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1 Proofs and discussion

We provide more detailed proofs and discussion of the theorems in this section.
Definition 1 (Grouping function and input space partition). A grouping function g is a mapping
from an input x to a group indicator g(x) = G ∈ G, with the following two properties:

∀x1, x2, g(x1) ̸= g(x2) → x1 ̸= x2 (1)

∀Ĝ ∈ G,∃x̂ ∈ D, g(x̂) = Ĝ (2)

The group indicator G is also used to denote the induced subset {x|g(x) = G}.

Lemma 1. A partition of the input space D is defined by P = {{x|g(x) = Ĝ}|Ĝ ∈ G}.

Proof. A valid partition P of a set should: 1. Not contain the empty set (∅ /∈ P ). 2. The union of the
sets in P is equal to the universe set U ({∪G|G ∈ P} = U ). 3. The intersections of any two subsets
should be empty (∀G1 ∈ P,G2 ∈ P,G1 ̸= G2, G1 ∩G2 = ∅). By definition, the subsets in P are
non-overlapping (by Eq. (1)), which guarantees 3, and non-empty (by Eq. (2)), which guarantees 1.
The grouping function is defined on all x ∈ D, which guarantees 2. So P is a valid partition on set D
of all valid x.

With the partition defined above, we can now define the partitioned calibration error.
Definition 2 (Partitioned calibration error (PCE)).

PCE(S, g,L, f,D) =
∑
P∈P

p(P )
∑
G∈P

p(G)L(S(G), S(f(G))) (3)

Where P is the set of all concerned partitions, p(P ) is the probability of choosing partition P ,
p(G) =

∫
(x,y)∈G

p(x, y) is the probability of observing a data sample belonging to group G, S(·) is
a specific statistical magnitude that can be calculated on a group. A straightforward definition of S(·)
is the average function S(G) =

∫
x,y

pG(x, y)y, and S(f(G)) =
∫
x,y

pG(x, y)f(x), where y is the
one-hot label with yi = 1 if x ∈ i th class and yi = 0 otherwise. f(x)i is the predicted probability
of x being ith class. L(·, ·) measures the difference between S(G) and S(f(G)). pG(x, y) is the
normalized probability density function of x ∈ G, that is,

pG(x, y) =

{
0, if x /∈ G
p(x,y)
p(G) , if x ∈ G

(4)
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We will write pG(x, y) as pG in the following contents for simplicity. In summary, the aforementioned
Eq. (3) defines PCE, which quantifies the expected disparity between the predicted probabilities and
the true probabilities within each subgroup, after randomly selecting a partition.
Example 1 (Expected calibration error (ECE)[1]). With g(x) = Bin(f(x)), where Bin(·) returns
the corresponding Bin ID, L(a, b) = |a− b|, and keep S as the average function.

PCE =
∑
G∈P

p(G)L(S(G), S(f(G))) =
∑
G∈P

p(G)|
∫
x,y

pGf(x)−
∫
x,y

pGy| (5)

and its empirical estimation is

PCE =
∑
G

|G|
|D|

|
∑

(x,y)∈G

1

|G|
f(x)−

∑
(x,y)∈G

1

|G|
y| (6)

which is exactly the ECE estimator defined in [1] Eq.3.

Note that in the above ECE, there is only one partition. We provide an example of using multiple
partitions in the following example.
Example 2 (Class-wise ECE[2]). There are M partitions corresponding to M classes. The partition
of class u is denoted by Pu, the corresponding grouping function is defined by gu(x) = Bin(f(x)u).

Classwise-ECE =
∑
Pu

1

M

∑
G∈Pu

|G|
|D|

|
∑

(x,y)∈G

1

|G|
f(x)−

∑
(x,y)∈G

1

|G|
y| (7)

which is exactly the same as Eq. 4 in [2].
Example 3 (Top-label calibration error (TCE)[3]). With g(x) = Bin(maxi f(x)i), S(G) =
1
|G|

∑
I(y = argmaxi f(x)i), and S(f(G)) = 1

|G|
∑

(x,y)∼G maxi f(x)i. Resulting in the Top-
label calibration error defined in [3].

From the above examples, it can be observed that the sole distinction among the aforementioned
calibration metrics lies in the employed grouping function. Hereinafter, we shall delve into two
distinctive scenarios of PCE to shed light on the intricate interplay between calibration and accuracy.
Example 4 (One-to-one grouping function). If the grouping function g(·) is a bijection, then every
different x belongs to different groups, which corresponds to point-wise accuracy.

PCE =
∑
P∈P

p(P )
∑
G∈P

p(G)L(S(G), S(f(G))) =

∫
x,y

p(x, y)L(y, f(x)) (8)

Lemma 2. Minimizing this PCE with bijective grouping function will converge to f(x) = p(y|x) if
a proper score function L (e.g., cross-entropy or Brier score[4]) is used with unlimited data.

Proof. Assuming we are using the cross-entropy loss, the PCE will become

PCE =
∑
P∈P

p(P )
∑
G∈P

p(G)L(S(G), S(f(G))) (9)

=

∫
x,y

p(x, y)L(y, f(x)) (10)

= −
∫
x,y

p(x, y) log f(x)y (11)

= −
∫
x

p(x)

∫
y

p(y|x) log f(x)y (12)

≥ −
∫
x

p(x)

[∫
y

p(y|x) log f(x)y +KL(p(y|x), f(x))
]

(13)

= −
∫
x

p(x)

[∫
y

p(y|x) log f(x)y +
∫
y

p(y|x) log p(y|x)− p(y|x) log f(x)y
]

(14)

= −
∫
x

p(x)

∫
y

p(y|x) log p(y|x) (15)
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Eq. (13) holds because the KL divergence is non-negative KL(·, ·) ≥ 0, and the optimal loss Eq. (15)
is achieved when KL(p(y|x), f(x)) = 0, that is, p(y|x) = f(x). If the Brier score is used, the PCE
will become

PCE =
∑
P∈P

p(P )
∑
G∈P

p(G)L(S(G), S(f(G))) (16)

=

∫
x,y

p(x, y)(y − f(x))2 (17)

To find the optimal f(x), we take derivative with respect to f(x) and set to 0

∂PCE

∂f(x)
=

∫
x,y

p(x, y)2(y − f(x)) = 0 (18)∫
x

p(x)

∫
y

p(y|x)(y − f(x)) = 0 (19)∫
y

p(y|x)(y − f(x)) = 0 (20)∫
y

p(y|x)y = f(x)

∫
y

p(y|x) (21)

f(x) = p(y|x) (22)

Eq. (20) holds because the derivative should be zero for all the different x. In Eq. (21), we use the
one-hot encoding of y.

The uncertainty reflected by p(y|x) is called aleatoric uncertainty[5] and is the best a model can
achieve corresponding to Bayes error[6, 7].

Example 5 (Constant grouping function). If the grouping function g is a constant function with
∀x1, x2, g(x1) = g(x2), then every different x belongs to a single group.

PCE = L
(∫

x,y

p(x, y)f(x),

∫
x,y

p(x, y)y

)
(23)

which is minimized by the model outputs the marginal distribution f(x) =
∫
(x,y)

p(x, y)y = p(y).

Proof. If f(x) = p(y), note that p(y) here is a constant vector, so we use py to denote p(y),∫
x,y

p(x, y)py = py

∫
x,y

p(x, y) (24)

= py (25)

and ∫
x,y

p(x, y)y = py (26)

So f(x) = py minimizes Eq. (23). We also need to emphasize that f(x) = py is the simplest
minimizer of Eq. (23), but not the unique one. For example, f(x) = p(y|x) also minimizes Eq.
(23).

The constant grouping function captures the vanilla uncertainty that we do not have any knowledge
about x, and we only know the marginal distribution of y.

An essential characteristic of calibration methods is their ability to preserve accuracy[1], ensuring
that the classes with the highest probabilities remain unchanged after the calibration process.

Theorem 1 (Accuracy-preserving of group calibration). Group calibration with any group-wise
accuracy-preserving base calibration method is also accuracy-preserving.
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Proof. Since the groups in the same partitions do not overlap, the accuracy-preserving property is
trivial with one partition. Assuming model predictions f(x), and we have two partitions with the
calibrated predictions f̂1(x) and f̂2(x), respectively. If i is the predicted class with the highest
probability, that is,

∀j ̸= i, f(x)i > f(x)j (27)
Since we are using accuracy-preserving calibrators within each group, the predicted classes are also i

for f̂1 and f̂2,

∀j ̸= i, f̂1(x)i > f̂1(x)j (28)

∀j ̸= i, f̂2(x)i > f̂2(x)j (29)

Then we take the average of Eq. (28) and Eq. (29)

∀j ̸= i,
1

2
(f̂1(x)i + f̂2(x)i) >

1

2
(f̂1(x)j + f̂2(x)j) (30)

which means group calibration with two partitions is accuracy-preserving, the case of more than two
partitions can be proved with induction straightforwardly.

The Theorem. 1 guarantees our group calibration method remains accuracy-preserving with accuracy-
preserving base methods such as temperature scaling[8] or ensemble temperature scaling [1].

2 On some design choices of group calibration

Due to space constraints, we did not delve into the detailed design aspects of our method in the paper.
In this section, we will provide a comprehensive discussion of our rationale behind the selection of
the training set for calibration and the choice of group number.

2.1 End-to-end training of GC+TS

In our method, we introduced a grouping function, which can be seen as adding complexity to the
calibration network. This raises the question of whether the performance improvement of our method
is solely due to the increased complexity of the network. This question can be addressed from two
aspects.

On the one hand, there have been attempts in the past to use more complex calibration functions,
such as the Vector Scaling or Matrix Scaling methods[8]. However, these methods often exhibit poor
performance in experiments[8] (also see Table. (8)), primarily due to insufficient data and the risk of
overfitting with a large number of parameters. Therefore, simply increasing the complexity of the
network does not necessarily improve calibration performance.

On the other hand, we also attempted to directly train the GC+TS method end-to-end, without using
the two-stage training approach proposed in the paper, where the grouping function is learned on the
validation set and the calibration function is learned on the holdout dataset. The experimental results
in Table. (1) showed that this simple end-to-end training approach performed poorly, indicating that it
leads to severe overfitting. In contrast, our proposed two-stage training method enables the discovery
of better grouping strategies while avoiding the issue of overfitting, thereby improving the overall
performance.

2.2 The usage of validation dataset

In our comparative experiments, we employed a separate dataset Dho to train the calibration model,
which was not used during the training phase. Additionally, our method made use of the validation set
Dval during training. This raises the question: Does the improved performance of our method stem
from the utilization of additional data Dval? In fact, our experiments revealed that employing the
validation set Dval in other calibration methods did not consistently enhance the performance on the
test set, regardless of whether the validation set was used alone or in conjunction with the hold-out
dataset Dho. In Table. (2), we have compared the TS and ETS methods using different training
sets. It is evident that, in most cases, the ECE trained with a hold-out Dho dataset exhibits lower
values compared to the validation set Dval, particularly noticeable on the Imagenet dataset. Only in a
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Table 1: End-to-end training of GC+TS method

Dataset Model GC+TS(e2e) GC+TS GC+ETS

CIFAR10 Resnet152 0.0105 0.0079 0.0089
CIFAR10 Shufflenet 0.0167 0.0099 0.0093
CIFAR10 VGG11 0.0169 0.0120 0.0122
CIFAR100 Densenet121 0.0613 0.0411 0.0280
CIFAR100 Resnet50 0.0561 0.0427 0.0269
CIFAR100 VGG19 0.0532 0.0414 0.0360
Imagenet Resnet18 0.0220 0.0173 0.0100
Imagenet Resnet50 0.0358 0.0174 0.0103
Imagenet Swin 0.0450 0.0366 0.0193

Table 2: We have listed the performance of TS and ETS trained on the val, ho, and val+ho datasets,
along with a comparison to our proposed method. The best performance on each dataset is denoted in
italics, while the overall best performance across all methods is indicated in bold.

Dataset Model
TS ETS GC+TS(ours) GC+ETS(ours)

val ho val+ho val ho val+ho val+ho

CIFAR10 Resnet152 0.0130 0.0086 0.0124 0.0076 0.0101 0.0070 0.0079 0.0089
CIFAR10 Shufflenet 0.0188 0.0107 0.0171 0.0144 0.0103 0.0130 0.0099 0.0093
CIFAR10 VGG11 0.0096 0.0125 0.0097 0.0194 0.0135 0.0182 0.0120 0.0122

CIFAR100 Densenet121 0.0383 0.0418 0.0390 0.0274 0.0289 0.0269 0.0411 0.0280
CIFAR100 Resnet50 0.0444 0.0435 0.0442 0.0284 0.0292 0.0290 0.0427 0.0269
CIFAR100 VGG19 0.0470 0.0485 0.0481 0.0504 0.0472 0.0496 0.0414 0.0360
Imagenet Resnet18 0.0192 0.0178 0.0183 0.0174 0.0104 0.0160 0.0173 0.0100
Imagenet Resnet50 0.0214 0.0182 0.0208 0.0176 0.0102 0.0165 0.0174 0.0103
Imagenet Swin 0.0461 0.0367 0.0452 0.0222 0.0218 0.0216 0.0366 0.0193

few instances, employing the val and val+ho sets resulted in improved performance. However, our
proposed approach consistently achieves superior performance in the majority of scenarios.

This observation suggests that the performance improvement of our method is not solely attributed to
the usage of the validation set Dval, but rather to our method’s ability to identify favorable partitions
from the validation set Dval.

2.3 Why not use more than two groups

In our paper, we conducted experiments to investigate the impact of the number of groups, and the
results indicated that increasing the number of groups beyond a certain point can lead to a decrease
in performance. However, there is a notable improvement when transitioning from one group (TS
method) to two groups (GC+TS), which is an intriguing finding. Here, we will qualitatively discuss
this phenomenon.

According to our proposed PCE metric, a method should be calibrated across any partition. However,
finer-grained partitions can introduce larger estimation errors within each group, and a finer partition-
ing may not necessarily result in better calibration performance. This is precisely why we proposed
learning the grouping function. However, this explanation may not fully elucidate why two groups
resulted in the optimal performance, rather than three or four groups. In theory, having more groups
should provide the calibration function with greater flexibility, enabling it to learn more effectively.

Indeed, we believe that by fixing the number of groups to two and increasing the number of partitions,
we can achieve a balance between the accuracy of statistical estimation and the flexibility of the
calibration function. This is because each group within each partition can be different, resulting in
each sample having a calibration function belonging to a distinct group with different parameters.
Therefore, in practice, the flexibility of the calibration function can increase with the number of
partitions. On the other hand, using only two groups can achieve similar effects to having more than
two groups. For example, having a single partition with groups [[1], [2], [3]] is similar to having
three partitions with groups [[1], [2, 3]], [[2], [1, 3]], and [[3], [1, 2]], respectively. In both cases,
they constrain the calibration errors within the groups [1], [2], and [3].
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In summary, we believe that increasing the number of partitions is more effective than increasing the
number of groups in achieving better results.

3 Measuring the accuracy preserving performance

In existing research, it is generally believed that preserving accuracy entails ensuring that the
calibrated probabilities of the most probable class remain consistent with the pre-calibrated
probabilities[1]. However, we have discovered certain limitations to this criterion in practical
applications. Specifically, when the calibrated probabilities of the highest and second-highest classes
are extremely close, it becomes challenging to determine if the difference between them can be
utilized for the final decision-making process. While numerically we can still identify the class with
the highest probability, intuitively, this prediction outcome has already lost the ability to single out the
class with the highest probability and instead yields multiple classes with equally high possibilities.

We have observed that all accuracy-preserving calibration methods exhibit a reduction in the gap
between the highest and second-highest probabilities after calibration, which aligns with our expecta-
tions. This is because we believe deep models generally tend to be overly optimistic, necessitating a
decrease in the probabilities assigned to highly predicted classes. Table. (3) reports the differences
in predicted probabilities (highest - second highest) for the TS, ETS, and IRM methods. It can
be observed that all three methods reduce the optimism in predictions. Specifically, we report the
predicted probability differences for the IRM method with epsilon values of 1e-3, 1e-4, and 1e-9, with
1e-9 being the recommended value in the article. We found that as the epsilon value decreases, the
accuracy-preserving capability of the IRM method gradually weakens, resulting in smaller differences.
This, in turn, leads to an increasing indistinguishability among certain prediction outcomes.

Table 3: The average difference between the largest and second-largest predicted probabilities.

Dataset Model Uncal TS ETS IRM(9) IRM(4) IRM(3) GC+TS GC+ETS

CIFAR10 Resnet152 0.966660 0.939089 0.930004 0.938682 0.938685 0.938710 0.938935 0.930816
CIFAR10 Shufflenet 0.924464 0.866725 0.857069 0.867618 0.867623 0.867675 0.866727 0.857091
CIFAR10 VGG11 0.945276 0.895988 0.875528 0.888638 0.888644 0.888694 0.895414 0.877650

CIFAR100 Densenet121 0.781146 0.757266 0.734962 0.745235 0.745239 0.745272 0.757469 0.734396
CIFAR100 Resnet50 0.789668 0.765334 0.737859 0.749342 0.749346 0.749383 0.765930 0.737448
CIFAR100 VGG19 0.851717 0.712838 0.675551 0.715064 0.715079 0.715209 0.713981 0.676106

Imagenet Resnet18 0.607665 0.579059 0.579886 0.589781 0.589782 0.589798 0.579222 0.580189
Imagenet Resnet50 0.690282 0.652209 0.650268 0.664278 0.664281 0.664304 0.652457 0.650676
Imagenet Swin 0.703577 0.764912 0.726672 0.722184 0.722182 0.722164 0.765201 0.727472

To explore the impact of this effect on prediction outcomes, we report the minimum value of (highest
probability - second highest probability) on the test set in Table. (4). It can be observed that the TS,
ETS, GC+TS, and GC+ETS methods maintain a similar magnitude for this difference as compared
to the uncalibrated values, while IRM significantly reduces this difference in magnitude. When the
epsilon value is set to 1e-9, the difference between the two probabilities becomes indistinguishable
and evaluates to zero using 32-bit floating-point representation. This phenomenon is more pronounced
in the Imagenet dataset, where even with an epsilon value of 1e-4, differentiation is not possible.
Although an epsilon value of 1e-3 ensures differentiation in floating-point precision, the difference
is reduced to the order of 1e-8. In light of this observation, we classify IRM with eps=1e-3 as
accuracy-preserving and IRM with eps=1e-9 as non-accuracy-preserving in our paper. It is important
to emphasize that even with eps=1e-3, IRM significantly weakens the discriminative ability of
prediction probabilities, and its accuracy-preserving capability is inferior to the other methods
mentioned.

4 Training complexity

Due to significant differences in implementation among the various methods, directly analyzing
complexity may not accurately reflect their actual running speeds. For instance, methods involving
extensive matrix operations, such as matrix scaling, may have substantial computational requirements,
but they can leverage GPU parallelization for efficient execution. On the other hand, methods like
histogram binning may have lower computational requirements, but their calculations are difficult to
parallelize, resulting in potentially longer actual execution times.
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Table 4: The minimum difference between the largest and second-largest predicted probabilities.

Dataset Model Uncal TS ETS IRM(9) IRM(4) IRM(3) GC+TS GC+ETS

CIFAR10 Resnet152 1.795E-03 1.073E-03 1.004E-03 0.000E+00 1.909E-07 1.985E-06 1.066E-03 9.897E-04
CIFAR10 Shufflenet 2.641E-04 1.534E-04 1.458E-04 0.000E+00 2.563E-08 3.016E-07 1.611E-04 1.590E-04
CIFAR10 VGG11 1.954E-03 1.122E-03 9.833E-04 0.000E+00 1.802E-07 1.783E-06 1.015E-03 9.055E-04

CIFAR100 Densenet121 1.621E-04 1.304E-04 1.282E-04 0.000E+00 8.345E-09 1.211E-07 1.414E-04 1.317E-04
CIFAR100 Resnet50 5.580E-05 4.733E-05 4.515E-05 0.000E+00 2.980E-10 5.588E-08 4.985E-05 4.646E-05
CIFAR100 VGG19 3.596E-04 1.862E-04 1.633E-04 0.000E+00 2.667E-08 2.839E-07 1.617E-04 1.387E-04

Imagenet Resnet18 2.672E-06 2.142E-06 2.295E-06 0.000E+00 0.000E+00 3.725E-10 2.178E-06 2.334E-06
Imagenet Resnet50 8.310E-06 5.745E-06 6.232E-06 0.000E+00 0.000E+00 1.341E-09 5.946E-06 6.426E-06
Imagenet Swin 8.106E-05 1.022E-04 8.781E-05 0.000E+00 5.215E-10 6.765E-08 8.153E-05 8.153E-05

To address this, we conducted experiments to compare the running speeds of different methods. In
our comparisons, we utilized the open-source implementations provided in the original papers of
each method to ensure that the algorithm implementations themselves were adequately optimized. To
ensure fairness in the comparison, we employed the same hardware across all experiments (Nvidia
RTX 2080Ti GPU, Intel(R) Xeon(R) Silver 4110 CPU, 120 GB memory).

Figure. 1 presents a comparison of the training times for various calibration methods on the CIFAR10
and ImageNet datasets. We can observe that on the CIFAR10 dataset, most of the CPU-based methods
such as histogram binning and beta calibration have very short running times (less than a second)
and can be considered negligible. On the other hand, methods that require GPU computations,
such as GC+TS and matrix scaling, generally exhibit slower speeds but still complete in less than a
minute. This is partly due to the time required for GPU communication in GPU-based methods, and
also because the parallelization advantages of these methods become more pronounced with larger
datasets.

On the ImageNet dataset, the speed differences among various methods become more pronounced.
This can be attributed to the larger number of data points and the increased number of classes in
ImageNet. Among all the compared methods, IRM and ETS exhibit the fastest speeds, while DirODIR
and BBQ methods are the slowest. The slowest method (DirODIR) takes approximately 50 minutes,
which is still acceptable considering the size of the ImageNet dataset. In contrast, our methods,
GC+TS and GC+ETS, require only approximately 100 seconds and 300 seconds, respectively. This
demonstrates their capability to handle datasets several orders of magnitude larger or accommodate
increased numbers of partitions and groups. Therefore, computational complexity is not a bottleneck
for our methods.
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Figure 1: Comparison of the training times for various calibration methods on CIFAR10 and
Imagenet datasets.

5 Other metrics and analysis

Due to the limitations of ECE in capturing accuracy, existing research also recommends the concurrent
use of proper scoring rules to measure the effectiveness of calibration. In the following analysis, we
compare the negative log-likelihood and Brier score of each comparative method.
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In Table. (5) and Table. (6), we observe that our methods, GC+TS and GC+ETS, achieve the best
performance on the majority of datasets. This finding provides further evidence that our approach
attains superior calibration performance on the whole by optimizing calibration metrics across
different partitions. It is worth noting that we observed a weak discriminative power of the Brier
Score among the various methods. The performance of most methods was quite similar in terms of
the Brier Score. Therefore, we believe that although both the Negative Log-Likelihood (NLL) and
Brier Score are proper scoring rules, the NLL is better suited for measuring calibration performance.

Table 5: Negative log-likelihood (NLL) of accuracy-preserving methods.

Dataset Model Uncal TS ETS IRM(AP) GC+TS(ours) GC+ETS(ours)

CIFAR10 Resnet152 0.1747 0.1461 0.1489 0.1569 0.1448 0.1482
CIFAR10 Shufflenet 0.3164 0.2648 0.2666 0.2782 0.2643 0.2670
CIFAR10 VGG11 0.3133 0.2576 0.2616 0.2656 0.2555 0.2595

CIFAR100 Densenet121 0.8335 0.8272 0.8463 0.8299 0.8251 0.8437
CIFAR100 Resnet50 0.8348 0.8284 0.8484 0.8205 0.8236 0.8431
CIFAR100 VGG19 1.3939 1.1241 1.1303 1.1237 1.1151 1.1222

Imagenet Resnet18 1.2729 1.2659 1.2757 1.2688 1.2648 1.2752
Imagenet Resnet50 1.0126 0.9988 1.0094 1.0020 0.9972 1.0086
Imagenet Swin 0.8255 0.7981 0.8102 0.7550 0.7963 0.8087

Table 6: Brier score of accuracy-preserving methods.

Dataset Model Uncal TS ETS IRM(AP) GC+TS(ours) GC+ETS(ours)

CIFAR10 Resnet152 0.0069739 0.0066344 0.0066347 0.0067082 0.0066010 0.0066075
CIFAR10 Shufflenet 0.0137624 0.0129163 0.0129165 0.0130136 0.0128871 0.0128920
CIFAR10 VGG11 0.0126271 0.0117278 0.0116770 0.0117384 0.0116741 0.0116410
CIFAR100 Densenet121 0.0030042 0.0029858 0.0029806 0.0029726 0.0029834 0.0029778
CIFAR100 Resnet50 0.0030039 0.0029786 0.0029702 0.0029536 0.0029704 0.0029628
CIFAR100 VGG19 0.0042033 0.0037378 0.0037180 0.0037122 0.0037116 0.0036893
Imagenet Resnet18 0.0004200 0.0004199 0.0004195 0.0004200 0.0004197 0.0004193
Imagenet Resnet50 0.0003499 0.0003489 0.0003485 0.0003490 0.0003486 0.0003483
Imagenet Swin 0.0002833 0.0002847 0.0002826 0.0002801 0.0002842 0.0002821

In Table. (7), we also compared the methods based on the Maximum Calibration Error (MCE)[8],
and we observed that our method performed well on most datasets. The MCE demonstrated a higher
level of discrimination, showing significant differences among the methods. However, we believe
that the MCE may not align well with most real-world applications as it only reflects the maximum
error in predicted probabilities. Therefore, its relevance is limited to specific application scenarios
and may not provide comprehensive insights into overall calibration performance.

Table 7: MCE of accuracy-preserving methods.

Dataset Model Uncal TS ETS IRM(AP) GC+TS(ours) GC+ETS(ours)

CIFAR10 Resnet152 0.3174 0.2475 0.2249 0.2336 0.2469 0.2294
CIFAR10 Shufflenet 0.7058 0.1641 0.3548 0.2906 0.1469 0.1779
CIFAR10 VGG11 0.2693 0.1372 0.2676 0.1930 0.1580 0.2203

CIFAR100 Densenet121 0.1402 0.1189 0.1608 0.1451 0.1175 0.1527
CIFAR100 Resnet50 0.1846 0.2370 0.2811 0.4409 0.1621 0.2280
CIFAR100 VGG19 0.4546 0.1799 0.1267 0.1503 0.1881 0.1185
Imagenet Resnet18 0.0511 0.0535 0.0473 0.0432 0.0575 0.0486
Imagenet Resnet50 0.0708 0.0559 0.0487 0.0498 0.0541 0.0467
Imagenet Swin 0.0478 0.1149 0.0476 0.0479 0.1008 0.0454

In Table. (8), we reported the Negative Log-Likelihood (NLL) of the non-accuracy-preserving
methods. Since NLL is a proper scoring rule, it can reflect both calibration and accuracy. It can be
observed that our method exhibits a clear advantage in terms of NLL, indicating that our approach
can effectively balance calibration and accuracy.
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Table 8: Negative log-likelihood of non-accuracy-preserving methods.

Dataset Model Hist.B Beta BBQ DirODIR GPC IRM(NAP) GC+TS(ours)

CIFAR10 Resnet152 0.8395 0.1633 0.2251 0.1554 0.1581 0.1626 0.1448
CIFAR10 Shufflenet 1.2102 0.2730 0.3757 0.2797 0.2882 0.2828 0.2643
CIFAR10 VGG11 1.1258 0.2656 0.4001 0.2658 0.2816 0.2700 0.2555
CIFAR100 Densenet121 6.0120 1.2249 1.5252 0.8969 0.8129 0.8358 0.8251
CIFAR100 Resnet50 5.7539 1.2165 1.4939 0.8957 0.8112 0.8257 0.8236
CIFAR100 VGG19 4.6565 1.5075 2.1336 1.3645 1.2768 1.1249 1.1151
Imagenet Resnet18 11.2355 2.2905 2.2860 1.6486 - 1.2689 1.2648
Imagenet Resnet50 9.6245 2.0287 1.9661 1.3335 - 1.0020 0.9972
Imagenet Swin 9.8436 1.7640 1.8490 0.8946 - 0.7558 0.7963

Due to space limitations, we did not include the results of some less effective comparative methods
in the paper. In Table. (9), we reported the results of the Vector Scaling, Matrix Scaling, and
Isotonic Regression methods[8]. These methods are not accuracy-preserving, and their ECE values
are significantly worse compared to our proposed method.

Table 9: ECE of vector scaling, matrix scaling and isotonic regression compared with our method.

Dataset Model Vec. S Mat. S IR GC+TS(ours) GC+ETS(ours)

CIFAR10 Resnet152 0.0088 0.0133 0.0137 0.0079 0.0089
CIFAR10 Shufflenet 0.0118 0.0180 0.0267 0.0099 0.0093
CIFAR10 VGG11 0.0133 0.0187 0.0205 0.0120 0.0122
CIFAR100 Densenet121 0.0578 0.2436 0.0772 0.0411 0.0280
CIFAR100 Resnet50 0.0622 0.2373 0.0862 0.0427 0.0269
CIFAR100 VGG19 0.0538 0.2636 0.1307 0.0414 0.0360
Imagenet Resnet18 0.0477 0.5002 0.1701 0.0173 0.0100
Imagenet Resnet50 0.0528 0.4289 0.1532 0.0174 0.0103
Imagenet Swin 0.0708 0.1876 0.1900 0.0366 0.0193

6 Reproducibility

To ensure the reproducibility of our paper, we have included all the necessary code for replicating
the experiments in the supplementary materials. The code has been anonymized to maintain the
anonymity of the review process. Instructions for running the code and specific implementation
details for each method can be found in the README.md file and commented within the code itself.

Implementation and hyper-parameter tuning. The implementations of the comparative methods
in the paper have been modified from the corresponding open-source codes of their respective papers.
Specifically, the DirODIR[2] and Vector Scaling methods were adapted from the open-source code2

of Kull et al. [2]. The BBQ and GPC methods were modified from the open-source code3 of Wenger
et al. [9]. The ETS and IRM methods were adapted from the open-source code4 of Zhang et al. [1].
The Temperature Scaling, Histogram Binning, Beta Calibration, and Isotonic Regression methods
were modified from the open-source code5 of Guo et al. [8]. For some hyperparameters in the
comparative methods, we conducted parameter tuning on the CIFAR-10 dataset. It is worth noting
that the DirODIR[2] method employs cross-validation to adjust the parameters mu and lambda on all
datasets, with over 100 combinations of parameter values. This search process incurs significant time
overhead. Considering that the DirODIR method itself is slower than the other methods, we believe

2https://github.com/dirichletcal/experiments_dnn/blob/master/scripts/calibration/
cal_methods.py

3https://github.com/JonathanWenger/pycalib/tree/master/pycalib
4https://github.com/zhang64-llnl/Mix-n-Match-Calibration/blob/master/util_

calibration.py
5https://github.com/markus93/NN_calibration/blob/master/scripts/calibration/cal_

methods.py
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that conducting hyperparameter search for each dataset is not equitable. Therefore, for the DirODIR
method, we follow the same approach as the other methods by tuning the parameters on one dataset
and applying the same set of parameters to the other datasets. This is one of the reasons why the
performance of the DirODIR method is notably lower than the results reported in the original paper.

Datasets. Due to the size limitations of the supplementary materials, we have only uploaded the
CIFAR10-Resnet152 dataset. Upon acceptance of the paper, we will make all the code and the
remaining datasets publicly available together. We also provide all the code for training the deep
networks and extracting features.
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