
A Proof

A.1 Lemma 3.1

Proof. Let z⇤ = argminz H(w⇤(z), z;Dval). Obviously, we have

H(w⇤(z), z;Dval) � H(w⇤(z⇤), z⇤;Dval).

Recall that J (✓) =
R
z2S H(w⇤(z), z;Dval)p✓(z) dz, then

J (✓) �

Z

z2S

⇥
min
z

H(w⇤(z), z;Dval)
⇤
p✓(z) dz,

= min
z

H(w⇤(z), z;Dval)

Z

z2S
p✓(z) dz = min

z
H(w⇤(z), z;Dval),

The equality in the first row holds only when H(w⇤(z), z;Dval) is a constant as H(w⇤(z⇤), z⇤;Dval)
or p✓(z) = �(z � z

⇤). Therefore, inf✓ J (✓) = minz H(w⇤(z), z;Dval).

A.2 Proposition 3.2

Proof. By definition, we have:

rJ (✓) =

Z
H(w⇤(z), z;Dval)rp✓(z)dz

=

Z
H(w⇤(z), z;Dval)

rp✓(z)

p✓(z)
p✓(z)dz

=

Z
H(w⇤(z), z;Dval) ·r log(p✓(z))p✓(z)dz

= Ep✓ [H(w⇤(z), z;Dval) ·r log(p✓(z))]

which concludes our proof.

A.3 Proposition 3.3

Proof. By definition, we have

r
2
J (✓) =

Z
H(w⇤(z), z;Dval)r

2
p✓(z)dz = Ep✓


H(w⇤(z), z;Dval)

r
2
p✓(z)

p✓(z)

�

Then we note that

r
2 log p✓(z) = r

✓
rp✓(z)

p✓(z)

◆
=

r
2
p✓(z)

p✓(z)
�

rp✓(z)rp✓(z)>

p
2
✓(z)

.

Thus we have

r
2
p✓(z)

p✓(z)
= r

2 log p✓(z) +
rp✓(z)rp✓(z)>

p
2
✓(z)

= r
2 log p✓(z) +

✓
rp✓(z)

p✓(z)

◆✓
rp✓(z)

p✓(z)

◆>

= r
2 log p✓(z) + (r log p✓(z))(r log p✓(z))

>
,

which concludes our proof.
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B Proofs for Cubic Algorithm

We first introduce some useful Lemmas in Appendix B.1, then prove Theorem 3.7 in Appendix B.2.

B.1 Preliminary Lemmas

Lemma B.1. [17] For a second-order differentiable function f whose Hessian is ⇢-Lipschitz contin-
uous, i.e.

��r2
f(z)�r

2
f(y)

��
sp  ⇢ kz � yk2 , 8z, y, then for all z, y in the domain of f , we will

have:
��rf(y)�rf(z)�r

2
f(z)(y � z)

��
2


⇢

2
ky � zk

2
2 , (6)

f(y)  f(z) + (rf(z))>(y � z) +
1

2
(y � z)>r2

f(z)(y � z) +
⇢

6
ky � zk

3
2 . (7)

Lemma B.2. (Bernstein inequality [40]) For i.i.d. random vectors v1, . . . ,vK 2 Rd with mean E[v],
if there exists a M > 0 such that kvi � E[v]k2  M holds for all i = 1, . . . ,K, then we will have

P

✓����1/K
XK

i=1
vi � E[v]

����
2

� t

◆
 2d · exp

 
�

Kt2/2

1/K
PK

i=1 Var(vi) + Mt/3

!
,

for t > 0 where Var(vi) = E(kvi � E[v]k22) , i.e., the variance of vi.

Lemma B.3. For any c1 > 0 and 0 < �1 < 1, there exists a constant K = O
�
1/✏2 log(1/�1)

�
, such

that the sampled gradient gm in (3) satisfies kg
m

� rJ (✓m)k2  c1✏, with probability at least
1� �1.

Proof. From Proposition 3.2, we have rJ (✓) = Ep✓(z)

⇥
s
⇤(✓; z)

⇤
, and g

m is computed by g
m =

1
K

PK
k=1 s(✓

m; zk), where z
k is sampled from the probability distribution p✓m(z). Then we have

kEp✓m (z)(g
m)�rJ (✓m)k2 = kEp✓m (z)((H(w0(z), z;Dval)�H(w⇤(z), z;Dval)) ·r log p✓m(z))k2

 min (
✏

64Q1
,

p
⇢✏

72(Q2
1 +Q2)

) · kEp✓m (z)(r log p✓m(z))k2


✏

64Q1
· kEp✓m (z)(r log p✓m(z))k2 

✏

64

where the last two steps use Assumption 3.6 (iv) and prerequisite of Theorem 3.7.

Since Ep✓m (z)

�
ks(✓m; z)� Ep✓m (z)(s(✓

m; z))k22
�
 �

2
1 , we can directly obtain that:

1

K

XK

k=1
Var(s(✓m

, z
k))  �

2
1

Then, for gm, by letting t = b1✏ in the Bernstein’s inequality (Lemma B.2), we should have

P
�
kg

m
� Ep✓(z)(g

m)k2 � b1✏
�
 2d exp

 
�

Kb21✏
2
/2

1/K
PK

k=1 Var(s(✓
m, zk)) + b1M1✏/3

!
.

Next, we have the following bound for R.H.S of the above inequality:
Kb21✏

2
/2

1/K
PK

k=1 Var(s(✓
m, zk)) + b1M1✏/3

�

Kb21✏
2
/2

�
2
1 + b1M1✏/3

=
K

4

2
�2
1/b21✏

2 + M1/3b1✏
.

Note that the last term has the harmonic mean of b21✏
2
/�2

1 and 3b1✏/M1, then by the property of harmonic
means, we should have:

K

4

2
�2
1/b21✏

2 + M1/3b1✏
�

K

4
min

�
b21✏

2
/�2

1,
3b1✏/M1

 
,

and this will give us

P
� ��gm

� Ep✓(z)(g
m)
��
2
� b1✏

�
 2d exp

✓
�
K

4
min

�
b21✏

2
/�2

1,
3b1✏/M1

 ◆
.
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Then we let

�1 = 2d exp

✓
�
K

4
min

�
b21✏

2
/�2

1,
3b1✏/M1

 ◆
,

i.e. K = 4max
�
M1/3b1✏, �

2
1/b21✏

2
 
log(2d/�1) = O

�
1/✏2 log(1/�1)

�

so that we can obtain P (
��gm

� Ep✓(z)(g
m)
��
2
� b1✏)  �1, which means

��gm
� Ep✓(z)(g

m)
��
2


b1✏ hold with probability at least 1� �1.

Finally, letting c1 = 1
64 + b1, we can obtain that

kg
m
�rJ (✓m)k2 

��Ep✓(z)(g
m)�rJ (✓m)

��
2
+
��gm

� Ep✓(z)(g
m)
��
2

 (
1

64
+ b1) · ✏ = c1✏

holds with probability at least 1� �1, which concludes our proof.

Lemma B.4. (Bernstein inequality for matrix [40]) For i.i.d. random matrices A1, . . . ,AK 2 Rd⇥d

with mean E[A], if there exists a M > 0 such that kAi � E[A]ksp  M holds for all i = 1, . . . ,K,
then we will have

P

 ����
1

K

XK

i=1
Ai � E[A]

����
sp
� t

!
 2d2 · exp

 
�

Kt2/2

1/K
PK

i=1 Var(Ai) + Mt/3

!

for t > 0 where Var(Ai) = E(kAi � E[A]k2sp).

Lemma B.5. For any c2 � 0 and 0 < �2 < 1, there exists a constant K = O
�
1/✏2 log(1/�1)

�
, such

that the sampled Hessian B
m satisfies:

8v 2 Rd
,

��(Bm
�r

2
J (✓m))v

��
2
 c2

p
⇢✏kvk2,

with probability at least 1� �2.

Proof. By the definition of spectral norm, we have

8v 2 Rd
, k(Bm

�r
2
J (✓m))vk2  c2

p
⇢✏kvk2 () kB

m
�r

2
J (✓m)ksp  c2

p
⇢✏

From Proposition 3.3, we have r
2
J (✓) = Ep✓(z)

⇥
H

⇤(✓; z)
⇤
, and B

m is computed by B
m =

1
K

PK
k=1 H(✓m; zk), where z

k is sampled from the probability distribution p✓m(z). Then we have

kEp✓(z)(B
m)�r

2
J (✓m)ksp

= kEp✓(z)((H(w⇤(z), z;Dval)�H(w0(z), z;Dval))(r log p✓(z)r log p✓(z)
> +r

2 log p✓(z)))ksp

min (
✏

64Q1
,

p
⇢✏

72(Q2
1 +Q2)

) · kEp✓(z)(r log p✓(z)r log p✓(z)
> +r

2 log p✓(z))ksp



p
⇢✏

72(Q2
1 +Q2)

· kEp✓(z)(r log p✓(z)r log p✓(z)
> +r

2 log p✓(z))ksp



p
⇢✏

72(Q2
1 +Q2)

· Ep✓(z)(kr log p✓(z)r log p✓(z)
>
ksp + kr

2 log p✓(z)ksp)



p
⇢✏

72

where in the first and the last inequation, we use Assumption 3.6 (iv) and prerequisite of Theorem 3.7,
relatively.

With Ep✓(z)

�
kH(✓; z)� Ep✓(z)(H(✓; z))k2sp

�
 �

2
2 we can directly obtain that

1

K

XK

k=1
Var(H(✓m

, z
k))  �

2
2 .
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Then, for Bm, by letting t = b2
p
⇢✏ in the Bernstein’s inequality in Lemma B.4, we should have

P
�
kB

m
�r

2
J (✓m)ksp � b2

p
⇢✏
�
 2d2 exp

 
�

Kb22⇢✏/2

1/K
PK

k=1 Var(H(✓m, zk)) + b2M2
p
⇢✏/3

!
.

Next, we have the following bound for R.H.S of the above inequality:
Kb22⇢✏/2

1/K
PK

k=1 Var(H(✓m, zk)) + b2M2
p
⇢✏/3

�

Kb22⇢✏/2

�
2
2 + b2M2

p
⇢✏/3

=
K

4

2
�2
2/b22⇢✏ + M2/3b2

p
⇢✏
.

Note that the last term has the harmonic mean of b22⇢✏/�2
2 and 3b2

p
⇢✏/M2, then by the property of

harmonic means, we should have:
2

�2
2/b22⇢✏ + M2/3b2

p
⇢✏

� min
�
b22⇢✏/�2

2,
3b2

p
⇢✏/M2

 
,

and this will give us

P
�
kB

m
�r

2
J (✓m)ksp � b2

p
⇢✏
�
 2d2 exp

✓
�
K

4
min{b22⇢✏/�2

2,
3b2

p
⇢✏/M2}

◆
.

Then we let

�2 = 2d2 exp

✓
�
K

4
min{b22⇢✏/�2

2,
3b2

p
⇢✏/M2}

◆
,

i.e. K = 4max{M2/3b2
p
⇢✏, �

2
2/b22⇢✏} log(2d

2
/�2) = O

�
1/✏2 log(1/�2)

�

we can obtain P (
��Bm

� Ep✓(z)(B
m)
��

sp � b2
p
⇢✏)  �2, which means

��Bm
� Ep✓(z)(B

m)
��

sp 

b2
p
⇢✏ hold with probability at least 1� �2.

Finally, letting c2 = 1
72 + b2, we can obtain that

kB
m
�rJ (✓m)ksp 

��Ep✓(z)(B
m)�rJ (✓m)

��
sp +

��Bm
� Ep✓(z)(B

m)
��

sp

 (
1

72
+ b2)

p
⇢✏ = c2

p
⇢✏

holds with probability at least 1� �2, which concludes our proof.

Lemma B.6. Denote �m = argmin� c̃m(�), then we will have:

g
m +B

m�m +
⇢

2
k�m

k2 �
m = 0, (8)

B
m +

⇢

2
k�m

k2 I ⌫ 0, (9)

c̃m(�m)  �
⇢

12
k�m

k
3
2 . (10)

where P ⌫ Q indicates that P�Q is a positive semidefinite matrix, i.e. the metric Bm+ ⇢
2 k�

m
k2 I

is always positive semidefinite.

Proof. It is easy to verify that c̃m(�), which is defined in (5), is second-order differentiable. Since
�m is the global optimal, we must have r�m c̃m(�m) = 0 and r

2
�m c̃m(�m) ⌫ 0, i.e.

r�m c̃m(�m) = g
m +B

m�m +
⇢

2
k�m

k2 �
m = 0,

r
2
�m c̃m(�m) = B

m +
⇢

2
k�m

k2 I ⌫ 0.

These two equations are exactly (8) and (9). Now for (8), by computing the dot product of L.H.S. and
�m, we will have:

(�m)>gm + (�m)>Bm�m +
⇢

2
k�m

k
3
2 = 0. (11)
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And for (9), similarly by multiplying (�m)> and �m in both sides, we will have:

(�m)>Bm�m +
⇢

2
k�m

k
3
2 � 0 and � (�m)>Bm�m


⇢

2
k�m

k
3
2 . (12)

Then, for c̃m(�m), from (11) we will have:

c̃m(�m) = (�m)>gm +
1

2
(�m)>Bm�m +

⇢

6
k�m

k
3
2 ,

= (�m)>gm + (�m)>Bm�m +
⇢

2
k�m

k
3
2 �

1

2
(�m)>Bm�m

�
⇢

3
k�m

k
3
2 ,

= �
1

2
(�m)>Bm�m

�
⇢

3
k�m

k
3
2 .

Now by (12), we will have:

c̃m(�m) = �
1

2
(�m)>B�m

�
⇢

3
k�m

k
3
2 

⇢

4
k�m

k
3
2 �

⇢

3
k�m

k
3
2 = �

⇢

12
k�m

k
3
2 .

which is exactly (10).

Lemma B.7. If 0 < c1 
3
8 in Lemma B.3 and 0 < c2 

1
4 in Lemma B.5, then we will have:

k�m
k2 �

r
1

2⇢

�
kr✓m+1J (✓m+1)k2 �

1

2
✏
�
. (13)

Proof. For (13), we first have:

kr✓m+1J (✓m+1)k2 = kr✓m+1J (✓m+1)�rJ (✓m)�r
2
J (✓m)�m +rJ (✓m) +r

2
J (✓m)�m

k2,

 kr✓m+1J (✓m+1)�rJ (✓m)�r
2
J (✓m)�m

k2 + krJ (✓m) +r
2
J (✓m)�m

k2. (14)

The first term in (14) can be bounded in (6) in Lemma B.1. We note that ✓m+1
� ✓

m = �m, thus
we have:

kr✓m+1J (✓m+1)�rJ (✓m)�r
2
J (✓m)�m

k2 
⇢

2
k�m

k
2
2. (15)

For the second term in (14), we have:

krJ (✓m) +r
2
J (✓m)�m

k2 = krJ (✓m)� g
m + g

m + (r2
J (✓m)�B

m)�m +B
m�m

k2,

 krJ (✓m)� g
m
k2 + k(r2

J (✓m)�B
m)�m

k2 + kg
m +B

m�m
k2. (16)

Specifically, for terms in (16), we have following conditions.

• First term in (16). From Lemma B.3, we will have:

krJ (✓m)� g
m
k2  c1✏. (17)

• Second term in (16). From Lemma B.5, we will have:

k(r2
J (✓m)�B

m)�m
k2  c2

p
⇢✏k�m

k2. (18)

• Last term in (16). From (8) in Lemma B.6, we will have:

g
m +B

m�m = �
⇢

2
k�m

k2 �
m

! kg
m +B

m�m
k2 =

⇢

2
k�m

k
2
2. (19)

Combining (15) to (19), for (14), we will have
��r✓m+1J (✓m+1)

��
2


⇢

2
k�m

k
2
2 + c1✏+ c2

p
⇢✏k�m

k2 +
⇢

2
k�m

k
2
2,

= ⇢k�m
k
2
2 + c1✏+ c2

p
⇢✏k�m

k2.

Note that
p
⇢✏k�m

k2 =
q
⇢k�mk22 · ✏ 

⇢k�m
k
2
2 + ✏

2
,
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therefore we will have:

kr✓m+1J (✓m+1)k2  ⇢k�m
k
2
2 + c1✏+

c2

2
(⇢k�m

k
2
2 + ✏),

which implies that:

k�m
k
2
2 �

1

⇢(1 + c2
2 )

(kr✓m+1J (✓m+1)k2 � (c1 +
c2

2
)✏).

Now from 0 < c1 
3
8 and 0 < c2 

1
4 , we can easily prove that 1 + c2

2  2 and c1 +
c2
2 

1
2 , thus

we will have

k�m
k
2
2 �

1

2⇢
(kr✓m+1J (✓m+1)k2 �

1

2
✏),

which is exactly (13).

Lemma B.8. If 0 < c2 
1
4 in Lemma B.5, then for �m = argmin� c̃m(�) we will have:

k�m
k2 � �

2

3⇢
�min(r

2
✓m+1J (✓m+1))�

1

6

r
✏

⇢
, (20)

where �min(A) denotes the minimum eigenvalue of a square matrix A.

Proof. Since the Hessian for J (✓) is Lipschitz continuous as in Assumption 3.6 (i), we will have:

kr
2
J (✓m +�m)�r

2
J (✓m)ksp  ⇢k�m

k2,

which implies that

r
2
J (✓m +�m)�r

2
J (✓m) ⌫ �⇢k�m

kI. (21)

From Lemma B.5, we have

kB
m
�r

2
J (✓m)ksp  c2

p
⇢✏,

which also implies that

r
2
J (✓m)�B ⌫ �c2

p
⇢✏I, (22)

Finally, from (9), we will have

B ⌫ �
⇢

2
k�m

k2I. (23)

Combining (21) to (23) together, we will have:

r
2
J (✓m +�m) = r

2
J (✓m +�m)�r

2
J (✓m) +r

2
J (✓m)�B +B,

⌫ �⇢k�m
k2I � c2

p
⇢✏I �

⇢

2
k�m

k2I = �(c2
p
⇢✏+

3

2
⇢k�m

k2)I.

Note that ✓m+1 = ✓
m +�m, and from the definition of �min(·), we will have:

�min(r
2
✓m+1J (✓m+1)) � �

✓
c2
p
⇢✏+

3

2
⇢k�m

k2

◆
,

which can deduce that:

k�m
k2 � �

2

3⇢
�min

�
r

2
✓m+1J (✓m+1)

�
�

2c2
3

r
✏

⇢
.

Since 0 < c2 
1
4 , we will have

k�m
k2 � �

2

3⇢
�min(r

2
✓m+1J (✓m+1))�

1

6

r
✏

⇢
,

which is exactly (20).
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Lemma B.9. If 0 < c1 <
1
32 in Lemma B.3 and 0 < c2 <

1
36 in Lemma B.5, then there exists

a constant C = 1
96 � ( c12 + c2

8 ) > 0 such that J (✓m+1) � J (✓m)  �C

q
✏3

⇢ if we have

c̃m(�m)  �
1
96

q
✏3

⇢ for �m = argmin� c̃m(�).

Proof. Recall that (7) in Lemma B.1 gives us

J (✓m +�m)� J (✓m)  (rJ (✓m))>�m +
1

2
(�m)>r2

J (✓m)�m +
⇢

6
k�m

k
3
2.

And by the definition of c̃m(·), we have:

c̃m(�) = (gm)>�+
1

2
�>

B
m�+

⇢

6
k�k

3
2 .

Therefore we can obtain that:

J (✓m +�m)� J (✓m) = c̃m(✓m) + (rJ (✓m)� g)>�m +
1

2
(�m)>(r2

J (✓m)�B)�m
.

From Lemma B.3, we will have:

(rJ (✓m)� g)>�m
 c1✏k�

m
k2.

And from Lemma B.5, we will have:

1

2
(�m)>(r2

J (✓m)�B)�m


c2

2

p
⇢✏k�m

k
2
2.

Combining these two parts will give us:

J (✓m +�m)� J (✓m)  c̃m(�m) + c1✏k�
m
k2 +

c2

2

p
⇢✏k�m

k
2
2.

Now we prove separately under two cases:

Case 1: k�m
k2 >

1
2

q
✏
⇢ . In such case, we have

c1✏k�
m
k2 +

c2

2

p
⇢✏k�m

k
2
2 = (

c1✏
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And we also have c̃m(�m)  �
1
96

q
✏3

⇢ from the assumption in Lemma B.9. Then combining these
two bounds will give us:
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Combining (24) and (25) together, we prove that J (✓m+1) � J (✓m)  �C

q
✏3

⇢ for C = 1
96 �

( c12 + c2
8 ) > 0.

Lemma B.10. 9M 

p
⇢(J (✓1)�J (✓⇤))

C✏1.5 + 1, such that J (✓M+1)� J (✓M ) � �C

q
✏3

⇢ where C is
the constant given in Lemma B.9

Proof. We will prove this lemma by contradiction. Suppose that:

8m 

p
⇢(J (✓1)� J (✓⇤))

C✏1.5
+ 1, J (✓m+1)� J (✓m)  �C

s
✏3

⇢

And obviously, we should have:

MX

m=1

J (✓m)� J (✓m+1) = J (✓1)� J (✓M+1)  J (✓1)� J (✓⇤) , 8M � 1
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which contradicts with previous condition. Thus we prove the original lemma.

B.2 Proof of Theorem 3.7

Proof. From Lemma B.9 and Lemma B.10, we will have that c̃m(�M ) � �
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Therefore, we have proved that ✓M+1 is a second-order stationary point defined in Definition 3.4.
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C Comparison among Different Hyper-parameter Optimization Methods

Table 3 shows the comparison among different optimization methods. The representative derivative-
free methods are in the first two rows. As introduced in related works (Section 2.1), they do not
have any convergence guarantee. Methods utilizing hyper-gradient based on stochastic relaxation
are in the middle 5 rows. Although all these methods have first-order convergence guarantee, only
our proposed method with cubic regularization is able to converge to second-order stationary point.
Furthermore, only our proposed method considers inexact lower-level objective. The two methods at
bottom are designed for stochastic bi-level optimization. Although they consider inexact lower-level
objective, they require upper-level objective to be differentiable, which means that they cannot be
applied in hyper-parameter optimization problem considered in this paper, where hyper-gradients are
unavailable.

Table 3: Comparison of different hyper-parameter optimization algorithms.

Method Require upper-level Stochastic Inexact Convergence
differentiable relaxation lower-level 1st-order 2nd-order

Random search [2] 7 7 7 7 7
Bayesian optimization [11] 7 7 7 7 7

Gradient descent [14] 7 3 7 3 7
Natural gradient [35] 7 3 7 3 7

Newton’s method [30] 7 3 7 3 7
Cubic regularization 7 3 7 3 3

Cubic (inexact) 7 3 3 3 3

StocBiO [7] 3 7 3 3 7
SUSTAIN [41] 3 7 3 3 7

iNEON [31] 3 7 3 3 3
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D Mathematical Formulation of Problems in the Experiments

For both experiments on synthetic data and hyper-parameter optimization for knowledge graph
completion, their original formulations before stochastic relaxtaion are given by:

z
⇤=argmin

z
H(w⇤(z), z;Dval) s.t. w⇤(z)=argmin

w
F (w, z;Dtra)

For experiment on synthetic data, its mathematical formulation under stochastic relaxtaion can be
referred to Eq (26) (the same as Eq (1) in Section 3.1), where z corresponds to feature mask, p✓
uses the sigmoid function and details can be found in Section 4.1. We use AUC as the validation
evaluation metric.

✓
⇤=argmin

✓

n
J (✓)=Ez⇠p✓(z)[H(w⇤(z), z;Dval)]

o
s.t. w⇤(z)=argmin

w
F (w, z;Dtra), (26)

For hyper-parameter optimization for knowledge graph completion, the mathematical formulation can
also be referred to Eq (26), where z corresponds to a set of categorical hyper-parameters (details in
Table 4), p✓ uses the softmax-like function as defined in Section 4.2.1. We use MRR as the validation
evaluation metric.

For schedule search on learning with noisy training data, the mathematical formulation before
stochastic relaxation can be written as:

z
⇤=argmin

z
Mval(w

⇤(Rz)) s.t. w⇤(z)=argmin
w

Ltra(w,Rz)

Rz is the schedule function parameterized in Section 4.2.2. With stochastic relaxation, its formulation
is changed to:

✓
⇤ = argmin✓ J (✓) s.t. w

⇤(z) = argminw Ltra(w,Rz)

where J (✓) = Ez⇠p✓(z)[Mval(w
⇤(Rz))]

(27)

Here, z is sampled from the corresponding distribution p✓. We use Beta distribution for each element
of � and use Dirichlet distribution for ↵. The validation evaluation metric is accuracy.

E Implementation Details

E.1 Experiments on Synthetic Data

For experiment on synthetic data, we use a linear model with single layer as feature classifier and use
AdamW with default hyper-parameter settings as the optimizer. We train the model for 40 epochs to
obtain the results in Section 4.1.

E.2 Experiments for Hyper-parameter Optimization for Knowledge Graph Completion

In experiments for hyper-parameter optimization for knowledge graph completion, we use traditional
embedding based model. We set batch size as 128 and dimension size as 100. Dropout rate is set as
0.2 and we choose Adam [42] as the optimizer. For different hyper-parameter settings, we train the
model for 100000 iterations. The search space for other hyper-parameters is shown in Table 4.

Table 4: The hyper-parameter search space of knowledge graph completion experiments.

Hyper-parameter search space

negative sampling number {32, 128, 256, 1024}
regularizer {FRO, NUC, DURA, None}

loss function {MR, BCE_(mean, sum, adv), CE}
gamma (MR) {2, 4, 8}

initializer {uniform, xavier_norm, xavier_uniform, normal}
learning rate {0.01, 0.001}

score function {TransE, RotatE, ComplEx}

Details on some acronyms in Table 4 are introduced below.
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Regularizer. To avoid overfitting of the embedding model, the regularization technique is considered,
including Frobenius norm (FRO) [43], Nuclear norm (NUC) [44] and DURA [45].

Scoring function. As an important component for knowledge graph learning, the choice of
scoring function influence a lot to the learning performance. In the experiment in this paper, we set
TransE [46], RotatE [47] and ComplEx [48] as search space choices.

Loss function. We mainly choose three types of loss functions: margin ranking (MR) loss [46],
binary cross entropy (BCE) loss with its variants BCE_mean, BCE_adv [49] and BCE_sum [48], and
finally the cross entropy (CE) loss [44].

Statistics of different benchmark knowledge graph data sets is in Table 5.

Table 5: Statistics of datasets for hyper-parameter optimization for knowledge graph completion.

dataset #entity #relation #training #validation #test

WN18RR 41k 11 87k 3k 3k
FB15k237 15k 237 272k 18k 20k

E.3 Experiments for Schedule Search on Learning with Noisy Training Data

In experiments for schedule search on learning with noisy training data, we use a 5-layer CNN similar
to LeNet as the model for image classification and use Adam as the optimizer. Each model is trained
for 200 epochs.

Moreover, here we illustrate the noise setting in the experiments. The label transition matrices M for
symmetric/pair flipping noise on an example 5-way classification problem are illustrated in Figure 5.
Here each Mij = Pr(ỹ = j|y = i) is the probability that the noisy label ỹ is j given that the true
label y is i.

Figure 5: The two types of label noise used. Left: 50% symmetric flipping noise; right: 45% pair
flipping noise.
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