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A A Theoretical View of Content and Style Isolation When Learning with
Noisy Labels

Figure 1: The
noise data gener-
ative process.

Noisy data generative process. Recall the data generative process in our main
paper, to learn latent factors by leveraging generative models. The generative
model has to model the data generative process of noisy data. Firstly, we introduce
the generative process of noisy data. We denote observed variables with gray
color and latent variables with white color. Specifically, the content factor Zc
is generated by the latent label Y . The different style domain Us give rise to
the different style factor Zs. Subsequently, the image X is generated by the
combined influence of the style factor Zs and the content factor Zc. Noisy labels
Ỹ are then generated based on the image X . In general cases, Zc and Zs can also
have statistical or causal dependencies. We follow existing work that assumes the
content factors are invariant across different styles [6].

Firstly, we introduce the concept of an uncontrolled style factor. This refers to a
specific style factor, denoted Zs′ , that remains invariant when a data augmentation
A is applied. To formalize this concept, consider an invertible function f : Z×X .
Let A denote a set of data augmentations, where each augmentation A is a subset
ranging from 1 to M . Additionally, let P (A) represent a probability distribution over the set of
these augmentations A. Now, consider Zs′ as a subset of style factors drawn from a larger set
Zs. We partition the latent factors z of each instance x into three distinct parts: uncontrolled style
factor Zs′ , content factor Zc, and style factors influenced by data augmentation Zs/s′ , such that
f−1(x) = [zs′ , zc, zs/s′ ] = z. The term zs/s′ denotes the set of style factors with style factors zs′
excluded.
Definition 1 (Uncontrolled Style Factors). We say that a style factor Zs′ as uncontrolled under the
following conditions:

For any augmentation A ∼ P (A), and for any instance x, the first ns′ components of the inverse
function f−1(x) remain unchanged even when A(x) is applied, i.e., f−1(x)1:ns′ = f−1(A(x))1:ns′ .

Here, f−1(x)1:ns′ is defined as the underlying partition that contains only and all the information
related to the style factor Zs′ of the instance x.

Why do confident examples encourage content-style isolation? Here, we explain the reason
that confident examples encourage content-style isolation. Suppose that there exist some uncontrolled
style factors that cannot be adjusted or manipulated through data augmentation. This implies that for
an image x, these style factors remain unaffected, regardless of the data augmentation techniques
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Algorithm 1 CS-Isolate-DM

Input: A noisy dataset S̃ , a style ID list Us, a data augmentation setA, confident threshold τ , total
epoch Tmax .

1: fψ1 , fψ2 , qϕ1
c
(Zc|X), qϕ2

c
(Zc|X)←WarmUP(S);

2: For T = 1, . . . , Tmax:
3: X ,U ← Co− guessing(S̃, fψ1

, fψ2
, qϕ1

c
, qϕ2

c
, τ);

4: X ′,U ′ ← MixUp(X ,U);
5: For k=1, 2:
6: Sample (x, ỹ, uc) ∼ S̃, us ∼ Us;
7: x̃← Aus(x);
8: Feed x̃ to encoders q̂ϕk

c
and q̂ϕk

s
to content factors zc and style factors zs, respectively;

9: Feed uc and us to decoders p̂θkc and p̂θks to get the prior p̂θkc (Zc|uc) and p̂θks (Zs|us);
10: Feed zc and zs to decoders p̂θk to get the reconstruct image ˆ̃x;
11: Feed zc to classifier head fψk

to predicted label ŷ;
12: Calculate the loss using Eq. 1 and update networks;

Output: The inference networks and classifier heads qϕ1
c
, qϕ2

c
, fψ1

, fψ2
.

employed. For instance, as discussed in our paper, in the CIFAR-10 dataset [3], some pictures with
the label “horse” contain a person. In this context, the "person" acts as a style factor. Existing data
augmentations cannot control this, as they cannot remove the person from images easily.

It’s essential to understand that although data augmentation cannot control all style factors, it still
offers the benefit of “partial isolation”. If we consider a situation where the uncontrolled style
factors are not effects of other style factors, then we can isolate other style factors affected by data
augmentation from content factors after matching the data likelihood [5]. This result is a modified
application of block-identifiability [6].

Specifically, let Ẑc,s′ := Ẑ1:nc+ns′ be a partition of learned representations of a generative model,
where Ẑc,s′ contain all and only information about Zc and Zs′ . Suppose that assumptions of Theorem
4.2 in [5] are satisfied, Ẑc,s′ is guaranteed to be learned, thereby allowing for the partial isolation of
the remaining style factors, denoted as Zs/s′ .

Despite Ẑc,s′ is guaranteed to be learned, the information from the uncontrolled style factor Zs′ is
entangled with the content factor Zc in the learned Ẑc,s′ . To isolate this information further, the
employment of confident examples is necessary.

Specifically, we can generate Ẑc,s′ using an invertible function according to the label Ŷ of the
confident example, and subsequently reconstruct image x. Following the data likelihood matching [5],
the information related to the uncontrolled style factors becomes apparent due to the establishment
of a one-to-one mapping between the label Ŷ and Ẑc,s′ . This consequently forces examples with
identical labels to share the same Ẑc,s′ , regardless of any alterations in the uncontrolled style factor Z ′

s.
This approach, therefore, ensures that styles changes don’t affect the derived content representation
for the same label.

It is worth mentioning that to fully isolate uncontrolled style factors and content factors, it requires
that there exists confident examples with all possible uncontrolled style factors. This can be hard to
achieve when learning with noisy labels. Therefore, in general, the selected confident examples can
only encourage isolation but can not fully isolate uncontrolled style factors and content factors.

B Apply CS-Isolate to Existing Methods for Learning with Noisy Labels

Applying CS-Isolate to DivideMix. DivideMix [4] uses two classifiers to select confident
examples for each other. To utilize the unlabeled data, they combine the semi-supervised technique
MixMatch [1]. Specifically, the classifiers, after warmed up, are used to calculate the loss of examples.
They use a Gaussian Mixture Model (GMM) to divide the examples into confident and unlabeled
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Algorithm 2 CS-Isolate-Co

Input: A noisy dataset S̃, a style ID list Us, a data augmentation set A, Total epoch Tmax .
1: For T = 1, . . . , Tmax:
2: Fetch mini-batch S̄ from S̃;
3: Obtain S̄1 = argminS′:|S′|≥R(T )|S̄| ℓ(fψ1

, qϕ1
c
, S′);

4: Obtain S̄2 = argminS′:|S′|≥R(T )|S̄| ℓ(fψ2 , qϕ2
c
, S′);

5: For k=1, 2:
6: Sample (x, ỹ, uc) ∼ S̄k, us ∼ Us;
7: x̃← aus

(x);
8: Feed x̃ to encoders q̂ϕk

c
and q̂ϕk

s
to content factors zc and style factors zs, respectively;

9: Feed uc and us to decoders p̂θkc and p̂θks to get the prior p̂θkc (Zc|uc) and p̂θks (Zs|us);
10: Feed zc and zs to decoders p̂θk to get the reconstruct image ˆ̃x;
11: Feed zc and zs to classification model fψk

to predicted labels ŷ;
12: Calculate the loss using Eq. 2 and update networks;

Output: The inference networks and classifier heads qϕ1
c
, qϕ2

c
, fψ1 , fψ2 .

Algorithm 3 CS-Isolate-Me

Input: A noisy training dataset S̃, a noisy validation dataset S̃v, a style ID list Us, a data
augmentation set A, iteration number Tinner, Touter .

1: Initialize encoders (q̂ϕ0
c

and q̂ϕ0
s
), decoders (p̂θ0c , p̂θ0s and p̂θ0), a classification model fψ0 by

using the noisy training data and early stopping;
2: For i = 1, . . . , Touter:
3: For j = 1, . . . , Tinner:
4: Update the extracted confident examples Sl by using q̂ϕj−1

c
and fψj−1

;
5: Train networks by using the loss in Eq. 3 on confident examples Sl;
6: Obtain q̂ϕj

c
and fψj through the highest noisy validation accuracy throughout the training

procedure;
7: Break and output q̂ϕj−1

c
and fψj−1 if the highest validation accuracy is non-increasing in the

loop;
8: Re-initialize encoders (q̂ϕ0

c
and q̂ϕ0

s
), decoders (p̂θ0c , p̂θ0s and p̂θ0 ), a classification model fψ0

;
9: Train networks by using the loss in Eq. 3 on confident examples Sl;

10: Obtain q̂ϕ0
c

and fψ0 through the highest noisy validation accuracy throughout the training
procedure;

11: Break and output q̂ϕj−1
c

and fψj−1
if the highest validation accuracy is non-increasing in the

loop;
Output: The inference network and the classification model qϕc

, fψ .

examples. Finally, confident and unlabeled examples are used to train the models based on the
MixMatch algorithm. Our method can be plugged into DivideMix easily. Specifically, we use a
decoder qϕ(Zc, Zs|X) to obtain content factor Zc and style factor Zs. A classifier head fψ is used to
predict labels, and only the content factors Zc are used as input. The prior distribution of the content
factors Zc is conditional on the auxiliary variable Uc, i.e., Pθc(Zc|Uc), where Uc is the content ID.
Similarly, the prior distribution of the style factor Zs is conditional on the auxiliary variable Us,
i.e., Pθs(Zs|Us), where Us is the style ID. A decoder Pθ(X|Zc, Zs) is used to reconstruct input
images. The combination of CS-Isolate and DivideMix is called CS-Isolate-DM. The loss function of
CS-Isolate-DM is shown in Eq. 1. Algorithm 1 delineates the full algorithm.

Ldm = LSl
+ λuLSu

+ λrLreg︸ ︷︷ ︸
DivideMix loss

+λELBOLELBO + λrefLref . (1)

Applying CS-Isolate to Co-Teaching. Co-Teaching [2] uses two classifiers to select confident
examples for each other. Proposed CS-Isolate can be embedded in Co-Teaching easily. Similar to
CS-Isolate-DM, we use a decoder qϕ(Zc, Zs|X) to obtain content factors Zc and style factors Zs. A
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Table 1: Means and standard deviations (percentage) of classification accuracy on CIFAR-10.
Sym-20% Sym-40% Sym-60% Sym-80% Pair-45%

CE 84.12 ± 0.20 78.82 ± 0.38 64.80 ± 0.47 47.39 ± 0.69 66.09 ± 0.96
Co-Teaching 88.74 ± 0.19 84.23 ± 0.81 77.93 ± 0.75 29.57 ± 1.39 76.65 ± 2.97
Forward 88.31 ± 0.23 82.73 ± 0.47 76.58 ± 1.59 47.18 ± 4.63 76.76 ± 4.94
T-Revision 87.83 ± 0.63 84.46 ± 0.73 77.39 ± 0.83 57.61 ± 3.93 72.81 ± 7.01
BLTM 76.54 ± 1.37 73.50 ± 1.38 58.94 ± 1.84 39.28 ± 4.00 67.97 ± 1.45
CausalNL 89.68 ± 0.09 86.37 ± 0.09 79.54 ± 0.09 29.72 ± 0.03 71.53 ± 0.37
Me-Momentum 91.44 ± 0.33 88.39 ± 0.34 82.58 ± 0.30 62.70 ± 0.59 66.41 ± 0.17
DivideMix 95.93 ± 0.04 94.51 ± 0.12 94.55 ± 0.07 92.43 ± 0.13 70.86 ± 0.87

CS-Isolate-DM 96.05 ± 0.13 95.57 ± 0.12 94.65 ± 0.10 92.57 ± 0.10 87.54 ± 0.83

Table 2: Precision ratio (percentage) of confident examples on CIFAR-10N.
Worst Aggregate Random 1 Random 2 Random 3

Co-Teaching 89.49 ± 0.11 96.61 ± 0.04 96.06 ± 0.03 95.65 ± 0.02 96.01 ± 0.03
Me-Momentum 88.14 ± 1.10 97.16 ± 0.19 96.18 ± 0.47 95.96 ± 0.27 94.78 ± 0.47

CS-Isolate-Co 90.88 ± 0.08 97.25 ± 0.04 96.95 ± 0.03 96.60 ± 0.06 96.82 ± 0.05
CS-Isolate-Me 90.74 ± 1.16 97.72 ± 0.07 96.64 ± 0.21 96.92 ± 0.17 96.14 ± 0.22

Table 3: Recall ratio (percentage) of confident examples on CIFAR-10N.

Worst Aggregate Random 1 Random 2 Random 3

Co-Teaching 89.11 ± 0.07 95.43 ± 0.04 92.59 ± 0.04 93.19 ± 0.02 93.00 ± 0.04
Me-Momentum 92.02 ± 2.63 96.90 ± 1.91 94.58 ± 2.07 95.80 ± 2.20 96.22 ± 1.82

CS-Isolate-Co 90.53 ± 0.06 96.10 ± 0.02 93.44 ± 0.04 94.13 ± 0.06 93.79 ± 0.03
CS-Isolate-Me 95.76 ± 1.55 97.76 ± 0.79 97.10 ± 0.45 96.34 ± 0.81 96.70 ± 0.89

classifier head fψ is used to predict labels, and only the content factors Zc are used as input. The prior
distribution of the content factors Zc is conditional on the auxiliary variable Uc, i.e., Pθc(Zc|Uc),
where Uc is the content ID. Similarly, the prior distribution of the style factor Zs is conditional on the
auxiliary variable Us, i.e., Pθs(Zs|Us), where Us is the style ID. A decoder Pθ(X|Zc, Zs) is used to
reconstruct input images. We call the combined method as CS-Isolate-Co. Let Sl be the confident
examples selected by another classifier head. For each network, the loss is defined as:

Lco = E(x,ỹ)∼S̃ [1(x,ỹ)∈Sl
ℓce(fψ ◦ qϕc(x), ỹ)]︸ ︷︷ ︸

Co-Teaching loss

+λELBOLELBO, (2)

where ℓce is the cross-entropy loss, 1 is the indicator function. The algorithm of CS-Isolate-Co-
Teaching is summarized in Algorithm 2.

We use a PreAct ResNet-18 as the backbone. We used Adam with default parameters to optimize the
encoder qϕc

, classifier head fψ , the encoder qϕs
and the decoder pθ. The initial learning rate is 0.001,

divided by 10 after 80 epochs.

Applying CS-Isolate to Me-Momentum. Me-Momentum proposes to use one classifier to select
confident examples. Then the parameters of the classifier will be reinitialized, and the classifier will
be trained on the confident examples. The confident examples and the parameters of the classifier are
updated alternately. We combine the Me-Momentum with our method and call it CS-Isolate-Me. Let
Sl be the confident examples selected by the classifier of the last iteration . For each network, the
loss is defined as:

Lme = E(x,ỹ)∼S̃ [1(x,ỹ)∈Sl
ℓce(fψ ◦ qϕc

(x), ỹ)] + λELBOLELBO. (3)

where ℓce is the cross-entropy loss, 1 is the indicator function. The algorithm of CS-Isolate-Me-
Momentum is summarized in Algorithm 3.
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Table 4: Means and standard deviations (percentage) of classification accuracy on CIFAR-10N.
Worst Aggregate Random 1 Random 2 Random 3

Co-Teaching 82.04 ± 0.06 91.11 ± 0.10 89.61 ± 0.18 88.98 ± 0.11 89.49 ± 0.06
Me-Momentum 84.21 ± 0.70 91.34 ± 0.16 89.51 ± 0.42 90.14 ± 0.28 89.62 ± 0.31

CS-Isolate-Co 83.93 ± 0.17 91.30 ± 0.10 90.57 ± 0.14 90.14 ± 0.03 90.76 ± 0.15
CS-Isolate-Me 86.95 ± 0.13 91.49 ± 0.17 90.30 ± 0.12 90.18 ± 0.07 90.22 ± 0.21

Table 5: Data Augmentation Techniques
Data augmentation Description
Shift scale rotation Randomly shifts, scales, and rotates the image.
Random crop Randomly crops the image to a specified height and width.
Horizontal flip Horizontally flips the image randomly.
Random brightness contrast Randomly changes the brightness and contrast of the image.
Color jitter Randomly adjusts image color properties.
Random to gray Converts the image to grayscale with a specified probability.

C Experiments

In this section, we first introduce the experiment results of the proposed methods, including the
classification of CS-Isolate-DM on class-dependent label noise, sample selection quality of CS-
Isolate-Co and CS-Isolate-Me on the real-world dataset CIFAR-10N, and classification performance
of CS-Isolate-Co and CS-Isolate-Me on real-world the dataset CIFAR-10N. Second, we provide the
details of data augmentation used in methods. Then, we conduct the ablation study for CS-Isolate-DM.
Finally, we visualize the easy confident examples, content factors, and style factors.

C.1 Experiments on Class-dependent label noise

We report the classification performance of CS-Isolate-DM on class-dependent label noise, including
symmetry-flipping noise and pair-flipping noise. The dataset used in the experiment is CIFAR-10.
The experiment results are shown in Tab. 1. The experiment results demonstrate that CS-Isolate-DM
can also perform well under class-dependent label noise.

C.2 Applying CS-Isolate to Existing Sample-Selection Methods

We combine our method with existing methods including DivideMix, Co-Teaching, and Me-
Momentum.

In the experiments for Co-Teaching and Me-Momentum, we use a PreAct ResNet-18 as the backbone.
We use SGD with momentum 0.9 and weight decay 10−4 to optimize the encoder qϕc

and classifier
head fψ. We used Adam with default parameters to optimize the encoder qϕs

and the decoder pθ.
The network is trained for 100 epochs. The initial learning rate for SGD is 0.01, and for Adam is
0.001. The learning rate is divided by 10 after 40 epochs and 80 epochs.

C.3 Improves Sample Selection Quality with CS-Isolate

We conducted experiments on CIFAR-10N, a dataset reflecting real-world label noise. We illustrate
the precision and recall ratios of our confident examples in Tab. 2 and Tab. 3. By employing our
method, existing methods achieve improvements in terms of precision and recall. The experiment
results indicate that our approach can efficiently improve the quality and number of confident
examples.

C.4 Comparison of Classification Performance

The test accuracy of the baseline methods, as well as the combination of our proposed methods and
the baselines, is shown in Tab. 4. The results demonstrate that improving the quality of the confident
examples by using our method boosts the classification performance of the existing methods.
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Figure 2: Ablation study on the hyper-parameters λELBO, λref and the dimensions of Zc and Zs.
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Figure 3: Grad-CAM visualizations of easy confident examples. Both CS-Isoalte-DM and DivideMix
successfully identify these confident examples. The activation map of CS-Isolate-DM predominantly
highlights semantic objects.

C.5 Data Augmentation Details

The detailed description of data augmentation techniques used in our method is shown in Tab 5.
When generating a data augmentation Ai ∈ A, the probabilities to apply shift scale rotation, random
crop and horizontal flip, random brightness contrast, color jitter, and random to gray are 0.5, 1, 0.5,
0.5, 0.8, and 0.2, respectively, then the implementation details of the data augmentations will be
recorded for the replaying. For instance, if a data augmentation Ai flips the image horizontally, its
behavior will be recorded. When the data augmentation Ai is used during the training process, the
images used to train the network will be applied a horizontal flip.

C.6 Ablation Study

In this subsection, we present the results of the ablation study on the hyper-parameters λELBO,
λref and the dimensions of Zc and Zs. The experiments are conducted on the real-world dataset
CIFAR-10N with the noise type “worst”. The experiment results are shown in Fig. 2. The experiment
results show that λELBO and λref are not sensitive in the range from 0.0005 to 0.005. In our
experiments, we set the value of both λELBO and λref as 0.001, which is the middle value between
0.0005 and 0.005. For the ablation study on the dimension of Zc and Zs, the test accuracy increases
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Figure 4: Grad-CAM Visualizations of Style and Content Factors for CS-Isolate-DM. The activation
map corresponding to the content factor prominently highlights semantic objects, indicating the
model’s emphasis on capturing meaningful context. Conversely, the activation maps associated with
the style factor predominantly focus on non-object pixels across the images. The results show that
CS-Isolate-DM can isolate the content factors from styles.

gradually until the dimension is 32. After the dimension is larger than 64, the test accuracy decreases.
We set the dimension as 32 in our experiments.

C.7 Visualization of Grad-CAM on Easy Confident Examples

We visualize the Grad-CAM for CS-Isolate-DM and DivideMix on easy confident examples. The easy
confident examples are the examples identified successfully by both CS-Isolate-DM and DivideMix.
The dataset is CIFAR-10N, and the noisy type is “worst”. Fig. 3 shows the visualizations of easy
confident examples. When the confident example is easy, the Grad-CAM visualizations for CS-
Isolate-DM and DivideMix do not differ significantly. The activation maps for both CS-Isolate-DM
and DivideMix can focus on the objects. However, when the confident example is hard, only the
activation maps for CS-Isolate-DM can focus on the objects, which has already been shown in the
main paper.

C.8 Visualization of Grad-CAM for Content Factors and Style Factors

We visualize the Grad-CAM of Style and Content Factors for CS-Isolate-DM. The visualization
results are shown in Fig. 4. Grad-CAM of content factors mainly concentrates on the objects, while
Grad-CAM of style factors mainly concentrates on other pixels in the images. The visualization
results demonstrate that CS-Isolate-DM can isolate content and style factors successfully.
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