
Appendix
ProteinShake: Building datasets and benchmarks for deep learning

on protein structures

Homepage
proteinshake.ai

Source code
github.com/BorgwardtLab/proteinshake

Documentation
proteinshake.readthedocs.io/en/latest

Models
github.com/BorgwardtLab/proteinshake_models

14

https://proteinshake.ai
https://github.com/BorgwardtLab/proteinshake
https://proteinshake.readthedocs.io/en/latest
https://github.com/BorgwardtLab/proteinshake_models


Benchmark results on random, sequence and structure split

Table 3: Comparison of models trained with different representations of protein structure across
various tasks, on a random data split. The optimal choice of representation depends on the task.
Shown are mean and standard deviation across four runs with different seeds. The Voxel model is
not applicable to residue-level tasks.
Representation Graph Point Voxel
Task

Binding Site 0.721 ± 0.010 0.609 ± 0.006 -
Enzyme Class 0.790 ± 0.007 0.712 ± 0.016 0.643 ± 0.026
Gene Ontology 0.704 ± 0.001 0.580 ± 0.002 0.602 ± 0.018
Ligand Affinity 0.670 ± 0.019 0.683 ± 0.003 0.689 ± 0.013
Protein Family 0.728 ± 0.004 0.609 ± 0.004 0.668 ± 0.005
Protein-Protein Interface 0.883 ± 0.050 0.974 ± 0.003 -
Structural Class 0.495 ± 0.012 0.293 ± 0.013 0.337 ± 0.011
Structure Similarity 0.598 ± 0.018 0.627 ± 0.006 0.645 ± 0.020

Table 4: Comparison of models trained with different representations of protein structure across
various tasks, on a sequence data split. Shown are mean and standard deviation across four runs
with different seeds.
Representation Graph Point Voxel
Task

Binding Site 0.399 ± 0.020 0.268 ± 0.018 -
Enzyme Class 0.737 ± 0.016 0.635 ± 0.029 0.591 ± 0.014
Gene Ontology 0.582 ± 0.018 0.503 ± 0.006 0.543 ± 0.010
Ligand Affinity 0.513 ± 0.031 0.565 ± 0.011 0.538 ± 0.013
Protein Family 0.635 ± 0.020 0.500 ± 0.008 0.577 ± 0.028
Protein-Protein Interface 0.869 ± 0.005 0.776 ± 0.012 -
Structural Class 0.503 ± 0.004 0.275 ± 0.012 0.292 ± 0.019
Structure Similarity 0.663 ± 0.016 0.667 ± 0.004 0.671 ± 0.020

Table 5: Comparison of models trained with different representations of protein structure across
various tasks, on a structure data split. Shown are mean and standard deviation across four runs
with different seeds.
Representation Graph Point Voxel
Task

Binding Site 0.219 ± 0.022 0.152 ± 0.019 -
Enzyme Class 0.621 ± 0.026 0.600 ± 0.021 0.567 ± 0.031
Gene Ontology 0.474 ± 0.014 0.448 ± 0.008 0.454 ± 0.014
Ligand Affinity 0.383 ± 0.034 0.374 ± 0.024 0.350 ± 0.084
Protein Family 0.411 ± 0.009 0.269 ± 0.012 0.270 ± 0.027
Protein-Protein Interface 0.840 ± 0.016 0.747 ± 0.023 -
Structural Class 0.415 ± 0.015 0.188 ± 0.011 0.236 ± 0.027
Structure Similarity 0.518 ± 0.010 0.564 ± 0.011 0.587 ± 0.039

15



Details of the models used in the experiments

Table 6: Number of parameters, runtime in terms of proteins processed per second (Proteins/s), and
memory consumption for each model and task pair. The throughput, adapted from the computer
vision field [48], is measured as the number of proteins that we can process per second on one
10GB H100 GPU MIG. For each model we take the largest possible batch size (bs) and calculate
the average time over 30 runs to process that batch. The memory consumption is calculated with the
Pytorch.profiler library.
Task Graph (GIN) Point (PointNet++) Voxel (Conv3d)

Binding Site 1.3M 0.6M -
Enzyme Class 1.3M 0.6M 7.2M
Gene Ontology 2.6M 1.3M 8.5M
Ligand Affinity 1.8M 0.9M 7.7M
Protein Family 2.7M 1.3M 8.5M
Protein-Protein Interface 1.5M 0.7M -
Structure Class 2.1M 1.1M 8.0M
Structure Similarity 1.5M 0.7M 7.4M

Proteins/s GPU (H100 10G,fp32) 1.4K 1.3K 83
Proteins/s CPU (bs=1) 75 42 2
Memory GPU (bs=32,fp32) 1.71GB 0.8GB 14.4GB

16


	Introduction
	Related work
	Contribution
	Building datasets
	Representations and frameworks

	Building benchmarks
	Sequence and structure dataset splits
	Tasks
	Structure-function relationships
	Geometric reasoning
	Modeling physical interactions


	Contributing and maintenance
	Experiments
	Experimental setup
	The optimal protein representation differs depending on the task
	Generalization is harder in structure-based splits
	Pre-training with AlphaFoldDB enhances performance across models and tasks

	Conclusion

