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1 Additional Ablation Studies

Impact of constructing attribute-different (and model-different) support set and query set. In
our experiments, we construct the support set and query set to have different privacy attributes and
privacy attack models between them in each iteration of our virtual training and testing scheme. Here
we assess the variant (Random Set Construction) by randomly selecting samples to construct the
support set and query set in each iteration. As shown in Tab. 1, our framework (Attribute/Model-
Different Set Construction) achieves better performance than this variant, which demonstrates the
effectiveness of constructing the support set and query set to have different attributes and models.

Table 1: Ablation studies on the effect of constructing support and query sets to have different privacy
attributes and privacy attack models. Experiments are conducted under protocol A.

Methods HMDB51-VISPR UCF101-VISPR
Action ↑ Privacy ↓ Action ↑ Privacy ↓

Basic Model 67.3 55.2 65.6 31.7
Random Set Construction 67.6 53.9 66.0 30.3
Attribute/Model-Different Set Construction 68.1 47.4 67.0 21.8

Impact of meta optimization. In our framework, we update the anonymization model utilizing
the virtual training and testing scheme through a meta optimization loss: Lv tr(ϕ) + Lv te(ϕ −
α∇ϕLv tr(ϕ)). To investigate the impact of such meta optimization, we compare our method (Meta
Optimization) with a variant (Joint Training) that still constructs the support set and query set in the
same way, but directly optimizes the anonymization model through ∇ϕ(Lv tr(ϕ) + Lv te(ϕ)). As
shown in Tab. 2, our method consistently outperforms this variant on both benchmarks, which shows
effectiveness of the meta optimization in our virtual training and testing scheme.

Table 2: Ablation studies on the effect of meta optimization.

Methods HMDB51-VISPR UCF101-VISPR
Action ↑ Privacy ↓ Action ↑ Privacy ↓

Basic Model 67.3 55.2 65.6 31.7
Joint Training 67.3 55.1 65.7 31.7
Meta Optimization 68.1 47.4 67.0 21.8

Impact of splitting Xtrain and fP
train into different subset proportions. As mentioned in Sec. 4.2

of our main paper, at the beginning of each epoch, we split the training data Xtrain into two subsets
{X1, X2}. Meanwhile, we also split the training attack models fP

train into two subsets {fP
1 , fP

2 }.
In this paper, we make the first subset X1 (or fP

1 ) contain around 60% privacy attributes (or attack
models), while the second subset X2 (or fP

2 ) contains the remaining 40% attributes (or attack models).
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Here we test two variants. One variant uses 50% attributes (or attack models) for the first subset,
and the remaining 50% for the second subset. While another variant uses 70% attributes (or attack
models) for the first subset, and the remaining 30% for the second subset. As shown in Tab. 3, our
method and these two variants all achieves a better performance than the basic model, showing the
robustness of our framework w.r.t. varying subset proportions.

Table 3: Ablation studies on the use of different subset proportions when splitting Xtrain and fP
train.

Methods HMDB51-VISPR UCF101-VISPR
Action ↑ Privacy ↓ Action ↑ Privacy ↓

Basic Model 67.3 55.2 65.6 31.7
50% for the first subset 68.0 47.5 66.9 22.0
60% for the first subset 68.1 47.4 67.0 21.8
70% for the first subset 68.1 47.6 66.8 21.9

Training Time. We evaluate the training time of our framework that trains the basic model with
the virtual training and testing scheme, and compare it to the training time of the basic model that
trains the same network in the conventional training manner without virtual training and testing,
on HMDB51-VISPR benchmark, as shown in Tab. 4. We conduct our experiments on an RTX-
3090 GPU. Though our method achieves a significant performance gain, it only brings relatively
little increase of the training time. Since our approach does not change the anonymization model’s
structure, our method performs inference almost the same as the basic model.

Table 4: Comparison of training time. Note that our method achieves significantly better performance
than the basic model (see Tab. 1 in our main paper).

Methods Training Time Inference Time

Basic Model 1.4 days 37.06 ms
Ours 1.8 days 37.11 ms

Parameter Analysis. For parameter γ, which is the weight coefficient of loss L (see Eq. 1 in our
main paper), we follow previous works [1, 2] to set its value. In this paper, we only need to study
the impact of α (the learning rate in virtual training) and β (the learning rate in meta optimization).
We present the ablation results of α and β in Fig. 1. We can see that the best option of α and β are
α = 5e− 4 and β = 1e− 4, respectively.

Figure 1: Parameter analysis on α and β. As for action accuracy, the higher the better. As for privacy
accuracy, the lower the better.

2 Qualitative Results.

In Fig. 2, we present some qualitative results for generalization to novel attributes and novel privacy
attack models. As shown, our method successfully filters out privacy attributes that are seen during
training, such as skin color and nudity, while still enabling the recognition of action clues. Compared
to other methods, our method achieves the closest action performance to the raw data. Notably, our
method can also effectively remove novel privacy attributes (that are unknown during training), such
as Face and Gender, even using novel privacy attack models cannot detect (identify) these privacy
attributes (as denoted by undetected in Fig. 2), which demonstrates our framework can effectively
handle various potential privacy attributes and defend against unknown privacy attack models.
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Figure 2: Qualitative results of existing methods and ours on generalization to both novel privacy
attributes and novel privacy attack models. For brevity, we only show the center frame of each
anonymized video. Face and Gender are novel attributes that are unknown during training. We use
detected and undetected to denote if the attribute is detected (identified) by the novel privacy attack
models, i.e., undetected represents the privacy attribute is protected.

3 Discussion of Our Meta Framework and Train-Validation

In our proposed framework, we first train the model using the support set (i.e., virtual training), and
then evaluate the model performance on the query set (i.e., virtual testing). Then the model evaluation
performance on the query set is utilized to provide a generalization regularization (feedback) to drive
the model training towards learning more generalizable knowledge.
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Meanwhile, in a classical train-validation scheme that is often used for hyperparameter selection, we
often train the model over the training set, and then evaluate and observe the model performance on
the validation set. From this perspective, our meta framework shares some similarities in concepts
with the train-validation scheme, but it is worth noting that, our meta framework is totally different
from the classical train-validation scheme. We explain the two reasons in more details below.

Firstly, the classical train-validation scheme is often used to adjust the model parameters indirectly
through adjusting the hyperparameters, which lacks a mechanism to directly and automatically
optimizes the model parameters. While our framework incorporates a feedback mechanism to directly
optimize the anonymization model parameters during training to drive the anonymization model
to automatically learn more generalizable knowledge. This cannot be done by simply utilizing the
train-validation scheme.

Secondly, we intentionally design attribute (and model) differences between the constructed support
and query sets in our framework. Hence, utilizing the evaluation result computed on the query set
with different attributes (and models) from the virtual training set as the feedback, our framework
further encourages the knowledge learned by the anonymization model during training to be more
attribute-generalizable and model-generalizable.

Due to the effectiveness of our meta framework with the above designs, our framework achieves
superior performance on the evaluated benchmarks.

4 More Implementation Details

The list of training/testing attributes and attack models. To study the generalization to novel
privacy attributes and novel privacy attack models, we conduct experiments using training and testing
sets with different attributes and attack models. Here we present the detailed list of training/testing
attributes and attack models. As for privacy attributes, following previous work [3], in UCF101-
VISPR, we use the data that contains 7 privacy attributes (i.e., color, gender, complete face, partial
face, semi-nudity, personal relationships, social relationships) for training, and use the data that
contains other 7 privacy attributes (i.e., hair color, race, sports, age, weight, landmark, tattoo) for
testing. In HMDB51-VISPR, the training data contains 3 privacy attributes (i.e., skin color, nudity,
and personal relationship) and the testing data contains other 2 privacy attributes (i.e., gender and
face). The label of each privacy attribute is a binary label, where 0 indicates absence of the attribute
and 1 indicates presence of the attribute. As for privacy attack models, we follow previous works
[1, 2] using 8 privacy attack (classification) models chosen from MobileNet-V2 [4] family with
different width-multiplier parameters for training, and 10 different state-of-the-art privacy attack
(classification) models (i.e., ResNet-V1-{50, 101} [5], ResNet-V2-{50, 101} [6], Inception-V1 [7],
Inception-V2 [8], and MobileNet-V1-{0.25, 0.5, 0.75, 1} [9]) for testing. A visual sample can have
multiple privacy attributes, hence these privacy attack models are multi-binary classification models.

Training Algorithm. Algorithm 1 outlines the overall training algorithm of our framework. The
thresholds T1 and T2 are set as T1 = 70% and T2 = 95% following previous works [1, 2]. The
training algorithm of the basic model is to replace the steps for updating the anonymization model
fD (i.e., virtual training and testing scheme) into Eq. 1 of the main paper, where the privacy attack
model fP in Eq. 1 is randomly sampled from fP

train at each iteration.

Details of Set Construction. As discussed in Sec. 4.2 in the main paper, during set construction w.r.t.
novel privacy attributes, we intentionally split the training data Xtrain into two subsets {X1, X2},
where X2 contains data with novel privacy attributes w.r.t. X1. Since a training sample generally
contains multiple privacy attributes, it is not straightforward to split the X1 and X2 to have different
attributes. To handle this issue, we execute the following steps: (1) First, we gather all attribute
categories present in Xtrain and compile them into an attribute set called Attr. At each epoch, we
randomly split Attr into two subsets {Attr1, Attr2}, where Attr1 and Attr2 contain 60% and 40%
attributes, respectively. As mentioned before, the label of each privacy attribute is a binary label,
where 0 denotes absence of the attribute and 1 indicates presence of the attribute. Thus, each training
sample contain a set of labels that are marked with 0 or 1, where 60% of these labels represent
attributes from Attr1, and the other 40% labels represents attributes from Attr2. (2) We select
samples that contain attributes solely from Attr1 (i.e., all “1” labels belong to Attr1) and assign them
to X1. (3) Similarly, we select samples that with attributes solely from Attr2 and assign them to
X2. (4) After these steps, there may still remain samples that contain attributes from both Attr1 and

4



Algorithm 1: Overall Training Scheme of Our Framework
1 Given training data Xtrain and training attack models fP

train.

2 for epochs do

3 Process Xtrain and fP
train, following Step (A1) and Step (B1) in Sec. 4.2 of main paper, respectively.

4 I = 0.

5 for iterations do

6 if Action accuracy of fA < threshold T1 then

7 Randomly sample a batch of data from Xtrain to update fA using Eq. 2 of main paper.
8 // Avoid too weak action recognition model fA.

9 else if Privacy accuracy of any attack model fP
i ∈ fP

train < threshold T2 then

10 Randomly sample a batch of data from Xtrain to update fP
i using Eq. 3 of main paper.

11 // Avoid too weak privacy attack models fP
train.

12 else
13 // The next steps are to update anonymization model fD via virtual training and testing scheme.

14 if I is odd then
15 Construct Xs and Xq from Xtrain, following Step (A2) in Sec. 4.2 of main paper.

16 else

17 Construct fP
s and fP

q from fP
train, following Step (B2) in Sec. 4.2 of main paper.

18 end

19 Calculate the virtual training loss Lv tr on Ds (i.e., Xs or fP
s ) using Eq. 4 of main paper: Lv tr(ϕ) = L(ϕ,Ds).

20 Calculate an updated version of anonymization model (ϕ′) using Eq. 5 of main paper: ϕ′ = ϕ− α∇ϕLv tr(ϕ).

21 Calculate the virtual testing loss Lv te on Dq (i.e., Xq or fP
q ) using Eq. 6 of main paper: Lv te(ϕ

′) = L(ϕ′, Dq).

22 Update fD using Eq. 8 of main paper: ϕ← ϕ− β∇ϕ

(
Lv tr(ϕ) + Lv te

(
ϕ− α∇ϕLv tr(ϕ)

))
.

23 I = I + 1.

24 end
25 end
26 end

Attr2 (i.e., some “1” labels belong to Attr1 while some “1” labels belong to Attr2). We randomly
select 60% of these samples. For each selected sample, we remove its attribute labels from Attr2, i.e.,
making all labels belonging to Attr2 become NA (Not Available). After label removal, we assign
these samples into X1. Although these samples contains visual content w.r.t. attributes from Attr2,
actually, they cannot drive the model to learn these Attr2 attributes, due to the lack of supervision
(labels). (5) For the remaining 40% samples, we remove the attribute labels from Attr1 and assign
them to X2. In step (2) (or step (3)), before assignment to X1 (or X2), we also remove attribute labels
from Attr2 (or Attr1). In this way, we can ensure that when the model is trained on X1, it cannot
learn attributes labeled in X2, i.e., X2 contains novel attributes w.r.t. X1. After the construction
of X1 and X2, the support set Xs and query set Xq are then obtained by sampling from X1 and
X2, respectively. In our virtual training and testing scheme, by improving the model generalization
performance on the query set Xq after training on the support set Xs, the anonymization model is
encouraged to learn more attribute-generalizable knowledge.

As for the set construction w.r.t. novel privacy attack models, at each epoch, we split the training attack
models fP

train into two subsets {fP
1 , fP

2 } with fP
1 containing 60% of models and fP

2 containing 40%.
Then, the support set fP

s and query set fP
q are obtained by sampling from fP

1 and fP
2 , respectively.

By learning how to train the anonymization model with fP
s for better generalization to fP

q , the
anonymization model is guided to learn more model-generalizable knowledge.
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