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Abstract

Label noise widely exists in large-scale image datasets. To mitigate the side effects
of label noise, state-of-the-art methods focus on selecting confident examples
by leveraging semi-supervised learning. Existing research shows that the ability
to extract hard confident examples, which are close to the decision boundary,
significantly influences the generalization ability of the learned classifier. In this
paper, we find that a key reason for some hard examples being close to the decision
boundary is due to the entanglement of style factors with content factors. The
hard examples become more discriminative when we focus solely on content
factors, such as semantic information, while ignoring style factors. Nonetheless,
given only noisy data, content factors are not directly observed and have to be
inferred. To tackle the problem of inferring content factors for classification when
learning with noisy labels, our objective is to ensure that the content factors of
all examples in the same underlying clean class remain unchanged as their style
information changes. To achieve this, we utilize different data augmentation
techniques to alter the styles while regularizing content factors based on some
confident examples. By training existing methods with our inferred content factors,
CS-Isolate proves their effectiveness in learning hard examples on benchmark
datasets. The implementation is available at https://github.com/tmllab/
2023_NeurIPS_CS-isolate.

1 Introduction

Large-scale machine learning datasets frequently contain noisy labels, as seen in datasets like
ImageNet [9] and Clothing1M [55]. Training deep neural networks with such noisy data would result
in poor generalization ability, as these networks can memorize incorrect labels [13, 3].

To mitigate the side effects of label noise, different methods have been proposed [33, 13, 37, 61, 30,
31, 49]. Major existing state-of-the-art methods are based on confident examples selection [61, 2].
Intuitively, those methods first exploit the memorization effect, enabling deep neural networks to
learn simple patterns shared by the majority of training examples [60, 1, 19]. Since clean labels
typically constitute the majority in each noisy class [7, 39], deep neural networks initially fit the
training data with correct labels and then progressively fit examples with incorrect labels [13]. To
prevent the model from fitting incorrect labels, early stopping is usually employed [44, 3, 50, 4].
Then the small-loss trick is used to extract the confident examples with high certainty [21, 35, 28, 38].
If extracted examples have high quality, the performance of a classifier can be enhanced.
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To improve the performance of a classifier, it is crucial to ensure that the confident examples have
a distribution similar to that of clean data [36, 32]. Specifically, it is necessary to extract not only
confident examples that are far from the decision boundary but those that are close to it. The former
examples are easy to be identified and extracted. However, the latter examples, which are close to
the decision boundary, often become entangled with mislabeled examples, making them challenging
to be identified or extracted. In this paper, we discover that on image datasets, the entanglement of
unhelpful style factors with useful content factors is a key reason that leads to the hard examples
becoming hard to be classified, and thus these examples are close to the decision boundary.

(a) (b)

Figure 1: Illustrating the entanglement of con-
tent and style factors. The circles on the left side
of the dotted line represent examples with the
underlying clean label Y = 0, while the ones
on the right side represent examples with clean
label Y = 1. The blue filling corresponds to the
noisy label Ỹ = 0, and the yellow filling corre-
sponds to the noisy label Ỹ = 1. Black outlines
indicate that the labels of examples are correct,
whereas red outlines indicate that the labels of
examples are incorrect. In (a), we visualize the
underlying style factor Zs and the underlying
content factor Zc. (b) shows the impact of a non-
linear transformation on Zs and Zc, leading to
their entanglement in the new space defined by
representations Z1 and Z2.

In Fig. 1, we provide an intuitive understand-
ing of the relationship between hard examples
and the entanglement of style factor Zs and con-
tent factor Zc. Let us first assume the under-
lying content factor Zc and style factor Zs are
given. In Fig. 1a, by visualizing Zs and Zc, we
can observe a separation between the examples
belonging to underlying clean classes 0 and 1.
In real-world scenarios, however, Zc and Zs are
not directly available. Instead, existing methods
[13, 28] could learn representations Z1 and Z2

from noisy data to extract confident examples.
These learned representations, Z1 and Z2, are
nonlinear transformations of style factor Zs and
content factor Zc. They do not ensure the dis-
entanglement of Zs and Zc [24, 20, 59]. As the
example illustrated in Fig. 1b, both Z1 and Z2

contain the information of the style factor Zs and
the content factor Zc. In the illustrated represen-
tation space, examples within the region encircled
by red dashed lines are close together. The con-
fident examples in this region are entangled with
mislabeled examples, making them challenging to
be extracted by existing methods without isolating
(disentangling) style and content information in
learned representations.

Precision: 0.957
Recall: 0.978

Precision: 0.954
Recall: 0.966

Precision: 0.896
Recall: 0.940

Figure 2: Illustrate the comparison of
the performance of confident examples
selection of our method CS-Isolate with
DivideMix and Me-Momentum on CI-
FAR10N Worst [48]. The highest points
on AUCs are indicated by arrows. High
precision indicates that most of the con-
fident examples are correctly labeled,
while recall indicates the fraction of cor-
rectly labeled examples out of all exam-
ples that are correctly labeled.

We have discussed that the entanglement of style factor
Zs and content factor Zc in the representation space can
create hard examples. However, if we can isolate content
from styles, then by focusing solely on the content fac-
tor Zc, these hard examples become more discriminative.
For example, let’s consider projecting the examples onto
the Zc-axis by ignoring style factor Zs in Fig. 1a. The
data points on the Zc-axis in Fig. 1b illustrate that even
after the nonlinear transformation, the examples remain
distinguishable. This motivates us to tackle the problem
of inferring content factors for extracting hard examples
when learning with noisy labels.

To isolate style and content information in learned repre-
sentations, it is crucial to learn invariant representations
of all examples as their styles change. However, when
data contains label noise, we can not access clean classes,
making it challenging to achieve this isolation. To address
this issue, we introduce a method built upon identifiable
Variational Autoencoder (iVAE) [23]. The core intuition
behind our approach is to construct different styles for each
example through various data augmentation techniques.
We then encourage both the original and the augmented
examples to possess different style factors but maintain
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identical content factors, which is a self-supervised learning manner. This initial step could achieve a
preliminary level of isolation between style and content factors. As the training process progresses,
we can identify and select certain confident examples based on the content factors. Leveraging these
confident examples, we further enhance the isolation process by encouraging all examples sharing
the same label to share identical content factors. By isolating content and style factors, our method,
CS-Isolate, effectively helps existing sample selection methods to extract hard examples typically
overlooked by existing sample selection methods. In Fig 2. we evaluate the performance of confident
examples selection on CIFAR10N with the noise type “worst” [48] by using two metrics: precision
and recall. When comparing these two metrics, CS-Isolate consistently outperforms DivideMix [28]
and Me-Momentum [2]. This result demonstrates that our method can not only select confident
examples more accurately, as shown by the higher precision, but also capture a larger portion of the
correctly labeled examples from the entire dataset, as evidenced by the higher recall. By improving
the quality of confident examples with the isolation of the content and style factors, our method
effectively helps improve the test accuracy of existing methods. We have also theoretically analyzed
the identifiability of content and style factors in Appendix A.

2 Background and Related Work

Problem setup. Let’s denote D̃ as the distribution of a noisy example (X, Ỹ ) from the set
X × {1, 2, . . . , C}, where X denotes the variable of instances, Ỹ represents the variable of noisy
labels, X is the feature space, {1, 2, . . . , C} is the label space, and C is the total number of classes. In
the learning scenario with noisy labels, clean labels are not observed. Given a noisy training sample
S̃ = {xi, ỹi}Ni=1, independently drawn from D̃, the objective is to leverage this sample S̃ to learn a
classifier robust against label noise.

Sample selection methods for learning with noisy labels. In learning with noisy labels, major
current state-of-the-art (SOTA) methodologies predominantly involve sample selection strategies.
These strategies seek to divide the dataset into confident and unconfident examples. The basis of
these strategies is the exploitation of the memorization effect inherent in deep neural networks. The
memorization effect enables the networks to initially grasp and learn the simple patterns, and then
learn the complex patterns gradually [60, 1]. Given that clean labels usually form the majority within
each noisy class [7, 39], these networks would initially fit the examples with accurate labels, and
subsequently fit the examples with incorrect labels over time [13].

Preventing the learning model from fitting incorrect labels is crucial to ensure sample selection quality.
To achieve this, strategies such as early stopping are often employed [44, 3]. Additionally, the small-
loss trick is utilized to identify and extract confident examples with high certainty [28, 38, 51, 18].
Some variation has also been proposed, e.g., some methods opt to reweight examples, thereby
decreasing the contribution of mislabeled samples to the overall loss [41, 13]. To guarantee the
statistical consistency of algorithms, Jiacheng et al. [7] introduces active learning to acquire the
labels of randomly chosen examples from unconfident examples to mitigate the bias introduced by
sample selection.

(a)

(b)

Figure 3: The different
data generative processes
with or without auxiliary
variables.

Moreover, the set of confident examples often undergoes dynamic changes
during the training stage. This is achieved by leveraging semi-supervised
learning methods to relabel training instances and reselect confident and
unconfident examples using the small loss trick. Various techniques for
this purpose have been proposed and empirically demonstrated superior
performance, including consistency regularization [27] adopted by [10],
MixMatch [5] used by [28], co-regularization by [47], and contrastive
learning by [30, 29, 45, 8, 11, 57, 61]. Self-training and co-training have
been used by [2] and [35, 13, 21], respectively.

Representation learning by generative model. Consider a data gener-
ation in Fig. 3a, X is the observed data, and Z is the unknown underlying
representation to generate X . Variational autoencoder framework [24]
can be used to learn the latent representation. In this process, a standard normal distribution is utilized
as a prior for the latent variables, and a variational posterior q(Z|X) is employed to approximate
the unknown underlying posterior p(Z|X). Disentangled representation is very important, which
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can allow a rich class of properties to be imposed on the learned representation, such as sparsity
and clustering. To disentangle the representation, the variational autoencoder framework has been
further expanded by modifying the original loss function, resulting in various algorithms. β-VAE [16]
suggests an adaptation framework that adjusts the weight of the KL term to balance the independence
of disentangled factors and reconstruction performance. β-TCVAE [6] further analyzes the KL term
of β-VAE [16] and only adjusts the total correlation term to achieve disentanglement. HOOD [17]
uses the clean labels and domain labels to disentangle content and style factors, but the clean labels
and domain labels are unknown in the setting of learning with noisy labels. These methods are toward
the goal of disentanglement but do not have theoretical guarantees of identifiability of their inferred
latent representations.

Disentangled latent factors via auxiliary variable. Recent studies [20, 23] show that theoretical
guarantees of identifiability can be achieved if an auxiliary variable related to the representation can be
obtained. Khemakhem et al. [23] provide identifiability of iVAE with additional inputs by employing
the theory of nonlinear Independent Component Analysis (nonlinear ICA) [20]. Intuitively, given a
factorized prior distribution over the latent variables that are conditional on an additional auxiliary
variable U , i.e., the class label and the time index in a time series, the latent factors are identifiable
up to a certain degree. The data generation processing is changed to Fig. 3b. To disentangle the
representation, the method assumes that each factor of the representation is independent.

3 Content and Style Isolation When Learning with Noisy Labels

In this section, we present CS-Isolate, a method designed to help select hard confident examples by
content and style isolation.

3.1 Preliminaries

Figure 4: The
noisy data gener-
ative process.

Noisy data generative process. To learn latent factors by leveraging generative
models, the generative model has to model the noisy data generative process.
Firstly, we introduce the noisy data generative process. We denote observed
variables with gray circles and latent variables with white circles. Specifically, the
content factor Zc is generated by the latent label Y . The different style domains
Us give rise to the different style factor Zs. Then, the image X is generated by
the combined influence of the style factor Zs and the content factor Zc. Noisy
labels Ỹ are then generated based on the image X . In general cases, Zc and Zs
can also have statistical or causal dependencies. We follow existing work that
assumes the content factors are unchanged across different styles [46].

Challenge in isolating content from styles without labels. Isolating content from style without
labels is a challenging task [46]. We first introduce the assumptions made by existing methods, as
well as difficulties that may be encountered in practice.

Existing methods [26, 23, 46] for isolating content from styles without labels assume that the data
augmentation for controlling each style factor can be designed, which means that we can intervene
(control) all style factors. For instance, the data augmentations for controlling rotation angle and
scaling of images can be designed by using affine transformation [40]. When we apply a data
augmentation that rotates an image, the style factor for the rotation angle changes in the augmented
image compared to the original. Similarly, when we scale an image, the style factor for scaling
becomes different in the augmented image. If we have the data augmentation to control each style
factor, then by training a generative model with the augmented images, the model can then identify
style factors by comparing the changes in styles between the original and augmented images.

However, the major challenge lies in the fact that we generally cannot design sufficient data aug-
mentations to control all style factors in an image. For instance, in the CIFAR-10 dataset [25], some
pictures with the label “horse” contain a person. In this context, the "person" acts as a style factor.
Existing data augmentations cannot control this, as they cannot remove the person from images easily.
This simple example illustrates that it is generally impossible to control all style factors through
data augmentations. Then the assumption required by existing methods usually is hard to satisfy.
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The violation of the assumption leads to the learned representations for content containing style
information.

Challenge in isolating content from style with noisy labels. We generally cannot design data
augmentations that can control all style factors in an image. In this case, clean labels are essential
to help isolate content from styles. Intuitively, by comparing the change of images with different
clean labels that share the same styles, one can infer content factors used for classification. This
achieves isolation of content and style. However, when dealing with noisy data, relying on labels
becomes problematic as they contain label errors. Images with the same content factors can have
different noisy labels, making it fail to infer content factors used for classification. This situation
further complicates the task of isolating content from styles, highlighting the challenges posed by
noisy labels.

3.2 CS-Isolate for Extracting Hard Example

In this paper, we find that a key reason for some hard examples being close to the decision boundary
is the entanglement of style factors with content factors. Intuitively, style factors render the learned
representation of certain examples less discriminative, thereby making them close to the decision
boundary. If content and style information can be isolated, many hard examples would be easily
distinguished by ignoring the style information. This is because we have left only content information
in the learned representation, making these representations far from the decision boundary.

Inspired by these findings, we propose CS-Isolate, which aims to isolate content from styles for
extracting confident examples. To achieve isolation, we utilize self-supervised learning. Specifically,
we ensure that original and augmented images maintain the same content factors despite having
different style factors due to data augmentations. This achieves a preliminary level of isolating
content from styles. As previously mentioned, it is generally impossible to manipulate all style factors
through data augmentation. Some style factors remain uncontrolled and stay contained in the learned
representations for content. To further encourage the isolation, labels of confident examples are used.
Specifically, as training progresses, we identify and select confident examples whose labels are likely
to be accurate. By harnessing the labels from these confident examples, we encourage the examples
with the same label to have the consistent content factors, irrespective of stylistic variations. This
further isolates content from uncontrolled styles. By leveraging different data augmentations and
confident examples, our method can effectively separate the learned latent representations into two
parts which exclusively contain either style or content information. Subsequently, classifier heads
can be trained purely on the representations containing content information. This approach not only
improves the identification of hard confident examples but also enhances classification performance.

Isolating content from styles using auxiliary variables. We follow existing work using the
variational autoencoder with auxiliary variables [23] to isolate content from styles. Let Us and Uc
denote the auxiliary variables that control the style factor Zs and content factor Zc, respectively.
Specifically, by reconstructing an image with the supervision of auxiliary variables Us and Uc, we
encourage the images with the same content information but different style information to have the
same content factor Zc but the different style factor Zs. This allows us to isolate content from styles
within an image. Then only employing Zc for selecting hard confident examples.

However, given only noisy data, we face the challenge of the unavailability of auxiliary variables
Uc and Us. In response, we devise surrogates for these auxiliary variables. To find a surrogate for
the style auxiliary variable Us, we employ different data augmentation techniques, each of which
generates a unique style domain with distinct style factors. We then assign the style domain ID as the
style auxiliary variable Us. To find a surrogate for the content auxiliary variable Uc, we adopt the
philosophy of self-supervised learning to assign a unique content ID as the content auxiliary variable
Uc to each image. The images that have the same content ID are encouraged to have consistent
content factors. Moreover, during the learning process, some confident examples can be extracted.
To effectively leverage these examples in learning content factors, we reassign the content ID of
confident examples belonging to the same class to be the same. This allows our model to learn
consistent content factors for the images in the same class.

Constructing style auxiliary variables via data augmentations. For the learning of distinct
content factors and style factors, it is essential to construct images from domains with different styles

5



by using data augmentations. Each image carries its corresponding domain ID as the style auxiliary
variable Us. Let A = {A0, A1, A2, . . . , AM} represents the set of data augmentations, and M is the
number of data augmentations. Note that, for convenience, we use A0 to denote a data augmentation
such that applying the data augmentation A0 to the image x does not change it at all, i.e., x = A0(x).

When applying these diverse data augmentations to an x, different augmented images are obtained
with different style factors. For the augmented image xAi obtained by using the i-th data augmen-
tations that come from the i-th style domain, we can assign its style ID to be i. Specifically, for
each image x, each data augmentation Ai ∈ A is applied, resulting in a set containing pairs of the
augmented image and the corresponding style ID, i.e.,

{(xAi := Ai(x), U
(xAi )
s := i) | ∀i ∈ {0, ...,M}},

where Ux
Ai

s is defined to be the style ID (which serves the style auxiliary variable) of the image
x by applying i-th data augmentation. In this manner, for each image x, we can generate a set of
augmented images ({xAi}Mi=0), including the original images and the ones with different style factors
controlled by different style IDs.

Constructing content auxiliary variables in a self-supervised manner. To guide the generative
model in learning the consistent content factor across images sharing the same content information,
we aim to assign the same content ID (which serves as the content auxiliary variable) to images with
the same content information. However, clean labels cannot be obtained in learning with noisy labels,
meaning we cannot know which images have the same content information. To construct content
auxiliary variables without clean labels, we adopt self-supervised learning. Specifically, we consider
that different data augmentations applied to an image typically do not alter its content information.
Hence, we can assign a unique content ID to each original image and its augmented versions. This
assignment can be mathematically expressed as follows:

Sall = {(xAi
j := Ai(x), U

(x
Ai
j )

s := i, U
(x

Ai
j )

c := C + j) | ∀i ∈ {0, ...,M},∀j ∈ {1, ..., T}},

where T is the total number of distinct original images in the training data, U
(x

Ai
j )

c represents the
content ID of the j-th image in the training data after applying the data augmentation Ai, and C is
the number of classes.

Moreover, this initial assignment of content IDs can be refined by using confident examples, denoted
as Sl. As the training process progresses, we can extract these confident examples by leveraging
the small-loss trick [13, 3, 28]. The content IDs are then further refined based on the labels of the
examples within the confident examples. The refinement process can be described as:

U
(x

Ai
j )

c := ycj | ∀(xj , ycj) ∈ Sl,∀i ∈ {0, ...,M},
where ycj is the label of the confident example (xj , y

c
j). After this refinement process, confident

examples in the same class will have the same content ID. Consequently, these refined content IDs
could enable the model to learn consistent content factors for the images in the same class.

Encouraging style and content isolation for extracting hard example. After obtaining the
auxiliary variable, we isolate content from styles by leveraging iVAE [20]. Specifically, the prior
distribution of the content factor Zc is conditional on the auxiliary variable Uc, i.e. Pθc(Zc|Uc).
Similarly, the prior distribution of the style factor Zs is conditional on the auxiliary variable Us,
i.e. Pθs(Zs|Us). The θc and θs are the learnable parameters of the distribution. The objective is to
maximize the data likelihood which is as follows.

EqD [pθ(X|Uc, Us)] = EqD
[∫

zc,zs

pθ(X|zc, zs)pθc(zc|Uc)pθs(zs|Us)dzsdzc
]
, (1)

where we use qD to denote the empirical distribution of the training sample Sall. We use the variational
inference method to approximate the underlying posterior distribution pθ(Zc, Zs|X,Uc, Us) [23, 24].
Specifically, two inference models (encoders) qϕc(Zc|X) and qϕs(Zs|X) are introduced to infer latent
variables Zc and Zs respectively and model the distribution q(Zc, Zs|X) that is used to approximate
the distribution pθ(Zc, Zs|X,Uc, Us). Therefore, the distribution q(Zc, Zs|X) can be decomposed
as follows:

qϕ(Zc, Zs|X) = qϕc
(Zc|X)qϕs

(Zs|X).
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We learn the parameters {θc, θs, ϕc, ϕc} by maximizing the evidence lower-bound ELBO for each
example (x, uc, us). The corresponding loss is:

min
ϕc,ϕs,θ

LELBO := min
ϕc,ϕs,θ

EqD
[
−E(zc,zs)∼qϕc,ϕs (Zc,Zs|x)[log pθ(x|zc, zs)

−KL(qϕc
(zc|x)||pθc(zc|uc)) −KL(qϕs

(zs|x)||pθs(zs|us))]] ,
where KL is the Kullback–Leibler divergence. Intuitively, when the style changes, the content
remains constant. The model has to infer the unchanged content factors for image reconstruction.
Thus, the content factors can be isolated from style factors. The content factors can be identified up
to the block-identifiable defined in [46].

Utilizing content information to extract hard examples. After minimizing the ELBO loss
LELBO, we have learned representations Ẑc and Ẑs which exclusively contain either style or content
information. Then we employ existing sample-selection-based methods solely focus on Ẑc for
confident example selection, a classification head fψ : Zc → ∆C−1 is introduced. The classification
head maps the space of content factors to a C−1 probability simplex, where C represents the number
of classes.

In practice, we propose an end-to-end approach to learn the classification head fψ and learn to infer
content factor for extracting hard confident examples. This approach simultaneously minimizes
the evidence lower bound loss LELBO and the loss of existing sample-selection-based methods by
leveraging the Lagrangian method [22, 12]. The content IDs are refined dynamically during the
learning process. The overall loss function Lall is thus given as:

min
ϕc,ϕs,θ,ψ

Lall = min
ϕc,ϕs,θ,ψ

[Lssl + λELBOLELBO + λrefLref ],

where Lssl denotes the loss of the sample selection method, which optimizes the parameters of
the classification head ψ and the content encoder ϕ̂c. The loss Lref is the cross-entropy loss on
confident examples. The hyper-parameter λELBO and λref are used to control strength of LELBO
and Lref , respectively. Here, we illustrate a concrete example of employing the inference model qϕ̂c

in conjunction with DivideMix [28] in an end-to-end implementation. For a detailed walkthrough,
please refer to the pseudo-code provided in Appendix B and the original paper [28].

DivideMix [28] applies a Gaussian mixture model to enhance MixMatch [43] for confident example
selection and classifiers training. In DivideMix, during each epoch of training, the data is divided
into a set of confident examples Sl and a set of unconfident examples Su. The confident examples
contain the sharpened soft labels mixed by their labels in datasets and predicted labels given by the
classification head fψ . The unconfident examples contain the sharpened soft labels predicted by the
classification head fψ. Then, the semi-supervised learning approach, MixMatch [5] is employed
by transforming confident (Sl) and unconfident (Su) samples into augmented confident (S ′l ) and
unconfident (S ′u) samples by a linearly mixing.

The overall loss function, composed of a confident sample loss, an unconfident sample loss, and a
regularization term, ELBO loss and a classification loss, i.e.,

Lall = LSl
+ λuLSu

+ λrLreg︸ ︷︷ ︸
DivideMix loss

+λELBOLELBO + λrefLref .

Intuitively, LSl
is a cross-entropy loss for the labeled examples; LSu

is the mean squared error for
the unlabeled samples; Lreg is a regularization term to prevent the model from predicting all samples
to belong to a single class. These three terms are defined as follows specifically.

LSl
= − 1

|S ′l |
∑

x,ys∈S′
l

∑
i

ysi log(fψ ◦ qϕc(x)),

LSu =
1

|S ′u|
∑

x,ys∈S′
u

∥ys − fψ ◦ qϕc(x)∥
2
2 ,

Lreg =
∑
i

1

C
log(1

/
C

|S ′l |+ |S ′u|
∑

x∈S′
l+S′

u

fψ ◦ qiϕc
(x)),

where ys is the sharpened soft label and qiϕc
denotes the i-th coordinate of its output on input x. In

Appendix B, we illustrate our method with other sample selection methods.
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Table 1: Precision of confident examples on CIFAR-10N.
Worst Aggregate Random 1 Random 2 Random 3

Me-Momentum 0.881 ± 0.011 0.972 ± 0.002 0.962 ± 0.005 0.960 ± 0.003 0.948 ± 0.005
DivideMix 0.951 ± 0.003 0.989 ± 0.000 0.983 ± 0.000 0.983 ± 0.000 0.983 ± 0.000

CS-Isolate-DM 0.956 ± 0.001 0.989 ± 0.000 0.984 ± 0.000 0.985 ± 0.000 0.983 ± 0.000

Table 2: Recall of confident examples on CIFAR-10N.
Worst Aggregate Random 1 Random 2 Random 3

Me-Momentum 0.920 ± 0.026 0.969 ± 0.019 0.946 ± 0.021 0.958 ± 0.022 0.962 ± 0.018
DivideMix 0.966 ± 0.000 0.963 ± 0.000 0.975 ± 0.000 0.976 ± 0.000 0.977 ± 0.000

CS-Isolate-DM 0.980 ± 0.000 0.975 ± 0.002 0.980 ± 0.001 0.982 ± 0.001 0.982 ± 0.001

Table 3: Means and standard deviations (percentage) of classification accuracy on FashionMNIST,
CIFAR-10 and CIFAR-100.

Fashion-MNIST CIFAR-10 CIFAR-100

IDN-0.2 IDN-0.4 IDN-0.2 IDN-0.4 IDN-0.4

CE 88.54 ± 0.32 84.22 ± 0.35 75.81 ± 0.26 62.45 ± 0.86 21.45 ± 0.70
Co-Teaching 91.21 ± 0.31 89.10 ± 0.29 80.96 ± 0.31 73.41 ± 0.78 28.04 ± 1.43
Forward 90.05 ± 0.43 86.27 ± 0.48 74.64 ± 0.26 60.21 ± 0.75 26.75 ± 0.93
T-Revision 91.58 ± 0.31 89.46 ± 0.42 76.15 ± 0.37 65.09 ± 0.37 27.23 ± 1.13
BLTM 91.20 ± 0.27 82.42 ± 1.51 77.50 ± 1.30 63.20 ± 4.52 35.67 ± 1.97
CausalNL 90.84 ± 0.31 90.01 ± 0.45 80.91 ± 1.14 79.08 ± 0.50 34.02 ± 0.95
Me-Momentum 92.85 ± 0.64 90.06 ± 0.51 90.86 ± 0.21 86.66 ± 0.91 58.38 ± 1.28
DivideMix 94.85 ± 0.15 92.28 ± 0.13 94.93 ± 0.15 94.16 ± 0.35 70.50 ± 0.25

CS-Isolate-DM 95.16 ± 0.07 94.40 ± 0.09 95.90 ± 0.10 95.54 ± 0.06 73.11 ± 0.36

Table 4: Means and standard deviations (percentage) of classification accuracy on CIFAR-10N.
Worst Aggregate Random 1 Random 2 Random 3

CE 77.69 ± 1.55 87.77 ± 0.38 85.02 ± 0.65 86.14 ± 0.24 86.12 ± 0.16
Co-Teaching 82.04 ± 0.06 91.11 ± 0.10 89.61 ± 0.18 88.98 ± 0.11 89.49 ± 0.06
Forward 79.79 ± 0.46 88.24 ± 0.22 86.88 ± 0.50 86.14 ± 0.24 87.04 ± 0.35
T-Revision 80.48 ± 1.20 88.52 ± 0.17 88.33 ± 0.32 87.71 ± 1.02 87.79 ± 0.67
BLTM 68.21 ± 1.67 79.41 ± 1.00 78.09 ± 1.03 76.99 ± 1.23 76.26 ± 0.71
CausalNL 82.41 ± 0.24 90.43 ± 0.14 89.03 ± 0.02 89.06 ± 0.05 89.21 ± 0.13
Me-Momentum 84.21 ± 0.70 91.34 ± 0.16 89.51 ± 0.42 90.14 ± 0.28 89.62 ± 0.31
DivideMix 92.48 ± 0.16 94.11 ± 0.21 94.77 ± 0.15 94.79 ± 0.14 94.79 ± 0.15

CS-Isolate-DM 94.28 ± 0.07 95.34 ± 0.10 95.36 ± 0.14 95.34 ± 0.12 95.48 ± 0.14

4 Experiments

In this section, we introduce the setting of our experiments and compare our experimental results
with existing methods. Most of our experiments are left out in Appendix C due to the limited space.

4.1 Experiment Setting

Dataset and noise type. We evaluate our methods on three synthetic noise datasets FashionMNIST
[54], CIFAR-10 [25], and CIFAR-100 [25], and two real-world label-noise datasets, CIFAR-10N
[48] and Clothing1M [55]. FashionMNIST includes 70,000 images of size 24× 24, categorized into
10 classes with 60,000 for training and 10,000 for testing. Both CIFAR-10 and CIFAR-100 contain
50,000 training images and 10,000 test images; CIFAR-10 comprises 10 classes, while CIFAR-100
includes 100 classes. The image size in both CIFAR datasets is 32 × 32 × 3. To generate noisy
labels for these clean datasets, we employ the instance-dependent noisy label generation methods
proposed in [52]. CIFAR-10N, a noisy version of CIFAR-10, includes five types of label noise:
“worst”, “aggregate”, “random 1”, “random 2”, and “random 3”, all annotated by humans. The noise
rates are 40.21%, 9.03%, 17.23%, 18.12%, and 17.64%, respectively. Clothing1M contains 1 million
images with real-world noisy labels for training and 10,000 images with clean labels for testing.
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Table 5: Means and standard deviations (percentage) of classification accuracy on Clothing1M.
CE Decoupling [35] MentorNet [21] Co-teaching [13] Forward [39]

68.88 54.53 56.79 60.15 69.91

T-Revision [53] BLTM-V [56] CausalNL [58] DivideMix [28] CS-Isolate-DM

70.97 73.39 72.24 74.76 74.92

Network structure and optimization. We implemented our method using PyTorch 1.12.1
and performed experiments on the NVIDIA Tesla V100. For fair comparisons, we chose PreAct
ResNet-18 [15] as the backbone of the encoder qϕc

for Fashion-MNIST, CIFAR-10, CIFAR-100, and
CIFAR-10N, a ResNet-50 [14] with ImageNet pre-trained weight for Clothing1M. We employed
SGD with a momentum of 0.9 and a weight decay of 0.0005 to optimize the encoder qϕc

and the
classifier head fψ. We used Adam with default parameters to optimize the encoder qϕs

and the
decoder pθ. For experiments on synthesis datasets, the initial learning rate for SGD was set at 0.02
and for Adam at 0.001. The batch size is 64. For experiments on Fashion-MNIST, our network was
trained for 100 epochs. Both learning rates were reduced by a factor of 10 after 80 epochs. For
experiments on CIFAR-10, CIFAR-100, and CIFAR-10N, our network was trained for 300 epochs.
Both learning rates were reduced by a factor of 10 after 150 epochs. For experiments on Clothing1M,
our network was trained for 80 epochs with a batch size of 32. The initial learning rate for SGD
was set at 0.002 and for Adam at 0.001. Both learning rates were reduced by a factor of 10 after 40
epochs. The encoder qϕc

and the classifier head fψ were warmed up on noisy data for 10 epochs for
CIFAR-10 and CIFAR-10N, warmed up for 30 epochs for CIFAR-100, 5 epochs for Fashion-MNIST,
and 1 epoch for Clothing1M. The dimensions of Zc and Zs were set at 32. The data augmentation
techniques include shift scale rotation, random crop and horizontal flip, random brightness contrast,
color jitter, and random to gray. For all experiments, we setM = 1000, λr = 1 and λELBO = 1e−3.
λref was increased gradually then kept constant at 1e− 3 after 140 epochs. For synthetic datasets,
we set λu as 0 and 15 for the noise rates of 0.2 and 0.4 in FashionMNIST and CIFAR-10 datasets and
as 100 in CIFAR-100. For CIFAR-10N, we set λu as 50 in the "worst" noise type and 0 in the rest of
the noise types. For Clothing1M, we set λu as 0.

Baselines and measurements. We compare our method against several state-of-the-art techniques:
(1) CE: the standard cross-entropy loss, with the model trained directly on noisy data; (2) Co-Teaching
[13]: involves training two networks and uses the small-loss trick to select confident examples for
each other; (3) Forward [39]: applies a transition matrix to correct the loss function; (4) T-Revision
[53]: revises the transition matrix to enhance performance; (5) Me-momentum [2]: uses confident
examples to refine the classifier, which is then used to update confident examples alternately; (6)
BLTM [56]: uses a Bayes optimal label to estimate the transition matrix; (7) CausalNL [58]: employs
a causal model to assist the learning of the classifier; (8) DivideMix [28]: employs two networks to
select confident examples and uses semi-supervised techniques to utilize unlabeled examples. We
report the precision, recall and AUC for the confident examples selection. We also report the test
accuracy on the test dataset. The value is the average over the last 10 epochs.

4.2 Confident Examples Quality

To evaluate the quality of the confident examples, we examine the precision and recall of these
examples. The precision quantifies the proportion of accurately labeled examples within the set of
confident examples. On the other hand, recall measures the proportion of accurately labeled examples
in the confident examples relative to the total number of correct labels. The experimental results are
displayed in Tab. 1 and Tab. 2. The results indicate that the precision performance of our proposed
method matches the state-of-the-art levels. However, the recall of our method surpasses that of
existing methods. This demonstrates that our method can identify more confident examples without
compromising precision. This suggests that our approach effectively maintains high precision and
improves recall, thus selecting more confident examples with correct labels.

4.3 Classification Accuracy

We conducted extensive experiments on three synthetic noise datasets (Fashion-MNIST, CIFAR-10
and CIFAR-100) and two real-world datasets (CIFAR-10N and Clothing1M). For the synthetic
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Figure 5: Grad-CAM visualizations of hard confident examples. CS-Isoalte-DM successfully iden-
tifies these confident examples, but DivideMix does not. The activation map of CS-Isolate-DM
predominantly highlights semantic objects, whereas DivideMix emphasizes non-object pixels.

datasets, we employed instance-dependent noisy label generation methods, as proposed by [52]. We
experimented with noise rates of 0.2 and 0.4, denoted by IDN-0.2 and IDN-0.4 respectively. The
experiment results are presented in Tab. 3, Tab. 4 and Tab. 5. Our proposed method outperforms
existing methods in terms of test accuracy on both synthetic and real-world datasets containing label
noise. Notably, as the noise rate increases, the performance gap between our method, CS-Isolate-DM,
and the existing methods becomes more pronounced. This highlights the robustness and effectiveness
of our approach in scenarios with higher levels of label noise.

4.4 Hard Confident Examples Visualization

The proposed method is expected to select confident examples based on content factors rather than
style factors. To analyze this, we use Grad-CAM [42] to visualize the regions used to select confident
examples. The visualization results are shown in Fig. 5. The experiment is conducted on the real-
world dataset CIFAR-10N, and the noise type is “worst”. The experiment results demonstrate that our
method can correctly focus on the object in images. Specifically, when there exist uncontrolled style
factors, e.g., the person near the horse, the activation maps for CS-Isolate-DM can successfully focus
on the right object used for classifying the horse instead of uncontrolled style factors. In contrast, the
baseline method, DivideMix, focuses on the style factors that are not related to the class “horse” and
fails to select these confident examples.

5 Conclusion

This paper is motivated by the fact that only focusing on content factors such as semantic information
makes examples more discriminative. We, therefore, proposed a novel CS-Isolate approach to infer
and isolate the content information for classification. This is achieved by leveraging variational
inference and constructing auxiliary variables via data augmentation techniques to modify style
factors while regularizing content factors using confident examples. By training existing sample-
selection-based methods with our inferred content factors, CS-Isolate improves their effectiveness in
learning hard examples and classification accuracy on different image datasets.
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A A Theoretical View of Content and Style Isolation When Learning with
Noisy Labels

Figure 6: The
noise data gener-
ative process.

Noisy data generative process. Recall the data generative process in our main
paper, to learn latent factors by leveraging generative models. The generative
model has to model the data generative process of noisy data. Firstly, we introduce
the generative process of noisy data. We denote observed variables with gray
color and latent variables with white color. Specifically, the content factor Zc
is generated by the latent label Y . The different style domain Us give rise to
the different style factor Zs. Subsequently, the image X is generated by the
combined influence of the style factor Zs and the content factor Zc. Noisy labels
Ỹ are then generated based on the image X . In general cases, Zc and Zs can also
have statistical or causal dependencies. We follow existing work that assumes the
content factors are invariant across different styles [46].

Firstly, we introduce the concept of an uncontrolled style factor. This refers to a
specific style factor, denoted Zs′ , that remains invariant when a data augmentation
A is applied. To formalize this concept, consider an invertible function f : Z×X .
Let A denote a set of data augmentations, where each augmentation A is a subset
ranging from 1 to M . Additionally, let P (A) represent a probability distribution over the set of
these augmentations A. Now, consider Zs′ as a subset of style factors drawn from a larger set
Zs. We partition the latent factors z of each instance x into three distinct parts: uncontrolled style
factor Zs′ , content factor Zc, and style factors influenced by data augmentation Zs/s′ , such that
f−1(x) = [zs′ , zc, zs/s′ ] = z. The term zs/s′ denotes the set of style factors with style factors zs′
excluded.

Definition 1 (Uncontrolled Style Factors) We say that a style factor Zs′ as uncontrolled under the
following conditions:

For any augmentation A ∼ P (A), and for any instance x, the first ns′ components of the inverse
function f−1(x) remain unchanged even when A(x) is applied, i.e., f−1(x)1:ns′ = f−1(A(x))1:ns′ .

Here, f−1(x)1:ns′ is defined as the underlying partition that contains only and all the information
related to the style factor Zs′ of the instance x.

Why do confident examples encourage content-style isolation? Here, we explain the reason
that confident examples encourage content-style isolation. Suppose that there exist some uncontrolled
style factors that cannot be adjusted or manipulated through data augmentation. This implies that for
an image x, these style factors remain unaffected, regardless of the data augmentation techniques
employed. For instance, as discussed in our paper, in the CIFAR-10 dataset [25], some pictures with
the label “horse” contain a person. In this context, the "person" acts as a style factor. Existing data
augmentations cannot control this, as they cannot remove the person from images easily.

It’s essential to understand that although data augmentation cannot control all style factors, it still
offers the benefit of “partial isolation”. If we consider a situation where the uncontrolled style
factors are not effects of other style factors, then we can isolate other style factors affected by data
augmentation from content factors after matching the data likelihood [34]. This result is a modified
application of block-identifiability [46].

Specifically, let Ẑc,s′ := Ẑ1:nc+ns′ be a partition of learned representations of a generative model,
where Ẑc,s′ contain all and only information about Zc and Zs′ . Suppose that assumptions of Theorem
4.2 in [34] are satisfied, Ẑc,s′ is guaranteed to be learned, thereby allowing for the partial isolation of
the remaining style factors, denoted as Zs/s′ .

Despite Ẑc,s′ is guaranteed to be learned, the information from the uncontrolled style factor Zs′ is
entangled with the content factor Zc in the learned Ẑc,s′ . To isolate this information further, the
employment of confident examples is necessary.

Specifically, we can generate Ẑc,s′ using an invertible function according to the label Ŷ of the confi-
dent example, and subsequently reconstruct image x. Following the data likelihood matching [34], the
information related to the uncontrolled style factors becomes apparent due to the establishment of a

15



Algorithm 1 CS-Isolate-DM

Input: A noisy dataset S̃ , a style ID list Us, a data augmentation setA, confident threshold τ , total
epoch Tmax .

1: fψ1 , fψ2 , qϕ1
c
(Zc|X), qϕ2

c
(Zc|X)←WarmUP(S);

2: For T = 1, . . . , Tmax:
3: X ,U ← Co− guessing(S̃, fψ1

, fψ2
, qϕ1

c
, qϕ2

c
, τ);

4: X ′,U ′ ← MixUp(X ,U);
5: For k=1, 2:
6: Sample (x, ỹ, uc) ∼ S̃, us ∼ Us;
7: x̃← Aus(x);
8: Feed x̃ to encoders q̂ϕk

c
and q̂ϕk

s
to content factors zc and style factors zs, respectively;

9: Feed uc and us to decoders p̂θkc and p̂θks to get the prior p̂θkc (Zc|uc) and p̂θks (Zs|us);
10: Feed zc and zs to decoders p̂θk to get the reconstruct image ˆ̃x;
11: Feed zc to classifier head fψk

to predicted label ŷ;
12: Calculate the loss using Eq. 2 and update networks;

Output: The inference networks and classifier heads qϕ1
c
, qϕ2

c
, fψ1

, fψ2
.

Algorithm 2 CS-Isolate-Co

Input: A noisy dataset S̃, a style ID list Us, a data augmentation set A, Total epoch Tmax .
1: For T = 1, . . . , Tmax:
2: Fetch mini-batch S̄ from S̃;
3: Obtain S̄1 = argminS′:|S′|≥R(T )|S̄| ℓ(fψ1

, qϕ1
c
, S′);

4: Obtain S̄2 = argminS′:|S′|≥R(T )|S̄| ℓ(fψ2 , qϕ2
c
, S′);

5: For k=1, 2:
6: Sample (x, ỹ, uc) ∼ S̄k, us ∼ Us;
7: x̃← aus

(x);
8: Feed x̃ to encoders q̂ϕk

c
and q̂ϕk

s
to content factors zc and style factors zs, respectively;

9: Feed uc and us to decoders p̂θkc and p̂θks to get the prior p̂θkc (Zc|uc) and p̂θks (Zs|us);
10: Feed zc and zs to decoders p̂θk to get the reconstruct image ˆ̃x;
11: Feed zc and zs to classification model fψk

to predicted labels ŷ;
12: Calculate the loss using Eq. 3 and update networks;

Output: The inference networks and classifier heads qϕ1
c
, qϕ2

c
, fψ1 , fψ2 .

one-to-one mapping between the label Ŷ and Ẑc,s′ . This consequently forces examples with identical
labels to share the same Ẑc,s′ , regardless of any alterations in the uncontrolled style factor Z ′

s. This
approach, therefore, ensures that styles changes don’t affect the derived content representation for the
same label.

It is worth mentioning that to fully isolate uncontrolled style factors and content factors, it requires
that there exists confident examples with all possible uncontrolled style factors. This can be hard to
achieve when learning with noisy labels. Therefore, in general, the selected confident examples can
only encourage isolation but can not fully isolate uncontrolled style factors and content factors.

B Apply CS-Isolate to Existing Methods for Learning with Noisy Labels

Applying CS-Isolate to DivideMix. DivideMix [28] uses two classifiers to select confident
examples for each other. To utilize the unlabeled data, they combine the semi-supervised technique
MixMatch [5]. Specifically, the classifiers, after warmed up, are used to calculate the loss of examples.
They use a Gaussian Mixture Model (GMM) to divide the examples into confident and unlabeled
examples. Finally, confident and unlabeled examples are used to train the models based on the
MixMatch algorithm. Our method can be plugged into DivideMix easily. Specifically, we use a
decoder qϕ(Zc, Zs|X) to obtain content factor Zc and style factor Zs. A classifier head fψ is used to
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Algorithm 3 CS-Isolate-Me

Input: A noisy training dataset S̃, a noisy validation dataset S̃v, a style ID list Us, a data
augmentation set A, iteration number Tinner, Touter .

1: Initialize encoders (q̂ϕ0
c

and q̂ϕ0
s
), decoders (p̂θ0c , p̂θ0s and p̂θ0), a classification model fψ0 by

using the noisy training data and early stopping;
2: For i = 1, . . . , Touter:
3: For j = 1, . . . , Tinner:
4: Update the extracted confident examples Sl by using q̂ϕj−1

c
and fψj−1

;
5: Train networks by using the loss in Eq. 4 on confident examples Sl;
6: Obtain q̂ϕj

c
and fψj through the highest noisy validation accuracy throughout the training

procedure;
7: Break and output q̂ϕj−1

c
and fψj−1 if the highest validation accuracy is non-increasing in the

loop;
8: Re-initialize encoders (q̂ϕ0

c
and q̂ϕ0

s
), decoders (p̂θ0c , p̂θ0s and p̂θ0 ), a classification model fψ0 ;

9: Train networks by using the loss in Eq. 4 on confident examples Sl;
10: Obtain q̂ϕ0

c
and fψ0

through the highest noisy validation accuracy throughout the training
procedure;

11: Break and output q̂ϕj−1
c

and fψj−1
if the highest validation accuracy is non-increasing in the

loop;
Output: The inference network and the classification model qϕc , fψ .

predict labels, and only the content factors Zc are used as input. The prior distribution of the content
factors Zc is conditional on the auxiliary variable Uc, i.e., Pθc(Zc|Uc), where Uc is the content ID.
Similarly, the prior distribution of the style factor Zs is conditional on the auxiliary variable Us,
i.e., Pθs(Zs|Us), where Us is the style ID. A decoder Pθ(X|Zc, Zs) is used to reconstruct input
images. The combination of CS-Isolate and DivideMix is called CS-Isolate-DM. The loss function of
CS-Isolate-DM is shown in Eq. 2. Algorithm 1 delineates the full algorithm.

Ldm = LSl
+ λuLSu + λrLreg︸ ︷︷ ︸

DivideMix loss

+λELBOLELBO + λrefLref . (2)

Applying CS-Isolate to Co-Teaching. Co-Teaching [13] uses two classifiers to select confident
examples for each other. Proposed CS-Isolate can be embedded in Co-Teaching easily. Similar to
CS-Isolate-DM, we use a decoder qϕ(Zc, Zs|X) to obtain content factors Zc and style factors Zs. A
classifier head fψ is used to predict labels, and only the content factors Zc are used as input. The prior
distribution of the content factors Zc is conditional on the auxiliary variable Uc, i.e., Pθc(Zc|Uc),
where Uc is the content ID. Similarly, the prior distribution of the style factor Zs is conditional on the
auxiliary variable Us, i.e., Pθs(Zs|Us), where Us is the style ID. A decoder Pθ(X|Zc, Zs) is used to
reconstruct input images. We call the combined method as CS-Isolate-Co. Let Sl be the confident
examples selected by another classifier head. For each network, the loss is defined as:

Lco = E(x,ỹ)∼S̃ [1(x,ỹ)∈Sl
ℓce(fψ ◦ qϕc

(x), ỹ)]︸ ︷︷ ︸
Co-Teaching loss

+λELBOLELBO, (3)

where ℓce is the cross-entropy loss, 1 is the indicator function. The algorithm of CS-Isolate-Co-
Teaching is summarized in Algorithm 2.

We use a PreAct ResNet-18 as the backbone. We used Adam with default parameters to optimize the
encoder qϕc

, classifier head fψ , the encoder qϕs
and the decoder pθ. The initial learning rate is 0.001,

divided by 10 after 80 epochs.

Applying CS-Isolate to Me-Momentum. Me-Momentum proposes to use one classifier to select
confident examples. Then the parameters of the classifier will be reinitialized, and the classifier will
be trained on the confident examples. The confident examples and the parameters of the classifier are
updated alternately. We combine the Me-Momentum with our method and call it CS-Isolate-Me. Let
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Table 6: Means and standard deviations (percentage) of classification accuracy on CIFAR-10.
Sym-20% Sym-40% Sym-60% Sym-80% Pair-45%

CE 84.12 ± 0.20 78.82 ± 0.38 64.80 ± 0.47 47.39 ± 0.69 66.09 ± 0.96
Co-Teaching 88.74 ± 0.19 84.23 ± 0.81 77.93 ± 0.75 29.57 ± 1.39 76.65 ± 2.97
Forward 88.31 ± 0.23 82.73 ± 0.47 76.58 ± 1.59 47.18 ± 4.63 76.76 ± 4.94
T-Revision 87.83 ± 0.63 84.46 ± 0.73 77.39 ± 0.83 57.61 ± 3.93 72.81 ± 7.01
BLTM 76.54 ± 1.37 73.50 ± 1.38 58.94 ± 1.84 39.28 ± 4.00 67.97 ± 1.45
CausalNL 89.68 ± 0.09 86.37 ± 0.09 79.54 ± 0.09 29.72 ± 0.03 71.53 ± 0.37
Me-Momentum 91.44 ± 0.33 88.39 ± 0.34 82.58 ± 0.30 62.70 ± 0.59 66.41 ± 0.17
DivideMix 95.93 ± 0.04 94.51 ± 0.12 94.55 ± 0.07 92.43 ± 0.13 70.86 ± 0.87

CS-Isolate-DM 96.05 ± 0.13 95.57 ± 0.12 94.65 ± 0.10 92.57 ± 0.10 87.54 ± 0.83

Table 7: Precision ratio (percentage) of confident examples on CIFAR-10N.
Worst Aggregate Random 1 Random 2 Random 3

Co-Teaching 89.49 ± 0.11 96.61 ± 0.04 96.06 ± 0.03 95.65 ± 0.02 96.01 ± 0.03
Me-Momentum 88.14 ± 1.10 97.16 ± 0.19 96.18 ± 0.47 95.96 ± 0.27 94.78 ± 0.47

CS-Isolate-Co 90.88 ± 0.08 97.25 ± 0.04 96.95 ± 0.03 96.60 ± 0.06 96.82 ± 0.05
CS-Isolate-Me 90.74 ± 1.16 97.72 ± 0.07 96.64 ± 0.21 96.92 ± 0.17 96.14 ± 0.22

Table 8: Recall ratio (percentage) of confident examples on CIFAR-10N.

Worst Aggregate Random 1 Random 2 Random 3

Co-Teaching 89.11 ± 0.07 95.43 ± 0.04 92.59 ± 0.04 93.19 ± 0.02 93.00 ± 0.04
Me-Momentum 92.02 ± 2.63 96.90 ± 1.91 94.58 ± 2.07 95.80 ± 2.20 96.22 ± 1.82

CS-Isolate-Co 90.53 ± 0.06 96.10 ± 0.02 93.44 ± 0.04 94.13 ± 0.06 93.79 ± 0.03
CS-Isolate-Me 95.76 ± 1.55 97.76 ± 0.79 97.10 ± 0.45 96.34 ± 0.81 96.70 ± 0.89

Sl be the confident examples selected by the classifier of the last iteration . For each network, the
loss is defined as:

Lme = E(x,ỹ)∼S̃ [1(x,ỹ)∈Sl
ℓce(fψ ◦ qϕc

(x), ỹ)] + λELBOLELBO. (4)

where ℓce is the cross-entropy loss, 1 is the indicator function. The algorithm of CS-Isolate-Me-
Momentum is summarized in Algorithm 3.

C Experiments

In this section, we first introduce the experiment results of the proposed methods, including the
classification of CS-Isolate-DM on class-dependent label noise, sample selection quality of CS-
Isolate-Co and CS-Isolate-Me on the real-world dataset CIFAR-10N, and classification performance
of CS-Isolate-Co and CS-Isolate-Me on real-world the dataset CIFAR-10N. Second, we provide the
details of data augmentation used in methods. Then, we conduct the ablation study for CS-Isolate-DM.
Finally, we visualize the easy confident examples, content factors, and style factors.

C.1 Experiments on Class-dependent label noise

We report the classification performance of CS-Isolate-DM on class-dependent label noise, including
symmetry-flipping noise and pair-flipping noise. The dataset used in the experiment is CIFAR-10.
The experiment results are shown in Tab. 6. The experiment results demonstrate that CS-Isolate-DM
can also perform well under class-dependent label noise.

C.2 Applying CS-Isolate to Existing Sample-Selection Methods

We combine our method with existing methods including DivideMix, Co-Teaching, and Me-
Momentum.
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Table 9: Means and standard deviations (percentage) of classification accuracy on CIFAR-10N.
Worst Aggregate Random 1 Random 2 Random 3

Co-Teaching 82.04 ± 0.06 91.11 ± 0.10 89.61 ± 0.18 88.98 ± 0.11 89.49 ± 0.06
Me-Momentum 84.21 ± 0.70 91.34 ± 0.16 89.51 ± 0.42 90.14 ± 0.28 89.62 ± 0.31

CS-Isolate-Co 83.93 ± 0.17 91.30 ± 0.10 90.57 ± 0.14 90.14 ± 0.03 90.76 ± 0.15
CS-Isolate-Me 86.95 ± 0.13 91.49 ± 0.17 90.30 ± 0.12 90.18 ± 0.07 90.22 ± 0.21

Table 10: Data Augmentation Techniques
Data augmentation Description
Shift scale rotation Randomly shifts, scales, and rotates the image.
Random crop Randomly crops the image to a specified height and width.
Horizontal flip Horizontally flips the image randomly.
Random brightness contrast Randomly changes the brightness and contrast of the image.
Color jitter Randomly adjusts image color properties.
Random to gray Converts the image to grayscale with a specified probability.

In the experiments for Co-Teaching and Me-Momentum, we use a PreAct ResNet-18 as the backbone.
We use SGD with momentum 0.9 and weight decay 10−4 to optimize the encoder qϕc

and classifier
head fψ. We used Adam with default parameters to optimize the encoder qϕs

and the decoder pθ.
The network is trained for 100 epochs. The initial learning rate for SGD is 0.01, and for Adam is
0.001. The learning rate is divided by 10 after 40 epochs and 80 epochs.

C.3 Improves Sample Selection Quality with CS-Isolate

We conducted experiments on CIFAR-10N, a dataset reflecting real-world label noise. We illustrate
the precision and recall ratios of our confident examples in Tab. 7 and Tab. 8. By employing our
method, existing methods achieve improvements in terms of precision and recall. The experiment
results indicate that our approach can efficiently improve the quality and number of confident
examples.

C.4 Comparison of Classification Performance

The test accuracy of the baseline methods, as well as the combination of our proposed methods and
the baselines, is shown in Tab. 9. The results demonstrate that improving the quality of the confident
examples by using our method boosts the classification performance of the existing methods.

C.5 Data Augmentation Details

The detailed description of data augmentation techniques used in our method is shown in Tab 10.
When generating a data augmentation Ai ∈ A, the probabilities to apply shift scale rotation, random
crop and horizontal flip, random brightness contrast, color jitter, and random to gray are 0.5, 1, 0.5,
0.5, 0.8, and 0.2, respectively, then the implementation details of the data augmentations will be
recorded for the replaying. For instance, if a data augmentation Ai flips the image horizontally, its
behavior will be recorded. When the data augmentation Ai is used during the training process, the
images used to train the network will be applied a horizontal flip.

C.6 Ablation Study

In this subsection, we present the results of the ablation study on the hyper-parameters λELBO,
λref and the dimensions of Zc and Zs. The experiments are conducted on the real-world dataset
CIFAR-10N with the noise type “worst”. The experiment results are shown in Fig. 7. The experiment
results show that λELBO and λref are not sensitive in the range from 0.0005 to 0.005. In our
experiments, we set the value of both λELBO and λref as 0.001, which is the middle value between
0.0005 and 0.005. For the ablation study on the dimension of Zc and Zs, the test accuracy increases
gradually until the dimension is 32. After the dimension is larger than 64, the test accuracy decreases.
We set the dimension as 32 in our experiments.
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Figure 7: Ablation study on the hyper-parameters λELBO, λref and the dimensions of Zc and Zs.
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Figure 8: Grad-CAM visualizations of easy confident examples. Both CS-Isoalte-DM and DivideMix
successfully identify these confident examples. The activation map of CS-Isolate-DM predominantly
highlights semantic objects.

C.7 Visualization of Grad-CAM on Easy Confident Examples

We visualize the Grad-CAM for CS-Isolate-DM and DivideMix on easy confident examples. The easy
confident examples are the examples identified successfully by both CS-Isolate-DM and DivideMix.
The dataset is CIFAR-10N, and the noisy type is “worst”. Fig. 8 shows the visualizations of easy
confident examples. When the confident example is easy, the Grad-CAM visualizations for CS-
Isolate-DM and DivideMix do not differ significantly. The activation maps for both CS-Isolate-DM
and DivideMix can focus on the objects. However, when the confident example is hard, only the
activation maps for CS-Isolate-DM can focus on the objects, which has already been shown in the
main paper.

C.8 Visualization of Grad-CAM for Content Factors and Style Factors

We visualize the Grad-CAM of Style and Content Factors for CS-Isolate-DM. The visualization
results are shown in Fig. 9. Grad-CAM of content factors mainly concentrates on the objects, while
Grad-CAM of style factors mainly concentrates on other pixels in the images. The visualization
results demonstrate that CS-Isolate-DM can isolate content and style factors successfully.
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Figure 9: Grad-CAM Visualizations of Style and Content Factors for CS-Isolate-DM. The activation
map corresponding to the content factor prominently highlights semantic objects, indicating the
model’s emphasis on capturing meaningful context. Conversely, the activation maps associated with
the style factor predominantly focus on non-object pixels across the images. The results show that
CS-Isolate-DM can isolate the content factors from styles.
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