
Game Solving with Online Fine-Tuning

Ti-Rong Wu,1∗ Hung Guei,1∗ Ting Han Wei,2 Chung-Chin Shih,1,3 Jui-Te Chin,3 I-Chen Wu3,4

1Institute of Information Science, Academia Sinica, Taiwan
2Department of Computing Science, University of Alberta, Canada

3Department of Computer Science, National Yang Ming Chiao Tung University, Taiwan
4Research Center for Information Technology Innovation, Academia Sinica, Taiwan

tirongwu@iis.sinica.edu.tw, hguei@iis.sinica.edu.tw, tinghan@ualberta.ca
rockmanray.cs02@nycu.edu.tw, pikachin.cs10@nycu.edu.tw, icwu@cs.nctu.edu.tw

A Implementation details

A.1 PCN training

We basically follow the same PCN training method by Wu et al. [1] but replace the AlphaZero
algorithm with the Gumbel AlphaZero algorithm [2], where the simulation count is set to 322 in
self-play and starts by sampling 16 actions. The architecture of the PCN contains three residual
blocks with 256 hidden channels. A total of 400,000 self-play games are generated for the whole
training. During optimization, the learning rate is fixed at 0.02, and the batch size is set to 1,024.
The PCN is optimized for 500 steps for every 2,000 self-play games. The pre-trained PCN requires
around 13 hours to train on a machine with four 1080Ti GPUs, i.e. 52 1080Ti GPU-hours. For the
online trainer, we use the same hyperparameters as the pre-trained PCN but only use one GPU.

A.2 7x7 Killall-Go solver

Our solver is built upon the state-of-the-art (SOTA) 7x7 Killall-Go solver [3] except for the following
three changes. First, our solver uses PCN as heuristics while the SOTA solver trains a network with
Faster to Life (FTL) techniques. Both networks aim to provide a faster move for solving, but FTL
requires additional (komi3) settings in solving, so PCN is much easier to use in our solver. Second,
we implement the transposition table based on Shih et al. [4]. This greatly reduces the solving time.
Finally, we implement a solution for resolving Graph-History-Interaction (GHI, i.e. cycles in Go) [5]
problems to ensure the correctness of reusing solutions in the transposition table, based on Kishimoto
and Müller [6, 7]’s GHI solution.

A.3 Worker design

The worker is itself a Killall-Go solver. It is GPU bound, i.e. it relies on GPUs more than CPUs
since the PCN (a neural network) requires intensive GPU computation. Thus, to fully utilize GPU
resources, we implement batch GPU inferencing to accelerate PCN evaluations for workers. In
practice, we collect 48 workers together in one process with multiple threads. The process runs
MCTS selection for each worker independently. Namely, a total of 48 leaf nodes are generated and
evaluated by PCN with one GPU at once. The 48 leaf nodes are collected as a batch for batch GPU

∗These authors contributed equally.
2The original PCN training used 400 simulation counts in the self-play, requiring much more computing

resources than using Gumbel algorithm.
3Since Black plays the first stone in the game of Go, White usually earns some extra points called komi for

balance.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

inferencing, with a batch size of 48. This method greatly reduces the solving time when more workers
are used. The baseline distributed game solver creates eight processes as workers, each with one
GPU, for a total of 384 workers (eight processes with 48 workers). The online fine-tuning solver has
the same number of workers for fairness, but uses seven GPUs (one GPU is spared for the online
trainer); the configuration is six processes with 55 workers and one process with 54 workers.

B Experiment details

B.1 Setup

All experiments are conducted in three machines, each equipped with two Intel Xeon E5-2678 v3
CPUs, 192G RAM, and four GTX 1080Ti GPUs. We list other hyperparameters in Table 1.

For the memory used in solving, the manager requires 20G RAM for expanding every 1M nodes, and
every 48 workers together in one process requires 30G RAM at most. Note that workers use the same
amount of memory regardless of problem size. They are limited to 100,000 nodes per job; the job
result is “unsolved” if a solution is not obtained within that limit.

Specifically, for BASELINE with 384 workers, solving KA used 2,103 seconds, required 3G RAM for
the manager and 240G RAM for the workers; solving KB used 156,583 seconds, required 170G RAM
for the manager and 240G RAM for the workers. However, for BASELINE with only 48 workers,
solving KA used 12,151 seconds but only required 2G RAM for the manager and 30G RAM for the
workers. Overall, the settings can be varied depending on available machines.

Table 1: Hyperparameters used in the baseline and online fine-tuning solvers. All variants of online
fine-tuning solvers use the same settings.

BASELINE ONLINE

Manager

GPUs 1 1
vthr 16.5 16.5

k for top-k selection 4 4

Worker
GPUs 8 7

workers 384 384
node limitation per job 100,000 100,000

Trainer # GPUs 0 1

B.2 Scalability of the distributed game solver

To evaluate the scalability of the distributed game solver, we run BASELINE with different numbers
of workers on KA. Specifically, the solvers use 384, 192, 96, and 48 workers, using 8, 4, 2, and 1
GPU, respectively. Every 48 workers share one GPU. The results are shown in Table 2. Overall, the
speedup is around 1.8 times faster when the number of workers is doubled (up to 384 workers due to
our machine limitation).

Table 2: Detailed statistics for solving KA by BASELINE with different numbers of workers.

Workers # Nodes Time (s) Manager
Nodes # Jobs Avg. Job

Time (s)
Avg. Job
Nodes # PCN Solved

Jobs (%)
Avg. Worker
Loading (%) Speedup

384 134,881,952 2,103 121,236 21,748 34.48 6,196.46 0 97.87% 94.53% 5.78
192 120,676,465 3,596 99,678 18,598 35.92 6,483.32 0 98.44% 98.57% 3.09
96 112,344,894 6,502 84,752 16,422 37.45 6,835.96 0 98.87% 98.90% 1.71
48 109,362,406 12,151 74,665 15,292 37.78 7,146.73 0 99.05% 98.60% 1.00

B.3 Statistics of solving 7x7 Killall-Go three-move openings

Figure 1 shows the next winning moves (the fourth moves) of 16 three-move openings for both
baseline and ONLINE-CP solvers. Generally, both solvers solve the openings at the same next moves,

2

except JB. The full solution trees for each opening can be found in this link: https://rlg.iis.
sinica.edu.tw/papers/neurips2023-online-fine-tuning-solver/solution-trees.
We also provide a tool and a README file for explaining the solution tree.

1

1

2
3 A

(a) JA

1

1

23
AB

(b) JB

1

1

2

3
A

(c) JC

1

1

2

3
A

(d) JD

1

12 3
A

(e) KA

1

12
3

A

(f) KB

1

12
3

A

(g) KC

1

12
3

A

(h) KD

1

123
A

(i) KE

1

12
3A

(j) KF

1
2

13
A

(k) DA

1
1

23
A

(l) SA

1
1

2
3

A

(m) SB

1
1

2

3

A

(n) SC

1
1

2
3
A

(o) SD

1
1

2
3
A

(p) SE

Figure 1: The solutions of the next winning move for 16 7x7 Killall-Go openings. For each opening,
“A” and “B” represents the winning move found by the baseline solver and the online fine-tuning
solver respectively. If both solvers solve the opening with the same winning move, only “A” is shown
on the board.

It is worth mentioning that JA and JB are similar to one of the common josekis4 played in 19x19 Go.
The joseki usually occurs when Black makes a corner enclosure move, also known as shimari in
Japanese, like the two stones marked as “1” in JA and JB. Then, White attempts to invade Black’s
territories by playing at the stone marked as “2”. Judging by the online fine-tuning solver’s ability to
solve JA and JB, we foresee a high potential to extend our work to solving other 19x19 Go corner
josekis in the future.

In addition, Figure 2 shows the curve for average critical position lengths. These curves are all similar
in the sense that it starts with small average lengths, which gradually increases during fine-tuning.

Table 3, Table 4, Table 5 and Table 6 list the experiment results of the baseline and three variants of
online fine-tuning solvers respectively, in more detail than those in Table 1 in the main text. These
tables include the number of nodes for solving, the solving time in seconds, the number of nodes
used in the manager, the number of jobs, the average time for solving each job, the average number
of nodes for solving each job, the number of updated PCNs, the success rate of solving jobs, and the
average worker load during solving. In general, the solving time is correlated with the number of
nodes and the number of jobs. For online fine-tuning, the solving time is also correlated with the
number of PCNs as the trainer updates PCNs at a stable speed. Note that the number of PCNs is
always 0 for the baseline solver, as they do not update PCNs during solving.

In our experiments, the average success rates of solving jobs are around 97.30%, 98.44%, 99.14%
and 99.08% for the baseline and the online fine-tuning solvers, respectively. In addition, for some
quickly solved openings, e.g. KC, SA, and SB, the average time for solving each job is far less than
other difficult openings. While the workers are able to solve jobs quickly, the managers are relatively
unable to create enough jobs for the workers, causing the workers to be relatively idle (lower avg.
worker loading). Compared with the baseline solver, online fine-tuning solvers have better success
rates of solving as well as lesser nodes for each job. This confirms that online fine-tuning successfully
fine-tuned the PCNs for critical positions that the manager is interested in, thereby increasing the job
efficiency overall.

B.4 Different PCN thresholds

We examine different vthr from 11.5 to 21.5 on opening JC, using the baseline solver. The experiment
result is presented in Table 7, where the four columns represent the examined vthr, the total solving
time, the average time for workers to solve jobs, and the job success rate. Among these PCN

4A joseki is a move sequence that is widely believed to be balanced play by both players.

3

https://rlg.iis.sinica.edu.tw/papers/neurips2023-online-fine-tuning-solver/solution-trees
https://rlg.iis.sinica.edu.tw/papers/neurips2023-online-fine-tuning-solver/solution-trees

0 20 40 60 80 100 120 140 160 180

15

20

25

Iteration

L
en

gt
h

JA

(a) JA

0 20 40 60 80 100 120 140 160 180 200 220 240 260

15

20

25

30

35

Iteration

L
en

gt
h

JB

(b) JB

0 5 10 15 20 25 30 35 40 45 50 55 60

12

14

16

18

20

22

24

Iteration

L
en

gt
h

JC

(c) JC

0 10 20 30 40 50 60 70 80 90 100

12

14

16

18

20

Iteration

L
en

gt
h

JD

(d) JD

2 4 6 8 10 12 14 16 18

12

14

16

18

20

Iteration

L
en

gt
h

KA

(e) KA

0 50 100 150 200 250 300 350

12

14

16

18

20

22

24

Iteration

L
en

gt
h

KB

(f) KB

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

11

12

13

14

15

Iteration

L
en

gt
h

KC

(g) KC

0 20 40 60 80 100 120 140

15

20

25

Iteration

L
en

gt
h

KD

(h) KD

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

12

14

16

18

20

22

Iteration

L
en

gt
h

KE

(i) KE

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

15

20

25

Iteration

L
en

gt
h

KF

(j) KF

Figure 2: Average length of critical positions for each opening.

thresholds, we consider vthr = 16.5 to be a balanced setting as it performs well in the three metrics.
However, the results also show that the performance is not necessarily sensitive to different vthr
settings, i.e. the solving time is similar when vthr ∈ (15.5, 17.5).

4

0 20 40 60 80 100 120 140 160 180 200 220 240 260

15

20

25

Iteration

L
en

gt
h

DA

(k) DA

1 2 3 4 5 6 7 8 9 10

15

20

25

Iteration

L
en

gt
h

SA

(l) SA

1 2 3 4 5 6 7 8 9 10 11 12 13

12

14

16

Iteration

L
en

gt
h

SB

(m) SB

2 4 6 8 10 12 14 16

12

14

16

Iteration

L
en

gt
h

SC

(n) SC

0 20 40 60 80 100 120 140 160 180

12

14

16

18

20

22

Iteration

L
en

gt
h

SD

(o) SD

0 10 20 30 40 50 60 70 80 90 100

15

20

25

Iteration

L
en

gt
h

SE

(p) SE

Figure 2: Average length of critical positions for each opening.

Table 3: Detailed statistics for the openings solved by BASELINE.

Nodes Time (s) Manager
Nodes # Jobs Avg. Job

Time (s)
Avg. Job
Nodes # PCN Solved

Jobs (%)
Avg. Worker
Loading (%)

JA 8,964,444,959 142,115 4,842,554 792,465 68.68 11,305.99 0 96.83% 99.48%
JB 7,137,514,712 155,786 3,689,548 635,263 93.90 11,229.72 0 96.80% 99.48%
JC 721,004,784 12,514 900,221 165,308 23.66 4,356.14 0 98.96% 73.70%
JD 1,271,426,148 30,209 655,078 128,885 89.32 9,859.73 0 97.75% 98.96%
KA 134,881,952 2,103 121,236 21,748 34.48 6,196.46 0 97.87% 94.53%
KB 10,153,035,632 156,583 8,241,207 1,240,258 48.34 8,179.58 0 98.20% 99.48%
KC 38,217,263 747 72,880 15,284 10.33 2,495.71 0 98.39% 62.02%
KD 2,754,213,379 47,494 1,499,735 246,500 73.67 11,167.20 0 97.07% 99.22%
KE 1,197,819,407 18,771 1,024,660 150,490 47.14 7,952.65 0 97.79% 98.44%
KF 9,516,440,320 147,271 5,208,724 789,225 71.50 12,051.36 0 96.88% 99.68%
DA 7,322,743,383 112,874 4,326,195 636,200 67.90 11,503.33 0 95.62% 99.22%
SA 51,272,288 937 79,967 17,772 14.26 2,880.50 0 98.37% 75.78%
SB 215,380,103 3,860 288,751 52,191 22.91 4,121.23 0 97.99% 78.65%
SC 97,559,402 1,557 113,821 22,376 23.31 4,354.92 0 97.94% 90.62%
SD 8,187,017,679 124,644 4,286,025 668,654 71.36 12,237.62 0 95.18% 99.48%
SE 4,297,808,879 64,227 2,234,093 345,124 71.00 12,446.47 0 95.10% 98.86%

As demonstrated in the table, vthr outside of this range deteriorates the solving performance. On the
one hand, when vthr is too high, e.g. vthr = 21.5, only about 95% of jobs can be solved, implying
that about 5% of the jobs are wasted. On the other hand, when vthr is too low, e.g. vthr = 11.5, the
assigned jobs can be solved quickly with a high success rate. However, this requires the manager to
assign more jobs, which increases the overhead of handling job assignments between the manager and

5

Table 4: Detailed statistics for the openings solved by ONLINE-SP.

Nodes Time (s) Manager
Nodes # Jobs Avg. Job

Time (s)
Avg. Job
Nodes # PCN Solved

Jobs (%)
Avg. Worker
Loading (%)

JA 4,054,562,593 69,699 2,491,326 479,455 55.45 8,451.41 359 98.49% 98.95%
JB 3,378,672,517 83,454 1,607,080 327,626 97.49 10,307.68 424 97.27% 99.14%
JC 819,264,890 13,963 704,540 137,752 35.96 5,942.28 57 98.08% 88.34%
JD 846,365,092 19,396 500,259 106,495 69.00 7,942.77 113 98.50% 98.91%
KA 143,814,448 2,621 174,202 34,222 26.17 4,197.31 14 98.55% 90.25%
KB 3,794,290,131 64,493 3,671,889 548,306 43.54 6,913.33 305 98.99% 99.05%
KC 45,217,101 1,156 100,985 21,847 11.12 2,065.09 6 99.47% 54.07%
KD 1,504,977,329 25,715 986,849 202,651 48.37 7,421.58 126 98.86% 98.95%
KE 214,614,577 3,917 246,259 50,422 28.29 4,251.48 21 98.85% 95.48%
KF 6,080,836,868 100,690 5,431,753 855,725 44.93 7,099.72 519 99.19% 99.21%
DA 3,015,438,589 50,046 2,682,998 418,088 45.56 7,206.03 248 98.55% 98.90%
SA 54,574,495 1,471 122,611 25,403 11.78 2,143.52 7 98.47% 56.24%
SB 65,970,358 1,423 124,986 25,917 15.46 2,540.62 7 98.10% 79.84%
SC 213,889,777 3,553 141,447 32,739 39.32 6,528.86 19 98.06% 95.22%
SD 3,821,472,453 63,058 2,224,352 406,191 59.27 9,402.59 329 97.37% 99.01%
SE 2,065,528,927 33,437 1,647,455 282,992 44.79 7,293.07 166 98.21% 98.26%

Table 5: Detailed statistics for the openings solved by ONLINE-CP.

Nodes Time (s) Manager
Nodes # Jobs Avg. Job

Time (s)
Avg. Job
Nodes # PCN Solved

Jobs (%)
Avg. Worker
Loading (%)

JA 1,288,601,416 22,384 1,314,785 259,008 32.68 4,970.07 186 99.48% 98.44%
JB 1,576,437,139 31,957 1,643,806 327,442 36.67 4,809.38 272 99.46% 96.66%
JC 316,391,324 6,537 538,369 109,298 17.09 2,889.83 59 99.27% 72.38%
JD 545,655,175 11,083 501,953 109,891 38.12 4,960.85 102 99.32% 98.75%
KA 111,838,889 2,102 159,614 32,153 22.60 3,473.37 18 98.70% 92.69%
KB 2,242,789,149 38,947 3,202,296 575,365 24.45 3,892.46 343 99.65% 93.25%
KC 26,441,989 758 69,052 15,423 9.12 1,709.97 6 99.01% 50.78%
KD 955,257,191 17,434 1,222,772 227,427 26.86 4,194.90 145 99.69% 89.35%
KE 181,418,954 3,336 261,253 49,484 24.25 3,660.93 30 98.86% 94.53%
KF 2,107,185,330 35,418 2,555,399 427,993 31.27 4,917.44 285 99.60% 98.06%
DA 1,761,842,477 30,313 2,556,573 421,268 26.16 4,176.17 266 99.60% 94.03%
SA 41,863,480 992 86,749 19,634 12.60 2,127.77 9 98.57% 70.96%
SB 55,541,455 1,364 125,338 27,612 11.64 2,006.96 12 98.48% 64.32%
SC 98,661,355 1,715 116,980 24,770 24.34 3,978.38 16 98.17% 94.28%
SD 1,395,444,447 23,751 1,575,572 278,198 32.24 5,010.35 195 99.13% 98.33%
SE 757,256,934 12,465 892,615 153,343 30.43 4,932.50 103 99.17% 98.26%

Table 6: Detailed statistics for the openings solved by ONLINE-SP+CP.

Nodes Time (s) Manager
Nodes # Jobs Avg. Job

Time (s)
Avg. Job
Nodes # PCN Solved

Jobs (%)
Avg. Worker
Loading (%)

JA 1,425,668,707 24,865 1,370,665 278,183 33.85 5,120.00 225 99.45% 98.18%
JB 1,601,479,130 31,455 1,743,905 351,934 33.16 4,545.55 283 99.50% 95.31%
JC 414,108,746 8,343 693,560 140,608 17.68 2,940.20 69 99.54% 75.26%
JD 502,966,563 10,896 401,057 89,954 45.82 5,586.92 103 99.13% 98.44%
KA 104,905,173 1,931 109,111 23,739 28.97 4,414.51 18 98.21% 95.83%
KB 2,527,488,112 43,200 3,148,579 578,009 27.79 4,367.30 386 99.59% 96.09%
KC 25,508,784 706 58,399 13,172 10.58 1,932.16 6 99.18% 53.65%
KD 920,902,808 16,357 1,092,352 210,345 27.80 4,372.87 148 99.57% 91.15%
KE 168,590,287 3,095 214,173 42,447 26.24 3,966.74 28 98.81% 94.79%
KF 2,027,558,505 35,197 2,203,830 383,317 34.79 5,283.76 305 99.57% 98.33%
DA 1,665,511,033 28,337 2,252,356 377,189 27.77 4,409.62 235 99.53% 95.57%
SA 41,796,555 1,105 95,672 21,325 10.67 1,955.49 10 98.67% 55.73%
SB 109,591,487 2,258 167,238 34,085 19.62 3,210.33 20 98.04% 78.12%
SC 93,535,813 1,655 94,822 21,820 26.28 4,282.36 15 98.12% 93.49%
SD 1,485,439,307 25,531 1,674,274 296,617 32.26 5,002.29 224 99.15% 97.12%
SE 1,200,741,176 20,428 1,289,405 231,498 33.15 5,181.26 182 99.17% 98.01%

the workers, thereby increasing the solving time. Note that the appropriate vthr may vary for different

6

games and for different numbers of available workers. It is possible to adjust vthr dynamically during
solving, which is left for future work.

Table 7: The solving time, average job completion time, and success rate of solvable jobs for solving
opening JC by the baseline solver with different PCN thresholds.

vthr Time (s) Avg. Job Time (s) Solved Jobs (%)

11.5 23,559 2.00 99.92%
12.5 22,870 3.60 99.84%
13.5 18,356 5.75 99.74%
14.5 19,458 12.06 99.55%
15.5 12,519 16.29 99.29%
16.5 12,514 23.66 98.96%
17.5 12,877 33.73 98.34%
18.5 17,536 46.06 97.35%
19.5 22,343 52.04 96.75%
20.5 24,469 58.73 95.99%
21.5 27,810 70.50 94.94%

B.5 Comparison to offline fine-tuning

We now investigate how much benefit we can gain from offline fine-tuning for a specific opening.
To do this, we first train θ0 by generating 400,000 self-play games (around 52 1080Ti GPU-hours)
from the empty board. The resulting network is the same as the one referred to as θ0 in the main
text. Next, we fine-tune θ0 by generating 200,000 additional self-play games (around 26 1080Ti
GPU-hours) from the specific opening we are interested in. That is, if we want to solve the opening
JC, we generate self-play games starting from that opening, and perform updates on θ0 to obtain
what we refer to as θ

′

0-JC. For this experiment, we used four openings, so the networks θ
′

0-JC, θ
′

0-KE,
θ
′

0-DA, and θ
′

0-SE were produced. Lastly, in the baseline case, we do not update the network with
critical positions; the same network is used all throughout the proof search. In ONLINE-CP, critical
positions are chosen and the θ

′

0 is further fine-tuned using the OFT (resulting in θ
′

1, θ
′

2, ..., θ
′

t, ...).

Table 8: Comparing the impact of a single batch, offline fine-tuning, i.e. pre-training for the specific
opening instead of from an empty board.

w/o offline fine-tuning (θ0) w/ offline fine-tuning (θ
′
0)

BASELINE ONLINE-CP BASELINE ONLINE-CP

JC 12,514 6,537 22,748 10,099
KE 18,771 3,336 2,248 2,417
DA 112,874 30,313 90,298 33,055
SE 64,227 12,465 28,905 42,522

Table 8 shows the times for solving these four openings with and without offline fine-tuning. The left
two columns use θ0 while the right two columns use θ

′

0. With offline fine-tuning, the solving times
for these openings generally decrease in the baseline solver, since the θ

′

0 is specifically fine-tuned for
each opening, but exceptions may still occur, as in opening JC. However, when using θ

′

0, the solving
times for ONLINE-CP increase for opening JC, DA, and SE. This may be because θ

′

0 only helps
learn better heuristics for the opening positions, but does not always guarantee providing accurate
heuristics for all varieties of positions during solving. In addition, it is worth noting that although
offline fine-tuned θ

′

0 accelerates the solving time for the baseline solver, it is impractical since we
cannot expect to pre-train θ

′

0 for each opening, especially if our eventual goal is to solve complete
games from an empty board outright. In contrast, our online fine-tuning solver provides an automatic
method that fine-tunes the PCN dynamically without too much extra computation cost.

7

References
[1] Ti-Rong Wu, Chung-Chin Shih, Ting Han Wei, Meng-Yu Tsai, Wei-Yuan Hsu, and I-Chen Wu.

AlphaZero-based Proof Cost Network to Aid Game Solving. In 10th International Conference
on Learning Representations, ICLR 2022, 2022.

[2] Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by
planning with Gumbel. In 10th International Conference on Learning Representations, ICLR
2022, 2022.

[3] Chung-Chin Shih, Ti-Rong Wu, Ting Han Wei, and I-Chen Wu. A Novel Approach to Solving
Goal-Achieving Problems for Board Games. In 36th AAAI Conference on Artificial Intelligence,
AAAI 2022, volume 36, pages 10362–10369, 2022.

[4] Chung-Chin Shih, Ting Han Wei, Ti-Rong Wu, and I-Chen Wu. A Local-Pattern Related
Look-Up Table. IEEE Transactions on Games, 2023.

[5] Andrew J Palay. Searching with Probabilities. PhD thesis, Carnegie Mellon University, 1983.

[6] Akihiro Kishimoto and Martin Müller. A General Solution to the Graph History Interaction
Problem. In 19th AAAI Conference on Artificial Intelligence, AAAI 2004, volume 4, pages
644–649, 2004.

[7] Akihiro Kishimoto and Martin Müller. A solution to the GHI problem for depth-first proof-
number search. Information Sciences, 175(4):296–314, 2005.

8

	Implementation details
	PCN training
	7x7 Killall-Go solver
	Worker design

	Experiment details
	Setup
	Scalability of the distributed game solver
	Statistics of solving 7x7 Killall-Go three-move openings
	Different PCN thresholds
	Comparison to offline fine-tuning

