig. 2 (a). These methods either have
limitations in practical applications or do not consider the duplicate information among views. It
motivates us to construct a general information-theoretic-based unsupervised multi-view clustering
framework and introduce three requirements for multi-view representation learning.

5 Experiments

5.1 Experimental settings

Model setup: The architectures of pϕ(v)(z(v)|x(v)) and qθ(v)(x(v)|z) are fully connected networks
with with dv-500-500-1204-256 and 256-1024-500-500-dv neurons, respectively, where dv is the
dimensionality of each view. The fusion network p(ψ)(z|{z(v)}mv=1) concatenates multiple view-
peculiar latent representations, followed by a fully connected layer. Adam optimizer [24] is utilized
to maximize the objective function, and set the learning rate to be 0.001 with a decay of 0.9 for every
10 epochs.

Datasets: We adopt four real-world datasets listed as follows, (1) UCI-digits [25] contains 2000
examples of ten numerals from 0 to 9 with five views which are respectively extracted by Fourier
coefficients, profile correlations, Karhunen-Love coefficient, Zernike moments, and pixel average
extractors. (2) Notting-Hill [26] is widely used video face dataset for clustering, which collects 4660
faces across 76 tracks of the 5 main actors from the movie ’Notting Hill’. We use the multi-view
version provided in [27], consisting of 550 images with three kind of features, i.e., LBP, gray pixels,
and Gabor features. (3) BDGP [28] contains 2500 images in 5 categories, and each sample is
described by a 1750-D image vector and a 79-D textual feature vector. (4) Caltech20 is a subset of
the object recognition dataset [35] containing 20 classes with six different views, including Gabor
features, wavelet moments, CENTRIST features, histogram of oriented gradients, GIST features and
local binary patterns.

Compared algorithms: Four state-of-the-art algorithms and two ablation models are used to compare
the clustering performance, including: (1) DMVAE [36] assumes that the data and multi-view latent
representation obey a Gaussian mixture distribution, which can be considered as a special case of
IMC, i.e., let β = 0 and γ = 1. (2) MIB [14] considers the parts shared by both views as target
information and the view-specific parts as superfluous information. (3) CMIB-Nets [21] proposes
collaborative multi-view information bottlenecks to learn the information inherent within a view
and the shared structure between views, while reducing redundant information. (4) Completer [15]
introduces maximization of mutual information between views and minimization of conditional
entropy of different views to achieve dual prediction and representation learning. For fairness, we
repeatedly perform all compared algorithms 10 times on four datasets and the mean and standard
deviation were recorded.

Ablation models: For ablation study, we construct two variants of IMC as a comparison. (1) IMC-v1
indicates that the objective function Equation (10) reduces the item of information shift, i.e., β = 0.
(2) IMC-v2 sets γ = 0 to discard the KL divergence of the clustering item, and uses k-means to
perform clustering on the unified multi-view representation.

Evaluation metrics: For a comprehensive analysis, we use three popular clustering metrics including
Normalized Mutual Information (NMI), Accuracy (ACC) and adjusted rand index (ARI). The higher
the values of these indicators, the better the clustering performance.

5.2 Performance evaluation

We tested seven methods on four multi-view datasets. The experimental results are summarized in
Table 1. It can be observed that i) combining the four datasets in terms of three indicators, IMC has
obtained the best performance 8 times and the second-best performance 3 times, which is the most
stable and accurate multi-view clustering model. ii) Although the Completer model has achieved the
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Table 1: Clustering performance comparison on four datasets (mean±standard deviation). The
optimal and suboptimal results are in bold and underlined, respectively.

Datasets Metrics DMVAE MIB CMIB-Nets Completer IMC-v1 IMC-v2 IMC

UCI-digits
ACC 90.95±0.62 83.30±1.27 85.70±1.15 91.28±1.41 90.01±0.60 84.01±1.15 92.13±0.55
NMI 85.54±1.06 75.43±1.04 78.31±1.41 86.34±0.60 84.79±0.32 79.01±1.54 88.01±0.73
ARI 85.40±1.54 76.16±1.55 76.97±1.64 86.67±0.86 84.78±0.43 78.18±0.88 87.83±0.25

Notting-Hill
ACC 76.22±1.21 81.65±1.37 85.40±2.36 80.17±2.79 77.79±2.00 84.83±1.90 87.10±1.35
NMI 72.97±0.96 75.95±2.52 78.65±2.57 76.11±2.27 74.93±1.94 78.79±1.08 80.67±1.42
ARI 69.50±0.77 71.91±1.61 80.46±1.92 71.48±3.29 70.30±2.15 79.10±2.32 80.19±1.74

BDGP
ACC 90.59±1.45 86.82±0.65 85.82±0.58 79.31±1.55 88.70±1.42 80.46±1.85 91.46±0.82
NMI 85.32±0.53 80.82±0.86 81.60±0.66 74.25±0.69 81.47±1.12 73.31±2.45 84.40±1.20
ARI 78.58±2.54 73.90±1.65 74.25±2.19 71.44±1.45 77.65±2.15 69.31±2.80 80.25±1.62

Caltech20
ACC 61.50±0.54 56.12±2.54 55.26±3.18 62.31±2.65 58.05±1.28 52.42±3.15 60.82±1.66
NMI 68.32±1.23 63.28±2.66 62.44±2.56 70.25±2.20 65.75±2.20 61.76±3.40 69.20±1.48
ARI 59.86±1.46 58.10±2.90 56.45±2.74 61.14±2.55 57.52±2.56 53.30±2.82 61.42±2.12

Table 2: Comparison of NMI at noise ratios of 10%, 30%, and 50% (mean±standard deviation). The
optimal and suboptimal results are in bold and underlined, respectively.

Datasets Noise DMVAE MIB CMIB-Nets Completer IMC-v1 IMC-v2 IMC

UCI-digits
10% 82.35±1.24 74.60±1.75 75.55±2.35 85.28±1.84 81.12±2.26 78.46±1.45 86.82±1.05
30% 75.84±2.26 66.35±3.45 65.50±2.82 73.40±2.56 69.90±3.25 72.18±2.48 78.56±1.36
50% 63.80±1.58 58.46±2.80 56.46±1.64 60.76±3.65 56.84±3.40 65.30±2.66 70.35±2.28

best NMI performance in caltech20, its NMI performance lags behind by 12.97% in BDGP. This
instability can also be found in the MIB model. iii) The end-to-end model (IMC, IMC-v1, DMVAE)
that considers the clustering loss in the process of learning multi-view representation will achieve
better clustering results than the two-stage model (MIB, CMIB-nets, Completer). iv) Comparing IMC,
IMC-v1 and IMC-v2, the performance of using KL divergence clustering term has been significantly
improved, while the use of information shift term has a small improvement.

We therefore draw three conclusions: First, the IMC developed based on the general definition of
multi-view information theory obtains more stable clustering results. Second, end-to-end models
help to learn more discriminative representations. Third, in the process of learning multi-view
representations, three requirements (comprehensiveness, concentration, cross-diversity) play a role in
improving the clustering performance.

5.3 Robustness Assessment

To evaluate the robustness of the model, we add different scales of sparse noise to the dataset UCI-
digits. Specifically, we randomly select 10%, 30%, and 50% pixels of the original image size, and
add pepper noise or salt noise to each pixel with probability 0.5, i.e., set 0 or 255.

As shown by the clustering results in Table 2, the performance of all algorithms decreases as the noise
ratio increases, but the performance of our algorithm is always the best. It can be observed that the
decline of IMC is the smallest, while the decline of the Completer model is obvious. This may be due
to the assumption of multi-view semantic consistency is more sensitive as the noise ratio increases,
the information shared by multiple views will also incorporate more noise. It is worth noting that the
performance of IMC-v2 is better than that of IMC-v1, which is contrary to the clustering experiment
in Table 1. It can be concluded that only pursuing inter-view consistent information leads to semantic
bias when the dataset contains noise, while more informative representations can be obtained for
robustness based on the general multi-view information bottleneck theory.

5.4 Parameter analysis

The proposed method contains two balance parameters, the information shift balance coefficient β,
and the clustering loss trade-off parameter γ. Although IMC at fixed values of some parameters has
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Figure 3: Parameter analysis of β and γ on Caltech20 dataset.

shown satisfactory performance, it is still important to explore the effect of varying these parameters
on the performance and to mine the inner mechanism of this model. We evaluate the parameter
sensitivity of ACC, NMI, ARI metrics on Caltech20 dataset, as shown in Figure 3, we choose the
values of β and γ in the range of {0.01, 0.1, 1, 10, 100}. It can be seen from the results that our
method is not sensitive to the coefficient of clustering loss, but how to adjust the parameter β is the
key to improving clustering performance. As expressed in Equation (8), β controls the degree of
cross-diversity of multi-view representation. Therefore, the selection strategy of the beta parameter
can be based on prior knowledge of the dataset. In our experience, if there is a large degree of
consistency in the semantics of multiple views, then the β is set to small and vice versa.

6 Conclusion

In this paper, we propose an information-theoretic multi-view clustering framework that avoids the
assumption of semantic consistency across multiple views. Specifically, we extend the information
bottleneck theory to unsupervised multi-view learning through defining three requirements for multi-
view representations via mutual information. By constructing a multi-view variational lower bound
and introducing KL divergence as a clustering loss, the entire framework is finally optimized by deep
neural network and stochastic gradient variational Bayes. Experiments verify the superiority and
robustness of the generalized information-based multi-view clustering on four benchmark datasets
and noisy data.

The practical limitations of the proposed model lie in the choice of parameters. The mathematical
strategy for selecting the optimal parameters is a direction that can be studied in the future. In
addition, constructing a tighter lower bound or estimator to approximate high-dimensional mutual
information is also a place for further improvement in this work.
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Appendix A. Derivation of Equation (2)

By substituting the intractable posterior p(x|z) and marginal p(z) with respective variational posterior
q(x|z) and marginal q(z), we form a variational lower bound for unsupervised information bottleneck,

max
Z
I(Z;X)− βI(Z; i)

=

∫ ∫
p(z,x) log

p(x|z)
p(x)

dxdz− β
∑
i

∫
p(z, i) log

p(z|i)
p(z)

dz

=H(x) + Ep(x)
[∫

p(z|x) log p(x|z)dz
]
− β

1

n

∑
i

∫
p(z|xi) log

p(z|xi)
p(z)

dz

≥Ep(x)
[∫

p(z|x) log q(x|z)dz
]
− β

1

n

∑
i

∫
p(z|xi) log

p(z|xi)
q(z)

dz

=Ep(x)
[∫

p(z|x) log q(x|z)dz− β

∫
p(z|x) log p(z|x)

q(z)
dz

]
=Ep(x)

[
Ep(z|x) [log q(x|z)]− βDKL (p(z|x)∥q(z))

]
,

where H(x) is a constant and we take p(i) = 1
n and p(z|i) = p(z|xi). When the dataset containing

n independent and identically distributed (i.i.d) samples is large enough, the expectation of p(x)
can be regarded as uniform sampling from the dataset to get xi. Note that the lower bound is
essentially identical to βVAE. The former represents the data reconstruction process and the latter is
a regularization term for forgotten identity information, driving the acquisition of informative and
generative representations, respectively.

Appendix B. Derivation of Equation (8)

Same as Equation 2, we substitute the intractable posterior p(X |z) and marginal p(z(v)) with
respective variational posterior q(X |z) and marginal q(z(v)), and then the variational lower bound
for the first two terms of equation 8 yields as follows,

max
Z,Z

I(Z;X )−
m∑
v

I(Z(v);X(v))

=

∫ ∫
p(z,X ) log

p(X |z)
p(X )

dXdz−
v∑
m

∫ ∫
p(z(v),x(v)) log

p(z(v)|x(v))

p(z(v))
dx(v)dz(v)

=H(X ) + Ep(X )

[∫
p(z|X ) log p(X |z)dz

]
−

v∑
m

Ep(x(v))

[∫
p(z(v)|x(v)) log

p(z(v)|x(v))

p(z(v))
dz(v)

]

≥Ep(X )

[∫
p(z|X ) log q(X |z)dz

]
−

v∑
m

Ep(x(v))

[∫
p(z(v)|x(v)) log

p(z(v)|x(v))

q(z(v))
dz(v)

]

=Ep(X )

[
Ep(z|X ) [log q(X |z)]−

m∑
v

DKL(p(z
(v)|x(v))||q(z(v)))

]
,

where H(X ) is a constant. Given the unified multi-view representation z, multi-view datasets
X can be viewed as conditionally independent, i.e., p(X ) = p(x(1))p(x(2))...p(x(m)). The first
term maximizes the expectation of the log-likelihood to achieve comprehensive so that the multi-
view representation retain more information of the data. The second term makes the multi-view
representation forget the information of the original data by minimizing the KL divergence of the
posterior distribution and the variational distribution to meet the requirement of concentration.
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