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A The Structural Details of BD Models on CIFAR-10/100

Table S1: The structural details of Blurred-
Dilated ResNet-20 (BD RN20).

Layer Name Output Size Configuration

conv1 32×32 3×3 conv, 16, s=1

conv2
(×3) 32×32 3×3 conv, 16

3×3 conv, 16

conv3
(×3) 16×16

3×3 conv, 32
(BlurPool when s=2)

3×3 conv, 32

conv4
(×3) 16×16 3×3 conv, 64, dr=2

3×3 conv, 64

classification
1×1 global average pool

10-d FC-10
softmax

Table S2: The structural details of Blurred-
Dilated ResNet-56 (BD RN56).

Layer Name Output Size Configuration

conv1 32×32 3×3 conv, 16, s=1

conv2
(×6) 32×32

1×1 conv, 16
3×3 conv, 16
1×1 conv, 64

conv3
(×6) 16×16

1×1 conv, 32
3×3 conv, 32

(BlurPool when s=2)
1×1 conv, 128

conv4
(×6) 16×16

1×1 conv, 64
3×3 conv, 64, dr=2

1×1 conv, 256

classification
1×1 global average pool

100-d FC-100
softmax

Table S1 presents the structural details of Blurred-Dilated ResNet-20 (BD RN20) used on the CIFAR-
10 dataset. Table S2 shows the structural details of Blurred-Dilated ResNet-56 (BD RN56) used on
the CIFAR-100 dataset. In both tables, s means the stride, dr means the dilation rate, and BlurPool
adopts a Gaussian kernel size of 4 and a stride of 2.

B More Ablation Studies

We conduct more ablation studies to examine the key modification choices of our method. Specifically,
we examine: (1) which downsampling layer should be modified with BlurPool, and (2) the dilation
rates of the last two sets of dilated convolutions. The source and target models are the same as those
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Figure S1: The average attack success rates against all the target models under different modification
configurations, with ResNet-50 as the original source model. BlurPool position i means that the
BlurPool is applied to the i-th downsampling operation. Dilation rate (i,j) means that the dilation
rates for the first and second groups of dilated convolutions are i and j, respectively.

Figure S2: The average attack success rates against all the target models under different modification
configurations, with DenseNet-121 as the original source model. Notations are the same as Figure S1.

Figure S3: The average attack success rates against all the target models under different modification
configurations, with VGG16 as the original source model. Notations are the same as Figure S1.

in the main paper. Based on our preliminary experiments, we focus on testing six candidate positions
where BlurPool is added: (1) the first downsampling operation, (2) the second downsampling
operation, (3) the third downsampling operation, (4) the first and second downsampling operations,
(5) the second and third downsampling operations, and (6) all the first three downsampling operations.
Similarly, for the dilation rates of the last two sets of dilated convolutions, we focus on testing six
possible combinations: (2,2), (2,3), (2,4), (3,3), (3,4), and (4,4).

Figures S1-S4 show the average attack success rates against all the target models under different
modification configurations. It is evident that across different source models, our method achieves
the best results under the same modification configuration, i.e., when BlurPool is combined with all
the first three downsampling operations, and the dilation rates are (2,2). Therefore, our modification
configuration can be a good start point when modifying other source models. We note that since BD
models reduce downsampling operations during forward propagation, the inference time of a BD
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Figure S4: The average attack success rates against all the target models under different modification
configurations, with MobileNetV2 as the original source model. Notations are the same as Figure S1.

Table S3: The attack success rates of different transfer attacks against adversarially trained models,
with MI-FGSM as the optimization algorithm and ResNet-50 as the source model. The best results
are in bold.

Method ϵ IncV3ens3 IncV3ens4 IncRes-v2ens Average

ILA
16/255 48.5% 44.1% 37.3% 43.3%

8/255 26.6% 26.5% 16.6% 23.2%

4/255 14.8% 16.6% 8.3% 13.2%

ILA++
16/255 53.0% 47.2% 38.3% 46.2%

8/255 31.3% 30.8% 19.9% 27.3%

4/255 16.2% 18.6% 9.3% 14.7%

LinBP
16/255 59.9% 55.6% 46.8% 54.1%

8/255 34.3% 33.1% 22.4% 29.9%

4/255 16.9% 18.7% 8.7% 14.8%

BD (Ours)
16/255 84.1% 80.6% 73.3% 79.3%
8/255 63.6% 58.2% 47.6% 56.5%
4/255 32.7% 30.8% 21.1% 28.2%

model is relatively longer than the original standard model. However, the attack success rates we can
obtain are significantly higher than the original standard model.

C The Effectiveness of BD against Defenses

We validate the effectiveness of our proposed BD against defenses. We first attack adversarially
trained models, including IncV3ens3, IncV3ens4, and IncRes-v2ens [S1]. The results are shown in
Table S3. Then we consider other advanced defenses, including JPEG [S2], FD [S3], FAT [S4],
RS [S5], and NRP [S6]. The results are shown in Table S4. Under both settings, our attack still
outperforms all the state-of-the-art baselines by a large margin. The results confirm the effectiveness
of our method against defended models, which also calls for the development of stronger defenses.

D Visualization

We investigate which features of the input image are emphasized by our BD models and standard
models during the inference process. To this end, in Figure S5, we visualize the attention maps of the
standard models and the modified BD models to examine the critical ground for their predictions. We
can see that the attention region of the BD models aligns better with the object’s important features. In
contrast, the attention region of the standard models appears to cover a lot of unnecessary information.
Therefore, BD models can more precisely extract the object’s important features than the standard
models. It seems to explain the effectiveness of our approach from another perspective. Due to the
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Table S4: The attack success rates of different transfer attacks against other advanced defenses,
with MI-FGSM as the optimization algorithm and ResNet-50 as the source model. The maximum
perturbation is 16/255. The best results are in bold.

Method JPEG FD FAT RS NRP Average

ILA++ 56.8% 45.6% 34.8% 28.6% 17.8% 36.7%

LinBP 63.8% 59.7% 39.7% 35.9% 23.0% 44.4%

BD (Ours) 83.9% 77.5% 43.6% 54.7% 35.8% 59.1%

(a) RN50 (b) DN121 (c) IncV3 (d) BD RN50 (e) BD DN121

Figure S5: The attention maps of different models.

BD model’s ability to more precisely extract important features of objects, when using the BD model
as the source model, the generated adversarial sample will pay more attention to interfering with
important features of objects, which are also used by different models for object classification. In
contrast, the adversarial perturbation generated by the standard models may focus on features that are
extraneous to the object classification, which may not be the focus of other models [S7]. Therefore,
our BD models can generate more transferable adversarial samples than the standard models.
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