
Appendix

Organization of Appendix. In Appendix A we present details of the numerical experiments and
additional numerical experiments. We give more discussions of our work in Appendix B. Appendix
C provides missing technical details of Section 3 while Appendix D provides those of Section 4.

A Details of Numerical Experiments and Additional Experiments

In A.1, we present the details of the numerical experiments. We compare the rank-1 linear networks
with the diagonal linear networks empirically in A.2. Finally, in A.3, we conduct additional experi-
ments to further verify the “alleviting” effect of the SGD sampling noise mentioned in Theorem 3. In
A.4, we conduct experiments when the balanced initialization condition is not satisfied.

Data. We conduct over-parameterized regression with different linear networks. For the dataset
{(xi, yi)}ni=1 where xi 2 Rd and yi 2 R, we set n = 40, d = 100 and xi ⇠ N (0, I). For
i 2 {1, . . . , n}, yi is generated by yi = ✓⇤Txi where ✓⇤ 2 Rd, i.e., ✓⇤ is the ground truth solution.
We let 20 components of ✓⇤ be informative.

A.1 Details of Numerical Experiments in Section 5

Figure 7: D(✓(t), ✓⇤
`2
) along training for rank-1 linear networks when the initialization is extremely

large. SGD solution is closer to ✓⇤
`2

when compared to the GD solution for rank-1 linear networks.

We now present the details of numerical experiments conducted in Section 5.

`2 minimum norm solution. To get the `2 minimum norm solution ✓⇤
`2

, we train a single layer
linear network with zero initialization using GD for 20000 iterations, since GD will return an `2
minimum norm solution solution in this case according to Corollary 1.1 and [26].

Rank-1 linear networks. For the rank-1 linear network f(x;u, v) = wT

L
WL�1 · · ·W1x where

Wk = ukvTk 2 Rdk⇥dk+1 , we let L = 3 and 8k 2 {1, . . . , L} : dk = 100. The learning rate is 10�3

and the batch size is 4 if we run SGD. We construct different rank-1 linear networks as follows: for a
randomly sampled ✓̃ 2 R100, we let the initialization ✓i(0) of the i-th rank-1 networks have the same
direction as ✓̃ but with different scales. We then train each rank-1 linear network with GD and SGD,
respectively, for 20000 iterations. In particular:

1. Fig. 5(a) presents the results of the distances between ✓⇤
`2

and GD and SGD solutions,
respectively, of each trained rank-1 networks with different initialization scales.

13

2. In Fig. 5(b), we measure the distances between ✓⇤ and GD and SGD solutions, respectively,
for each trained rank-1 networks with different initialization scales.

3. Fig. 6(a) plots the distances between ✓⇤
`2

and the model parameters ✓ along training when
the initialization scales are different for both GD and SGD. The numbers in the bracket
denote k✓(0)k.

4. Fig. 7 is about the distances between ✓⇤
`2

and the model parameters ✓ along training for both
GD and SGD when k✓(0)k is extremely large.

Standard linear networks. For the standard linear network f(x;W) = wT

L
WL�1 · · ·W1x where

Wk 2 Rdk⇥dk+1 , we let L = 4 and 8k 2 {1, 2, 3} : dk = 100. The learning rate is 10�3 and the
batch size is 4 if we run SGD. Other settings are similar to that of rank-1 linear networks.

1. In Fig. 5(c), we plot the distances between ✓⇤
`2

and GD and SGD solutions, respectively.
Similar to the case of rank-1 linear networks, for all initialization scales, D(✓(1), ✓⇤

`2
) is

smaller if the network is trained with SGD when compared to GD.
2. Fig. 5(d) presents the results of the distances between ✓⇤ and GD and SGD solutions.
3. Fig. 6(b) plots the distances between ✓⇤

`2
and the model parameters ✓ along training when

the initialization scales k✓(0)k are different for both GD and SGD. The numbers in the
bracket denote k✓(0)k.

Non-linear networks. For the non-linear network f(x;W) = wT

L
�(WL�1 · · ·�(W1x)) where

Wk 2 Rdk⇥dk+1 , we let L = 4 and 8k 2 {1, 2, 3} : dk = 100. The learning rate is 10�3 and the
batch size is 4 if we run SGD. We use the ReLU activation �(x) = ReLU(x). We use the same
dataset as in the experiments of rank-1 linear networks. Since the non-linear networks do not have
the overall parameterization of ✓ as in the linear networks case, to measure the initialization scale, we
first straight all weight matrices to vectors and stack them to get a single vector, then we calculate
the `2 norm of this vector as the scale of the initialization of a non-linear network, i.e., we usep
(
P

k
kWk(0)k2F) as the initialization scale where k · kF is the Frobenius norm. Due to the same

reason, we can not measure quantities such as D(✓, ✓⇤
`2
), therefore, we report the test error of the

model in a newly sampled test set instead. Fig. 6(c) plots the test error of the model along training
when the initialization scales are different for both GD and SGD. The numbers in the bracket denote
initialization scales.

A.2 Additional Experiments of Comparison with Diagonal Nets

Results in Section 3.2 indicate that diagonal linear networks exhibit different implicit bias in compari-
son with rank-1 and standard linear networks, e.g., both rank-1 and standard linear networks prefer `2
minimum norm solution for GD when the initialization is nearly-zero while, on the contrary, diagonal
linear networks prefer such solution when the initialization is sufficiently large. In this section, we
empirically compare the implicit bias for rank-1 linear networks and diagonal linear networks to
show this phenomenon.

In particular, we use the same settings as in the experiments for rank-1 linear networks in A.1
while only change the model to diagonal linear networks. As in previous works [3, 22], the re-
parameterization of diagonal linear network is

✓ = w+ � w+ � w� � w�,

where w+ 2 R100, w� 2 R100 and � is the elementwise product. Let e = (1, · · · , 1)T 2 R100, we
set the initialization as

w+(0) = Ce, w�(0) = Ce,

where C is a positive constant measuring the initialization scale. For each diagonal linear network
with different C, we run GD for 20000 iterations and calculate D(✓(1), ✓⇤

`2
) and D(✓(1), ✓⇤).

The results are plotted in Fig. 8, where, for convenience of comparing the implicit bias of GD for
rank-1 linear networks with that of diagonal linear networks, we also plot the results of rank-1 linear
networks of Fig. 5(a) and Fig. 5(b) in Fig. 8(a) and Fig. 8(b), respectively.

As shown in Fig. 8(a), as the initialization scale (k✓(0)k for rank-1 linear networks, C for diagonal
linear networks) increases, D(✓(1), ✓⇤

`2
) decreases for rank-1 linear linear networks trained with

14

(a)

(b)

Figure 8: For different initialization scale (k✓(0)k for rank-1 linear networks and C for diagonal
linear networks): (a) D(✓(1), ✓⇤

`2
) for rank-1 linear nets and diagonal linear networks (the green

solid line). (b) D(✓(1), ✓⇤) for rank-1 linear nets and diagonal linear nets (the green solid line).

both GD and SGD, while it increases for diagonal linear networks trained with GD. This indicates the
drastic difference between the implicit bias of GD exhibited by diagonal linear networks and rank-1
linear networks (also standard linear networks).

A.3 Additional Experiments for the “Alleviating” Effect in Theorem 3

Recall the form of V S(✓, t) in Theorem 3

V S(✓, t) =
1

⌦L

k✓k⌦L +
✓T ✓(0)

k✓(0)k�L
� 2�L⌘✓T

nb

Z
t

0

L (✓(s)) tr
�
P?(✓(s))XTX

�

k✓(s)k2��L
✓(s)ds,

we let

p✓(t) =
✓T (t)✓(0)

k✓(0)k�L
, (13)

q✓(t) =
2�L⌘✓T (t)

nb

Z
t

0

L (✓(s)) tr
�
P?(✓(s))XTX

�

k✓(s)k2��L
✓(s)ds. (14)

To quantitatively measure the “alleviating” effect of the SGD sampling noise, we train 3 rank-1 linear
networks with different initialization scales using SGD. The batch size is 4 and the learning rate

15

Figure 9: SGD sampling noise alleviates the dependence on the initialization. Numbers after the
comma denote the initialization scales. The solid lines are for p✓ (Eq. (13)) and the dotted lines are
for p✓ � q✓ (Eq. (14)).

is 5⇥10�5. For the rank-1 linear network f(x;u, v) = wT

L
WL�1 · · ·W1x where Wk = ukvTk 2

Rdk⇥dk+1 , we let L = 3 and 8k 2 {1, . . . , L} : dk = 100. We calculate both p✓(t) and q✓(t) along
training, where q✓(t) measures the alleviating effect of the SGD sampling noise and their difference
p✓(1) � q✓(1) is the alleviated initialization dependence of the SGD solution compared to GD
solution.

As shown in Fig. 9, the effect coming from the SGD sampling noise, q✓, is equivalent to make the
dependence of V S on the initialization closer to 0 (after about 1000 iterations, every dotted line is
closer to the x-axis compared to the corresponding solid line with the same color), thus it controls the
dependence of the SGD solution on the initialization. This phenomenon further verifies our claims.

A.3.1 Training loss for Fig. 4(b)

Fig. 4(b) indicates that the final direction of the integral term in Eq. (12) highly depends on the
initialization ✓(0) since the loss decays along training. To further support this argument, here we
present the training loss when we perform the experiments of Fig. 4(b) in Fig. 10. It can be seen that,
for a random initialization, the loss, the magnitude of the speed of ↵, has a high value at the start of
the training, and decays very quickly, which explains why the direction of ✓(0) is crucial to that of
↵(1).

A.4 Additional Experiments for Biased Initialization

In this section, we provide additional experiments to show that our conclusion still holds when
removing the balanced initialization condition (Definition 1).

To make the initialization unbalanced, we add a small perturbation to the balanced initialization.
Specifically, we define

� =
1

2L� 1

L�1X

k=1

|kvk+1k2 � kukk2|
kukk2

as the scale of the perturbation to the balanced initialization (larger � implies that the initialization is
more unbalanced). All the other experiment details are kept unchanged as in Section 5. As shown in
Fig. 11 and Fig. 12, we still observe similar phenomenons as in the case of the balanced initialization,
e.g., SGD solutions are closer to the `2-norm minimization solution compared to GD, when a small
perturbation is added to the balanced initialization. Thus the implicit bias is not unique to the balanced
initialization. In particular:

16

Figure 10: The empirical loss L(✓) along training for Fig. 4(b).

• We report D(✓(1), ✓⇤
`2
) for both GD and SGD for different levels of perturbation � (denoted

in the title of each figure) in Fig. 11. In the last figure, we fix the initialization scale and
report D((✓(1), ✓⇤

`2
) of both GD and SGD for different �. It can be seen that, without

the balanced initialization, GD and SGD still prefer `2-norm minimization solution ✓⇤
`2

for
small initialization, while the SGD solution is closer to ✓⇤

`2
due to its initialization reduction

effect.
• We report D(✓(t), ✓⇤

`2
) during optimization for both GD and SGD for different levels of

perturbation � and the same scale of initialization (k✓(0)k = 0.8696) in Fig. 12, which
further clearly reveals that there are still similar phenomenons when � 6= 0 as in the case
when the initialization is balanced.

B More Discussions

Our work proposes the rank-1 linear network which is a plausible proxy of standard linear networks
with some neurons fully connected with neurons in its last and next layers. By showing that
the proposed rank-1 linear networks are standard linear networks with special initialization, our
conclusions may be generalized to standard linear networks. In comparison, the diagonal linear
network, a special kind of linear networks that receives a lot of attention recently, does not have fully
connected neurons. Furthermore, we find that the implicit bias of both GD and SGD for diagonal
linear networks are not consistent with ours. The diagonal linear networks also exhibit drastically
different implicit bias of GD when compared to standard linear networks, while the conclusions for
rank-1 linear networks are consistent with those of standard linear networks. We also reveal the key
role of the over-parameterization in characterizing the implicit bias of SGD, namely that it will only
be different with that of GD for over-parameterization model.

The inconsistency between the implicit bias of GD and SGD for diagonal linear networks and rank-1
linear networks leads us to suggest intriguing questions for future work such as what about other
architectures and is there any unified analytical approach for studying implicit bias of GD and SGD
for different architectures? And it is interesting to reveal whether the “alleviating” initialization effect
of the SGD sampling noise is general accross different architectures.

We precisely characterize the implicit bias of both GD and SGD for rank-1 linear networks, where the
dependence on the initialization and depth is explicit and clear. In this sense, we take a step forward
in the direction of characterizing the implicit bias of optimization algorithms.

Finally, our analysis characterizes the implicit bias of SGD through analyzing the overall parametriza-
tion ✓. This is different with another line of recent work [4, 10, 19, 27, 9] which focused on the

17

Figure 11: D(✓(1), ✓⇤
`2
) for different k✓(0)k when the initialization is unbalanced (� 6= 0, larger �

means the initialization is more unbalanced). We use solid lines for the results of GD and dashed
lines for SGD. For results under the balanced initialization, we use blue lines; for the results when a
small perturbation is added to the balanced initialization, i.e., � 6= 0, we use red lines.

Figure 12: D(✓(t), ✓⇤
`2
) along training for rank-1 linear networks when the initialization is unbalanced

(� 6= 0).

18

flatness of the loss landscape by directly analyzing the independent model parameters, i.e., u and v
for the rank-1 linear networks, which is also crucial to fully understand the learning dynamics.

It is worth to mention that removing the balanced initialization (Definition 1) is also a promising
direction. As verified by the numerical experiments in Appendix A.4, similar phenomena exist for
unbalanced initialization. From the theoretical aspect, balanced initialization enables us to derive
the exact dynamics of the overall parameter ✓, which is necessary to precisely characterize the
implicit bias of GD/SGD. And it is difficult to discuss arbitrary initialization without the balanced
initialization assumption. The effect of removing the balanced initialization is that the induced mirror
flow potential should be composed of two parts: the original potential presented in Section 3 and a
perturbation due to the imbalance of the initialization to it. This implies that the `2-norm solution is
still returned for small initialization. On the other hand, the case for SGD is much more complicated:
the Brownian motion term of the corresponding SDE will also be affected by the imbalance of the
initialization, which in turn induces a much more complex time varying mirror flow potential. We
believe that the exact theoretical characterization of the implicit bias of SGD without the balanced
initialization is a valuable future direction.

There are also some limitations in the current work. For example, although the conclusions of
numerical experiments conducted on non-linear networks resemble that of rank-1 and standard linear
networks, we can not directly generalize the current theoretical analysis to non-linear neural networks,
which normally do not have overall parametrization vectors as ✓ that is necessary for our analysis.
Moreover, the exact characterization of the stochastic integral is also absent in the current work, while
we expect that the integral term L(✓)tr

�
P?(✓)XTX

�
✓

k✓k in Eq. (12) might have close relation with
the property of the training dynamics.

C Proofs for Section 3

In this section, we present the technical details of Section 3. In particular, Section C.1 discusses the
balanced initialization, Section C.2 proves Theorem 1 for rank-1 linear networks and Section C.3
proves Theorem 2 for standard linear networks.

For a rank-1 linear network f(x;u, v) = wT

L
WL�1 · · ·W1x where Wk = ukvTk for any k 2

{1, . . . , L � 1}, recalling the definition Eq. (3) and that the network f(x;u, v) can be written as
f(x;u, v) = ⇢kvTk+1uk⇢�kvT1 x. For convenience, we let ⇠ = wT

L
WL�1 · · ·W2u1.

C.1 Balanced initialization

For a rank-1 linear network Eq. (2), dynamics of gradient flow is given by

duk

dt
= � 2

n
⇢k⇢�kv

T

1 X
T rvk+1, (15)

dvk+1

dt
= � 2

n
⇢k⇢�kv

T

1 X
T ruk. (16)

Based on this set of dynamics, we first discuss he following useful lemma that characterizes the
dynamics of norms of model parameters:

Lemma 1. For f(x;u, v) trained with gradient flow, we have

8k 2 {1, . . . , L� 1} :
dkukk2

dt
=

dkvkk2

dt
=

dkvk+1k2

dt
, (17)

i.e., layer norms grow at the same rate. Furthermore, if 8k 2 {1, . . . , L � 1} : kuk(0)k =
kvk+1(0)k = kvk(0)k, we have

8k 2 {2, . . . L� 1} :
d hvk+1, uki2

dt
=

d hvk, uk�1i2

dt
. (18)

19

Proof. Using Eq.(16), we have

1

2

dkukk2

dt
=

✓
duk

dt

◆T

uk = � 2

n
⇢k⇢�kv

T

1 X
T rvT

k+1uk = � 2

n
⇠vT1 X

T r, (19)

1

2

dkvk+1k2

dt
=

✓
duk

dt

◆T

uk = � 2

n
⇢k⇢�kv

T

1 X
T ruT

k
vk+1 = � 2

n
⇠vT1 X

T r. (20)

Therefore, both dkukk2

dt
and dkvk+1k2

dt
do not depend on k and are same then Eq. (17) follows.

We now discuss Eq. (18). Since we assume 8k 2 {1, . . . , L�1} : kuk(0)k = kvk+1(0)k = kvk(0)k
and Eq. (17) implies that for any t > 0:

kuk(t)k2 � kuk(0)k2 = kvk+1(t)k2 � kvk+1(0)k2 = kvk(t)k2 � kvk(0)k2, (21)

we have
kuk(t)k2 = kvk+1(t)k2 = kvk(t)k2 = ku1(t)k2 (22)

To show Eq. (18), we note that

d hvk+1, uki
dt

=

✓
dvk+1

dt

◆T

uk + vT
k+1

duk

dt

= � 2

n
⇢k⇢�kv

T

1 X
T r(kukk2 + kvk+1k2)

= � 2

n
⇠vT1 X

T r
kukk2 + kvk+1k2

hvk+1, uki
= � 4

n
⇠vT1 X

T r
ku1k2

hvk+1, uki
, (23)

where we use Eq.(16) in the second equality and the third equality is because ⇠ = ⇢k⇢�k hvk+1, uki.
As a result, the above equation implies that

1

2

d(hvk+1, uki)2

dt
= � 4

n
⇠vT1 X

T rku1k2, (24)

which does not depend on k, and Eq. (18) follows.

To simplify the analysis, in Theorem 1, we have required the balanced initialization across layers
(Definition 1). Recall that the balanced initialization is defined as

Definition 1 (Balanced initialization for rank-1 linear networks). Given an L-layer rank-1 linear
network Eq. (2), for any k 2 {1, . . . , L� 1}, the balanced initialization means that

hvk+1(0), uk(0)i2

kvk+1(0)k2kuk(0)k2
= 1, (25)

kvk+1(0)k = kuk(0)k = kv1(0)k. (26)

Eq. (25) states that uk of the k-th layer is aligned with vk+1 of the (k + 1)-th layer in direction
while Eq. (26) means they have the same magnitudes as v1(0). The balanced initialization has been
suggested by several previous works [3, 2, 6, 28] for standard linear networks defined as follows.
Definition 2 (Balanced initialization for standard linear networks). Given an L-layer standard linear
network f(x;W) = wT

L
WL�1 · · ·W1x, for any k 2 {1, . . . , L � 1}, the balanced initialization

means that
WT

k+1(0)Wk+1(0) = Wk(0)W
T

k
(0)

for any k 2 {1, . . . , L}.

This directly means that Wk+1(0) and Wk(0) share same singular values and Wk+1’s right singular
vector aligns with the left singular vector of Wk(0). In our case, such reasoning gives us

vk+1(0)

kvk+1(0)k
=

uk(0)

kuk(0)k
(27)

kvk+1(0)kkuk+1(0)k = kvk(0)kkuk(0)k, (28)

where Eq. (27) is similar to Eq. (25), which shows that uk(0) aligns with vk+1(0), and we adapt the
condition (28) to Eq. (26) for rank-1 linear net since vk and uk are the independent model parameters.

20

A nice property of GD is that the balanced property across layers will be maintained during training
[6, 11, 2], i.e., WT

k+1(t)Wk+1(t) = Wk(t)WT

k
(t) for t > 0 and k 2 {1, . . . , L}, which can be

showed by taking derivative with respect to time on WT

k+1(t)Wk+1(t) and Wk(t)WT

k
(t). For the

rank-1 linear network case, according to Lemma 1 and Eq. (25), hvk+1(t), uk(t)i are the same for all
k 2 {1, . . . , L� 1}, thus GD also maintains the balanced property for rank-1 deep linear networks.
Although the balanced initialization conditions are slightly strict, it can be approximately accurate
if the initialization scale is not large, which is rather common in practice. Under such initialization
conditions, we are able to precisely characterize the implicit bias of GD and focus more on the effects
coming from the overall initialization of model parameters, rather than the difference between layers.

C.2 Proof of Theorem 1

In this section, we prove Theorem 1. Basically the idea is to show the existence of a potential function
V (✓) such that the model parameter ✓ follows a mirror descent with respect to V (✓):

✓(1) = argmin
✓

V (✓) s.t. X✓ = y. (29)

This method is called infinitesimal mirror descent (IMD) approach and can be found in, e.g., [3].
Note that, to apply this method, the dynamics of ✓ should satisfy certain condition, which might
be strict. For example, given the linear model f(x; ✓) = ✓Tx for ✓ 2 Rd, both parameterization of
✓ with standard linear networks, i.e. ✓T = wT

L
WL�1 · · ·W1, and a much simpler one ✓ = cv for

c 2 R and v 2 Rd do not satisfy the condition of applying the IMD approach, while the rank-1 linear
networks satisfy the condition, which implies that the parameterization of rank-1 linear networks is
different with a scalar times a vector. Furthermore, the above example also confirms our motivation
of studying rank-1 linear networks as a proxy of standard linear networks, especially considering that
the implicit bias of SGD for rank-1 linear networks is more amenable.

We first present a useful Lemma in [20]:
Lemma 2. If H has rank 1 and G is invertible, then

(G+H)�1 = G�1 � 1

1 + g
G�1HG�1. (30)

where g = tr
�
HG�1

�
.

We now prove Theorem 1.

Proof. Recall that r 2 Rn with ri = (fi � yi), we let

� =
L�1X

k=1

�k, (31)

�k = ⇢2
k
⇢2�k

(kukk2 + kvk+1k2). (32)
The key step is to derive the dynamics of the overall parameter ✓ which can be done by noting that

d✓

dt
= v1

d⇠

dt
+ ⇠

dv1
dt

,

where, according to Lemma 1,

d⇠

dt
=

L�1X

k=1

⇢k⇢�k

d hvk+1, uki
dt

= � 2

n
rTXv1

L�1X

k=1

⇢2
k
⇢2�k

(kukk2 + kvk+1k2)

= � 2

n
�vT1 X

T r (33)

dv1
dt

= � 2

n
⇠XT r (34)

=) d✓

dt
= � 2

n

�
⇠2I + �v1v

T

1

�
XT r. (35)

21

Eq. (35) can be rewritten as
�
⇠2I + �v1v

T

1

��1 d✓

dt
= � 2

n
XT r. (36)

According to Lemma 2, note that

tr
✓
�
v1vT1
⇠2

◆
=

�kv1k2

⇠2
,

the inverse appeared in Eq. (36) is

(⇠2I + �v1v
T

1)
�1 =

1

⇠2
I � ⇠�2v1vT1 �⇠

�2

1 + �kv1k2

⇠2

=
1

⇠2
I � ✓✓T

⇠6

� + ⇠2k✓k2
. (37)

It is now left for us to express ⇠2 and � in terms of ✓. In the following, we assume the balanced
initialization in Theorem 1 and apply Lemma 1.

1. ⇠2. This can be done by noting that k✓k2 = ⇠2kv1k2, where ⇠2 is given by

⇠2 =
L�1Y

k=1

hvk+1, uki2 . (38)

Note that hvk+1, uki2 grow at the same rate for different k according to Lemma 1 and
hvk+1, uki2 are the same at initialization for different k due to our assumption, we have
hvk+1, uki2 = hv2, u1i2 and ⇠2 = hv2, u1i2(L�1). Note that

1

2

d hv2, u1i2

dt
= � 4

n
⇠vT1 X

T rku1k2 = � 4

n
⇠vT1 X

T rkv1k2 =
1

2

dkv1k4

dt
, (39)

we have hv2, u1i2 � hv2(0), u1(0)i2 = kv1k4 � kv1(0)k4. Since we have hv2, u1i2 =
ku1k4 = kv1k4 at initialization according to our assumption, ⇠2 can be finally written as

⇠2 = kv1k4(L�1). (40)

As a result,

k✓k = kv1k2L�1 =) kv1k = k✓k
1

2L�1 , ⇠2 = k✓k
4(L�1)
2L�1 . (41)

2. ⇠6/�. By taking some simple algebra, we have

� =
2(L� 1)⇠2

kv1k2
=) ⇠6

�
=

⇠4kv1k2

2(L� 1)
. (42)

Now Eq. (36) becomes

k✓k�
2(L�1)
2L�1

0

@I � ✓✓T

k✓k2

2(L�1) + k✓k2

1

A d✓

dt
= �2|⇠|

n
XT r. (43)

These conditions are now sufficient for us to find the form of the potential V (✓). Suppose that V (✓)
can be written as

V (✓) = V̂ (k✓k) + hT ✓ (44)
for some vector h and satisfies the following relation:

r2
✓
V (✓) = r2

✓
V̂ (✓)

= k✓k�
2(L�1)
2L�1

I � 1

1 + 1
2(L�1)

✓✓T

k✓k2

!
, (45)

then Eq. (43) gives us
d

dt
(r✓V (✓)) = � 2

n
XT r (46)

22

and the integration relation

r✓V (✓)�r✓V (✓)|✓=✓(0) =
nX

i=1

xi

Z
r̃i(⌧)d⌧ (47)

where we let r̃ = �2|⇠|r/n. Requiring r✓V (✓)|✓=✓(0) = 0 and denoting �i =
R1
0 r̃i(⌧)d⌧ gives us

the condition at t = 1:

r✓V (✓)|✓=✓(1) =
nX

i=1

xi�i. (48)

Eq. (48) coincides with the KKT stationary condition of the optimization problem (29). Therefore,
we can prove the theorem by deriving the explicit form of V (✓).

Solving V (✓). According to Eq. (44), we can derive the following relation:

@✓V (✓) = V̂ 0 ✓

k✓k + hT (49)

@2
✓
V (✓) =

1

k✓k2

✓
V̂ 00 ✓✓

T

k✓k + V̂ 0I

◆
k✓k � V̂ 0 ✓✓

T

k✓k

�

=
V̂ 0

k✓k

"
I �

1� k✓k V̂

00

V̂ 0

!
✓✓T

k✓k2

#
. (50)

Comparing this with Eq. (45), we conclude that

1� k✓k V̂
00

V̂ 0
=

1

1 + 1
2(L�1)

=) V̂ 00

V̂ 0
=

1

k✓k

1� 1

1 + 1
2(L�1)

!
, (51)

which, by noting that @k✓k ln V̂ 0(k✓k) = V̂
00(k✓k)

V̂ 0(k✓k) , can be solved as follows

V̂ 00(k✓k)
V̂ 0(k✓k)

=
1

k✓k
1

2L� 1

=) ln V̂ 0(k✓k) = 1

2L� 1
ln k✓k

=) V̂ (k✓k) = 2L� 1

2L
k✓k

2L
2L�1 . (52)

Furthermore, since
V̂ 0

k✓k = k✓k�
2(L�1)
2L�1 ,

Eq. (45) is automatically satisfied when V̂ (k✓k) has the form of Eq. (51). It is now left for us to get
the form of h, which can be done by noting that

@✓V (✓(0)) = 0

=) k✓(0)k
1

2L�1
✓(0)

k✓(0)k + h = 0.

Thus the final form of V (✓) is

V (✓) =
1

⌦L

k✓k⌦L � ✓T
✓(0)

k✓(0)k�L
. (53)

This completes the proof.

C.2.1 Remove the assumption of convergence to the interpolation solution

The assumption that X✓(1) = y in Theorem 1 can be removed if the dimension of the span of XT

is larger than the number of samples n, i.e., when dim
�
span(XT)

�
� n.1 This can be proved as

follows.
1Since max(dim(span(XT))) = n, this condition is in fact dim(span(XT)) = n.

23

Proposition 2. For the over-parameterized regression of rank-1 linear networks Eq. (2) and the
dataset {(xi, yi)}ni=1 where xi 2 Rd and n < d, if

dim
�
span(XT)

�
� n,

then the gradient flow solution ✓(1) satisfies that

X✓(1) = y.

Proof. To prove this proposition, we study the dynamics of the loss function L = 1
n

P
i
r2
i

, where
ri = h✓, xii � yi, that is given by

dL
dt

=
@L
@✓

d✓

dt

=
2

n
rTX

�2⇠2

n

✓
I + 2(L� 1)

✓✓T

k✓k2

◆
XT r

�

= �4⇠2

n2

rXTXr + 2(L� 1)

rTX✓✓TXT r

k✓k2

�

= �4⇠2

n2

kXT rk2 + 2(L� 1)

(✓TXT r)2

k✓k2

�

 0,

where we have the equality in the last line when r = (0, . . . , 0)T 2 Rd, i.e., X✓ = y, or XT r = 0,
which is not possible since we have assumed that dim(span(XT)) � n. Therefore, L(✓(t)) keeps
decreasing until X✓(t) = y, i.e., until GD finds the interpolation solution. Noting that min✓ L(✓) = 0,
we complete the proof.

C.3 Proof of Theorem 2

In this section we prove Theorem 2. The techniques are similar to those in C.2, and we still need
a time wrapping technique introduced in [3] to derive the form of Vstd(✓), since the condition for
applying the IMD approach is violated in this case. Recall that, for the standard linear networks
f(x;W) = wT

L
WL�1 · · ·W1x = ✓Tx where Wk 2 Rdk⇥dk+1 , our purpose is to find a potential

function Vstd(✓) such that the gradient flow solution ✓(1) satisfies that

✓(1) = argmin
✓

Vstd(✓), s.t.X✓ = y. (54)

Since we assume the balanced initialization (Definition 2), then according to [11, 6, 2], the norms of
all layers grow at the same rate and are the same for any t > 0:

WT

k+1(t)Wk+1(t) = Wk(t)W
T

k
(t).

Furthermore, following the procedure of [2], we obtain that the dynamics of ✓ is

d✓

dt
= �k✓k

2(L�1)
L

I + (L� 1)

✓✓T

k✓k2

�
XT r. (55)

We now present the proof.

Proof. Eq. (55) can be written as

k✓k
2(1�L)

L

I + (L� 1)

✓✓T

k✓k2

��1
d✓

dt
= �XT r,

where, according to Lemma 2, the inverse in above equation is given by

I + (L� 1)

✓✓T

k✓k2

��1

= I � 1

1 + tr
⇣

(L�1)✓✓T

k✓k2

⌘ (L� 1)
✓✓T

k✓k2

= I � L� 1

L

✓✓T

k✓k2 . (56)

24

As a result, we have

k✓k
2(1�L)

L

✓
I � L� 1

L

✓✓T

k✓k2

◆
d✓

dt
= �XT r. (57)

In this case, we still assume that Vstd(✓) has the following form

Vstd(✓) = V̂std(k✓k) + �T ✓ (58)

for some constant vector � 2 Rd. Then following a similar procedure as in C.2, we have that

@✓Vstd(✓) = V̂ 0
std

✓

k✓k + hT (59)

@2
✓
Vstd(✓) =

V̂ 0
std

k✓k

"
I �

1� k✓k V̂

00
std

V̂ 0
std

!
✓✓T

k✓k2

#
. (60)

In the IMD approach, Vstd(✓) should satisfy that
d

dt
(@✓Vstd(✓)) = � 2

n
XT r, (61)

which requires that @2
✓
Vstd(✓) = k✓k

2(L�1)
L

⇣
I � L�1

L

✓✓
T

k✓k2

⌘
d✓

dt
. But this is not possible. Therefore,

we multiply a time re-scale factor g(✓), as long as g(✓) is positive, to both sides of Eq. (57) and
only require that Vstd(✓) satisfies the above relation under the new time scale ⌧ : R ! R such that
⌧ 0 = g(✓):

g(✓)k✓k
2(1�L)

L

✓
I � L� 1

L

✓✓T

k✓k2

◆
d✓

dt
= �g(✓)XT r. (62)

Then the limit point at t = 1 in Eq. (61) is also visited at the point ⌧ =
R1
0 g(✓(s))ds in Eq. (62).

We now solve the explicit form of Vstd(✓) that satisfies Eq. (62). By comparing Eq. (60) and the right
hand side of Eq. (57), we obtain that the following relation should be satisfied:

V̂ 0
std

k✓k

"
I �

1� k✓k V̂

00
std

V̂ 0
std

!
✓✓T

k✓k2

#
= g(✓)k✓k

2(1�L)
L

✓
I � L� 1

L

✓✓T

k✓k2

◆
. (63)

This implies that we need:

• the terms in the bracket on both sides should match:

1� k✓k V̂
00
std

V̂ 0
std

=
L� 1

L
=) 1

xL
=

V̂ 00
std

V̂ 0
std

=) ln V̂ 0
std

=
1

L
ln k✓k+ C =) V̂std =

C 0L

L+ 1
k✓k 1

L+1 (64)

for some constant C and C 0, where we can simply choose C 0 = 1;

• the terms outside the bracket on both sides should also match:
V̂ 0
std

k✓k = g(✓)k✓k
2(1�L)

L =) g(✓) = V̂ 0
std

k✓k
2(L�1)

L �1. (65)

To obtain the form of the constant vector �, we note that @✓V (✓(0)) = 0, which immediately gives us

k✓(0)k 1
L
✓(0)

k✓(0)k + � = 0 =) � = �✓(0)k✓(0)k 1
L�1. (66)

Combining all these terms, we have the final form of Vstd(✓):

Vstd(✓) =
L

L+ 1
k✓k 1

L+1 � ✓(0)T ✓k✓(0)k 1
L�1. (67)

As in C.2, denoting �i =
R1
0 ri(s)ds and noting that @✓Vstd(✓(0)) = 0 give us

@✓Vstd =
nX

i=1

xi�i,

which is exactly the KKT stationary condition of the optimization problem (54).

25

Convergence to the interpolation solution. Similar to C.2.1, we can also show the convergence to
the interpolation solution when dim

�
span(XT)

�
� n by deriving the dynamics of L:

dL
dt

=
@L
@✓

d✓

dt

= �2k✓k
2(1�L)

L

n
rTX

I + (L� 1)

✓✓T

k✓k2

�
XT r

= �2k✓k
2(1�L)

L

n

h
krTXk2 + (L� 1)

�
✓TXT r

�2i
.

Since we assume that dim
�
span(XT)

�
� n, dL/dt < 0 until X✓(t) = y, i.e., L keeps decreasing

until GD finds the interpolation solution.

C.4 Proof of Proposition 1

In this section, we prove Proposition 1 by analyzing the gradient of model parameters. It is helpful to
recall that for a matrix A, we use Aij to denote its i-th row j-th column element. For weight matrices,
e.g., Wk, we use Wk;ij to denote its i-th row j-th column element.

Proof. For a standard linear network that has the initialization of Proposition 1 and L is an odd
number, i.e., for an integer p

8k = 2p+ 1 2 {1, . . . , L} : Wk;ij(0) = 0 if i 6= ck, where ck 2 {1, . . . dk+1}
8k = 2p 2 {1, . . . , L} : Wk;ij(0) = 0 if j 6= ck,

note that the L� 1-th layer satisfies that WL�1;ij = WL�1;ij�jcL�1 where �jl = 1 if j = l otherwise
�jl = 0, we can write the networks at t = 0 as

f(x;W) =
X

i

X

j

wL;iWL�1;ij�jcL�1 (WL�2 · · ·W1x)j .

Then the gradient w.r.t WL�1 at t = 0 is

�
rWL�1L(✓)

�
ij
=

2

n

nX

µ=1

rµwL;i(WL�2 · · ·W1x)j�jcL�1 (68)

=)
�
rWL�1L(✓)

�
ij
= 0 if j 6= cL�1. (69)

This means that the parameter WL�1;ij will be updated only when j = cL�1. As a result, the
initialization shape for WL�1 will be maintained, i.e., only the non-zero column of WL�1 at t = 0
will be updated and all other elements of WL�1 will be zero for any t > 0 since the corresponding
gradients vanish. Similarly, for WL�1, we can write the network at t = 0 as:

f(x;W) =
X

j

X

l

(wT

L
WL�1)j�jcL�1WL�2;jl(WL�3 · · ·W1x)l,

then �
rWL�2L(✓)

�
ij
= 0 if i 6= cL�1

and the initialization shape for WL�2 will also be maintained. Following a similar procedure, we
conclude that all the initialization shapes will be maintained for any t > 0.

We now consider the diagonal initialization for weight matrices, namely that

Wk;ij = 0 if i 6= j, 8k 2 {1, . . . , L� 1}.
For any k 2 {1, . . . , L� 1}, the gradient w.r.t Wk at t = 0 is

(rWkL(✓))ij =
2

n

nX

µ=1

rµ(w
T

L
· · ·Wk+1)i(Wk�1 · · ·W1x)j ,

where, clearly, there is not any constraint on which elements of (wT

L
· · ·Wk+1)T 2 Rd and

(Wk�1 · · ·W1x) 2 Rd are zeros if we do not require that many diagonal elements of the initialization

26

matrices are zeros, which clearly violates the diagonal initialization requirements. Thus we can not
conclude that

(rWkL(✓))ij = 0 if i 6= j,

i.e., the off-diagonal elements of Wk will also be updated to be non-zeros. Thus the diagonal
initialization of weight matrices can not be maintained. The conclusions for other layers can be easily
derived by following similar arguments.

D Proofs for Section 4

In this section, we present the technical details for Section 4. In particular, we introduce our modelling
details of the SGD dynamics in D.1, derive the SDE of the model parameter ✓ in D.2, and, finally,
prove Theorem 3 in D.3.

D.1 SDE modelling details

Similar to the case of GD, to derive the implicit bias of SGD for rank-1 linear networks, we need to
first derive the dynamics of the overall model parameter ✓. For this purpose, the structure of the noise
of SGD is crucial. For convenience, we first discuss the basic SGD where only one data is randomly
sampled at each step, while the generalization to batch-size SGD is straightforward.

Structure of the noise. We present the details for uk, and the case for vk+1 is similar. Recall
that the empirical loss is L =

P
i
`i / n, ⌘ is the learning rate and that the network can be written

as f(x;u, v) = ⇢k⇢�kvTk+1ukvT1 x, we start with the SGD update equation for uk where we let jt
denote the index of the sampled data at the t-th step:

uk(t+ 1) = uk(t)� ⌘
@`jt
@uk

= uk(t)� ⌘
@L
@uk

+ ⌘

✓
@L
@uk

� @`jt
@uk

◆

= uk(t)�
2⌘

n
vT1 X

T r⇢k⇢�kvk+1

+ 2⌘

1

n

X

i

ri⇢k⇢�kv
T

1 xivk+1 � rjt⇢k⇢�kv
T

1 xjtvk+1

!

= uk(t)�
2

n
vT1 X

T r⇢k⇢�kvk+1 + 2⌘⇢k⇢�kvk+1v
T

1 X
TZjt (70)

where we let !
ejt be the basis vector in Rn such that the jt-th element is 1 while all other elements are

0 and

Zjt = Ejt [rjt
!
ejt]� rjt

!
ejt , cov[Zjt] ⇠

L
n
In. (71)

As a result of this, the noise of SGD for uk is now

⌃(uk(t)) =
4⌘2L
n

(⇢k⇢�k)
2vT1 X

TXv1vk+1v
T

k+1. (72)

Continuous Modelling of SGD. The continuous modelling techniques for SGD have been widely
applied in recent works [1, 9, 23, 22] to study the dynamics of SGD. In our setting, the continuous
counterpart of SGD is established as follows. First, the discrete SGD updating equations Eq. (8) can
be equivalently written as

uk(t+ 1) = uk(t)� ⌘rukL(✓) + ⌘
⇥
rukL(✓)�ruk`i(t)(✓)

⇤
,

vk+1(t+ 1) = vk+1(t)� ⌘rvk+1L(✓) + ⌘
⇥
rvk+1L(✓)�rvk+1`i(t)(✓)

⇤

for k 2 {1, . . . , L � 1} where both rukL(✓) � ruk`i(t)(✓) and rvk+1L(✓) � rvk+1`i(t)(✓) are
zero-mean noises with covariance matrices in Rdk⇥dk

⌃(uk) =
4L(⇢k⇢�k)2

n
vT1 X

TXv1vk+1v
T

k+1,

⌃(vk+1) =
4L(⇢k⇢�k)2

n
vT1 X

TXv1uku
T

k
,

27

with ⇢k and ⇢�k defined in Eq. (3). Second, as we identify the noise covariance, letting ⌘ ! 0 2,
then we obtain the continuous counterpart of the discrete SGD that is a set of stochastic differential
equations (SDE):

duk = � 2

n
vT1 X

T r⇢k⇢�kvk+1dt+ 2

r
⌘L
n

(⇢k⇢�k)vk+1v
T

1 X
T dWt (73)

dvk+1 = � 2

n
vT1 X

T r⇢k⇢�kukdt+ 2

r
⌘L
n

(⇢k⇢�k)ukv
T

1 X
T dWt (74)

where we let r = (f(x1;u, v) � y1, . . . , f(xn;u, v) � yn)T 2 Rn be the residuals and Wt is a
standard Brownian motion in Rn. Similarly, recalling the definition of ⇠ = wT

L
WL�1 · · ·W2u1, the

SDE of v1 is

dv1 = � 2

n
⇠XT rdt+ 2

r
⌘L
n
⇠XT dWt. (75)

Generalization to batch-SGD. When b (a positive constant) data points Bt are sampled in each
iteration of SGD, i.e., batch-SGD, we can change the SGD update equation as follows (taking uk as
an example)

uk(t+ 1) = uk(t)�
⌘

b

X

jt2Bt

@`jt
@uk

.

This only changes the noise ⌃(uk(t)) to a batch version

⌃b(uk(t)) =
1

b
⌃(uk(t)),

which only affects the noise part of the SDE of uk and leads it to become a batch version SDE:

duk = � 2

n
vT1 X

T r⇢k⇢�kvk+1dt+ 2

r
⌘L
nb

(⇢k⇢�k)vk+1v
T

1 X
T dWt.

This is equivalent to re-scale the learning rate ⌘ to

⌘b =
⌘

b
,

and leaving other parts unchanged. Thus the generalization to batch-SGD is straightforward—simply
replacing all ⌘ with ⌘b.

D.2 The SDE of ✓

In this section, we carefully derive the continuous dynamics of SGD for the parameterization of our
rank-1 linear networks. We first discuss the balanced initialization condition.

Balanced initialization. Similar to the case for GD (Definition 2), we also assume the balanced
initialization Eq. (26) across layers. Although the dynamics of SGD is different with that of GD,
it still applies the gradient to update the parameters at every step that will maintain the balanced
property thus the dynamics of SGD will also maintain the balanced property, i.e.,

hvk+1(t), uk(t)i2

kvk+1(t)k2kuk(t)k2
= 1

and
kvk+1(t)k = kuk(t)k = kv1(t)k

for t > 0 and k 2 {1, . . . , L� 1}, during the training of rank-1 linear networks.

With the equations for uk and vk+1, we now derive the SDE of ✓ summarized in the following lemma.

2More details of this modelling technique can be found in [14].

28

Lemma 3. For an L-layer rank-1 linear network Eq. (2), if we assume balanced initialization, then
the stochastic gradient flow of ✓ is

d✓ = �2⇠2

n
H(✓)XT rdt+ 2⇠2

r
⌘L
n

H(✓)XT dWt

+
8⌘L(L� 1)

nk✓k
2

2L�1

I +

2L� 3

2

✓✓T

k✓k2

�
XTX✓dt

where H(✓) = I + 2(L� 1)✓✓T /k✓k2.

Proof. According to the Ito’s Lemma, we have

d✓ = d(⇠v1) = d⇠v1 + ⇠dv1 + d⇠dv1. (76)

Thus to obtain the SDE of ✓, we need to analyze every term of the above equation. We first give d⇠.

The form of d⇠. Let !k = vT
k+1uk and k = kvk+1k2 + kukk2, we first characterize the SDE of

!k. According to the Ito’s calculus, we obtain that

d!k = d(vT
k+1uk) = uT

k
dvk+1 + vT

k+1duk| {z }
|

+ duT

k
dvk+1| {z }
}

, (77)

where, by applying Eq. (73) and Eq. (74) and noting that (dWt)2 = dt,

| = � 2

n
vT1 X

T r⇢k⇢�k kdt+ 2

r
⌘L
n
⇢k⇢�k kv

T

1 X
T dWt

} =
4⌘L
n

(⇢k⇢�k)
2!kv

T

1 X
TXv1dt.

Combining the above two terms gives us the SDE of !k

d!k =

� 2

n
vT1 X

T r⇢k⇢�k k +
4⌘(⇢k⇢�k)2L

n
!kv

T

1 X
TXv1

�
dt+ 2

r
⌘L
n
⇢k⇢�k kv

T

1 X
T dWt.

Since ⇠ = d(
Q

L�1
k=1 !k), its SDE can be done by repeatedly applying the Ito’s Lemma and the SDE

of !k:

d⇠ = d(
L�1Y

k=1

!k)

=
L�1X

k=1

⇠

!k

d!k

| {z }
�

+
1

2

L�1X

k0,k=1,k 6=k0

⇠

!k!k0
d!kd!k0

| {z }
~

. (78)

For convenience, we first define several helper notations:

�1 =
L�1X

k=1

�k =
L�1X

k=1

 k

!2
k

,

�2 =
L�1X

k=1

1

!2
k

,

�3 =
1

2

L�1X

k,k0=1,k 6=k0

 k k0

!2
k
!2
k0
.

29

Now plugging the form of d!k into � gives us the first term of d⇠:

� = � 2

n
vT1 X

T r⇠2

L�1X

k=1

 k

!2
k

!
dt+

4⌘L⇠3vT1 XTXv1
n

L�1X

k=1

1

!2
k

!
dt

+ 2

r
⌘L
n
⇠2

L�1X

k=1

 k

!2
k

!
�
vT1 X

T dWt

�

= � 2

n
vT1 X

T r⇠2�1dt+
4⌘L⇠3vT1 XTXv1

n
�2dt+ 2

r
⌘L
n
⇠2�1

�
vT1 X

T dWt

�
, (79)

and applying again (dWt)2 = dt and the form of d!k gives us each term of the second sum of d⇠:

~ =
⇠

!k!k0

4⌘⇠2L
n!k!k0

 k k0vT1 X
TXv1dt.

Summing all ~ and �, we obtain the SDE of ⇠:

d⇠ =

� 2

n
vT1 X

T r⇠2�1 +
4⌘L⇠3vT1 XTXv1

n
�2 +

4⌘⇠3LvT1 XTXv1
n

�3

�
dt

+ 2

r
⌘L
n
⇠2�1

�
vT1 X

T dWt

�

=

� 2

n
vT1 X

T r⇠2�1 +
4⌘L⇠3vT1 XTXv1

n
(�2 + �3)

�
dt+ 2

r
⌘L
n
⇠2�1

�
vT1 X

T dWt

�
. (80)

The SDE of v1 is much simpler. To get this, we start with the SGD update equation for v1:

v1(t+ 1) = v1(t)� ⌘
@L
@v1

+ ⌘

✓
@L
@v1

� @`jt
@v1

◆

= v1(t)�
2⌘

n
⇠XT r + 2⌘

1

n

X

i

⇠xiri � rjt⇠xjt

!

= v1(t)�
2⌘

n
⇠XT r + 2⌘⇠XTZjt , (81)

which implies that the noise covariance in this case is

⌃(v1(t)) =
4⌘2⇠2L

n
XTX.

Then using a similar approach as that of uk, we get the SDE of v1

dv1 = � 2

n
⇠XT rdt+ 2

r
⌘L
n
⇠XT dWt. (82)

Now it is sufficient for us to derive the form of d✓.

The form of d✓. Combined with the SDE of ⇠, we now have
d✓ = d(⇠v1) = ⇠dv1 + v1d⇠| {z }

|

+ d⇠dv1| {z }
�

. (83)

For the | term, as we already have the form of dv1 in Eq. (82) and d⇠ in Eq. (80), we simply plug
them into | and obtain that:

| = � 2

n
⇠2XT rdt+ 2

r
⌘L
n
⇠2
�
XT dWt

�
+ v1

� 2

n
vT1 X

T r⇠2�1 +
4⌘L⇠3vT1 X

TXv1
n

(�2 + �3)

�
dt

+ 2

r
⌘L
n

�1⇠
2v1v

T

1 X
T dWt

= � 2

n

�
⇠2I + ⇠2�1v1v

T

1

�
XT rdt+

4⌘L⇠3v1vT1 XTXv1
n

(�2 + �3)dt

+ 2

r
⌘L
n

�
⇠2I + ⇠2�1v1v

T

1

�
XT dWt. (84)

30

For the � term, we only need to consider the dWt terms of Eq. (82) and (80):

� = 4
⌘L⇠3

n
�1X

TXv1dt.

Combining the above two equations gives us the final SDE of d✓:

d✓ = � 2

n

�
⇠2I + ⇠2�1v1v

T

1

�
XT rdt+

4⌘L
n

⇥
⇠3�1I + ⇠3(�2 + �3)v1v

T

1

⇤
XTXv1dt

+ 2

r
⌘L
n

�
⇠2I + ⇠2�1v1v

T

1

�
XT dWt. (85)

On the other hand, recall that our assumptions regarding the initial conditions of f(x;u, v) in the
Lemma (Definition 1) and following similar techniques as in the case for GD, we have that for any
t > 0:

1. 8k : kuk(t)k2 = kvk(t)k2 = kv1(t)k2

2. 8k : !2
k
= huk(t), vk+1(t)i2 = kuk(t)k4 = kv1(t)k4.

Plugging these terms back to the definitions of �1, �2 and �3, we obtain that

 k = 2kv1k2 and ⇠2 = k✓k
4(L�1)
2L�1 (86)

as in the case for GD and

�1 =
2(L� 1)

kv1k2
=

2(L� 1)⇠2

k✓k2 , (87)

�2 =
L� 1

kv1k4
=
⇠4(L� 1)

k✓k4 , (88)

�3 =
2(L� 1)(L� 2)

kv1k4
=

2⇠4(L� 1)(L� 2)

k✓k4 , (89)

where we use that k✓k = k⇠v1k = |⇠|kv1k. Therefore, the final form of d✓ is now

d✓ = �2⇠2

n
H(✓)XT rdt+ 2⇠2

r
⌘L
n

H(✓)XT dWt

+
8⌘L(L� 1)

nk✓k
2

2L�1

I +

2L� 3

2

✓✓T

k✓k2

�
XTX✓dt

where

H(✓) = I + 2(L� 1)
✓✓T

k✓k2 .

D.3 Proof for Theorem 3

In this section, we determine the form of V S(✓) such that ✓ follows a stochastic mirror flow

d@✓V
S(✓, t) = �@L

@✓
dt+ 2

r
⌘L
n

(XT dWt), (90)

which then proves the claims of Theorem 3. For this purpose, we start with manipulating the SDE of
✓ derived in Lemma 3. Note that Eq. (85) can be written as

�
⇠2I + ⇠2�1v1v

T

1

��1
d✓ � 4⌘L

n
Pdt = � 2

n
XT rdt+ 2

r
⌘L
n

XT dWt, (91)

where
P =

�
⇠2I + ⇠2�1v1v

T

1

��1 ⇥
⇠3�1I + ⇠3(�2 + �3)v1v

T

1

⇤
XTXv1.

31

To solve the inverse appeared in the above equation, we apply Lemma 2 and noting that

tr
�
⇠2�1v1v

T

1 ⇠
�2I

�
= �1kv1k2,

then

�
⇠2I + ⇠2�1v1v

T

1

��1
=

1

⇠2
I � 1

1 + �1kv1k2
⇠2�1v1vT1

⇠4

=
1

⇠2

✓
I � �1v1vT1

1 + �1kv1k2

◆

=
1

⇠2

I � 1

1 + ⇠2

�1k✓k2

✓✓T

k✓k2

!
,

where we use that ✓ = ⇠v1 in the last equality, which enables us to simplify P:

P =
�
⇠2I + ⇠2�1v1v

T

1

��1 ⇥
⇠3�1I + ⇠3(�2 + �3)v1v

T

1

⇤
XTXv1

= �1

I � 1

1 + ⇠2

�1k✓k2

✓✓T

k✓k2

!
I +

�2 + �3

⇠2�1
✓✓T

�
XTX✓

= �1

"
I �

1

k✓k2 + ⇠2

�1

� �2 + �3

⇠2�1
+

k✓k2

k✓k2 + ⇠2

�1

�2 + �3

⇠2�1

!
✓✓T

#
XTX✓

= �1

I � �2

1 � �2 � �3

�2
1k✓k2 + ⇠2�1

✓✓T
�
XTX✓.

Thus Eq. (91) for the overall SDE of ✓ now becomes

1

⇠2

I � 1

1 + ⇠2

�1k✓k2

✓✓T

k✓k2

!
d✓ � 4⌘L

n
Pdt = �@L

@✓
dt+ 2

r
⌘L
n

(XT dWt). (92)

The balanced initialization gives us Eq. (87), (88), and (89), and recall that

�L =
2(L� 1)

2L� 1
,

thus we can further rewrite

1

⇠2

I � 1

1 + ⇠2

�1k✓k2

✓✓T

k✓k2

!
=

1

⇠2

I � 1

1 + 1
2(L�1)

✓✓T

k✓k2

!

=
1

⇠2

✓
I � �L

✓✓T

k✓k2

◆
(93)

and

P =
1

⇠2

✓
I � �L

✓✓T

k✓k2

◆⇥
⇠2�1I + (�2 + �3)✓✓

T
⇤
XTX✓

=
1

⇠2

⇠2�1I +

✓
(�2 + �3)(1� �L)�

�L⇠2�1

k✓k2

◆
✓✓T

�
XTX✓

=
1

⇠2

h2(L� 1)⇠4

k✓k2 I + ((L� 1 + 4(L� 1)(L� 2))(1� �L)� 2(L� 1)�L)
⇠4

k✓k4 ✓✓
T

i
XTX✓

=
⇠2

k✓k2

2(L� 1)I � 3(L� 1)

2L� 1

✓✓T

k✓k2

�
XTX✓

=
2(L� 1)⇠2

k✓k2

✓
I � ✓✓T

2k✓k2

◆
XTX✓. (94)

32

Thus, Eq. (91) now3 can be rewritten as

1

⇠2

✓
I � �L

✓✓T

k✓k2

◆
d✓ � 8⌘L

n

(L� 1)⇠2

k✓k2

✓
I � 1

2

✓✓T

k✓k2

◆
XTX✓dt

= �@L
@✓

dt+ 2

r
⌘L
n

(XT dWt). (95)

Finding the form of V S(✓). We now proceed to find the form of V S(✓). For convenience, we
apply a time re-scaling technique such that d⌧ = |⇠|dt (dW⌧ =

p
|⇠|dWt according to [12]) to the

above equation. For convenience, we still use t to represent the time after re-scaling. Then the above
equation becomes

1

k✓k
2(L�1)
2L�1

✓
I � �L

✓✓T

k✓k2

◆
d✓ � 8⌘L

n

(L� 1)⇠2

k✓k2

✓
I � 1

2

✓✓T

k✓k2

◆
XTX✓dt

= �@L
@✓

dt+ 2

r
⌘|⇠|L
n

(XT dWt). (96)

Recall that ✓(0) 2 Rd is the initialization of ✓, since V S(✓) for SGD should have similar form as that
for GD, we borrow from the GD results and first define a constant vector � 2 Rd

� = �k✓(0)k�
2L�2
2L�1 ✓(0).

Suppose now that V S has the following form:

V S(✓, t) =
2L� 1

2L
k✓k

2L
2L�1 + �T ✓ + g(t)T ✓ for g 2 Rd, (97)

by similar techniques as in the case of GD, we obtain the first and second derivatives of V S(✓) w.r.t
✓:

@✓V
S(✓, t) = k✓k�

2(L�1)
2L�1 ✓ + � + g(t),

@2
✓
V S(✓, t) =

1

k✓k
2(L�1)
2L�1

I � �L

✓✓T

k✓k2

�
.

There exists a function of ✓, G(✓) whose exact form can be derived but not necessary for us,
corresponding to our V S(✓, t) defined above, such that d@✓V S(✓, t) can be written as

d@✓V
S(✓) = @✓

�
@✓V

S(✓, t)
�
d✓ + @t

�
@✓V

S(✓, t)
�
dt+

@2

@✓@✓
@✓V

S(✓, t)(d✓)2

= @✓
�
@✓V

S(✓, t)
�
d✓ +

@t
�
@✓V

S(✓, t)
�
+G(✓)

@2

@✓@✓
@✓V

S(✓, t)

�
dt

Now suppose that we can choose a particular g(t), thus a particular G(✓), such that the following
relation is satisfied:

@

@t
@✓V

S(✓, t) +G(✓)
@2

@✓@✓
@✓V

S(✓, t)

= � 8⌘L
n

(L� 1)⇠2

k✓k2

✓
I � 1

2

✓✓T

k✓k2

◆
XTX✓, (98)

then we can rewrite the SDE of @✓V S(✓, t) as follows:

d@✓V
S(✓) = @✓

�
@✓V

S(✓, t)
�
d✓ + @t

�
@✓V

S(✓, t)
�
dt+G(✓)

@2

@✓@✓
@✓V

S(✓, t)dt

=
1

k✓k
2(L�1)
2L�1

✓
I � �L

✓✓T

k✓k2

◆
d✓ � 8⌘L

n

(L� 1)⇠2

k✓k2

✓
I � 1

2

✓✓T

k✓k2

◆
XTX✓dt (99)

3Note that when L = 1 we do not have the second dt term in the LHS of the equation, this term is brought
by adding layers to the model.

33

which will give us the desired “mirror flow” equation:

d@✓V
S(✓) = �r✓Ldt+ 2

r
⌘|⇠|L
n

XT dWt.

It is now suffice for us to find the particular g(t) that makes Eq. (98) satisfied. For convenience, recall
that for a vector a we use aµ to denote its µ-th component, we define the following helper notations:

k = 2⇠2
r
⌘L
n

2 R, (100)

B =

I + 2(L� 1)

✓✓T

k✓k2

�
XT 2 Rd⇥n, (101)

d✓µ = Oµdt+
X

i

BµidWt,i, (102)

Dµ(✓, t) =

✓
@V S(✓, t)

@✓

◆

µ

= k✓k��L✓µ + �µ + gµ(t), D(✓, t) 2 Rd, (103)

�⇢� = 1 if ⇢ = � otherwise �⇢� = 0, (104)

where the exact form of O can be obtained from Lemma 3 but is not necessary for us. In the following,
we use D to represent D(✓, t) for convenience. For our purpose of choosing the particular g(t),
dD(✓, t) = d@✓V S(✓, t) should match the R.H.S of Eq. (99). To make this relation clear, according
to the Ito’s Lemma, we obtain that

dD = @tDdt+ @✓Dd✓ +
1

2

X

⇢,�

@2D

@✓⇢@✓�
d✓⇢d✓�

| {z }
�

,

where the last term is crucial. From the SDE of ✓ (Lemma 3), we have that the d✓⇢d✓� appeared in �
can be written as

d✓⇢d✓� = k2
X

j,i

Bj�B⇢idWt,idWt,j = k2
X

i

Bi�B⇢idt.

On the other hand, according to

@✓D = @2
✓
V S(✓, t) =

1

k✓k�L

✓
I � �L

✓✓T

k✓k2

◆
,

we have that, with explicit subscripts of vectors,

@2Dµ

@✓⇢@✓�
=

@

@✓�

k✓k��L

✓
�µ⇢ � �L

✓⇢✓µ
k✓k2

◆�

= ��Lk✓k��L�2�µ⇢✓� � �L
@

@✓�

�
k✓k��L�2✓⇢✓µ

�

= ��Lk✓k��L�2�µ⇢✓�

� �L
⇥
�(�L + 2)k✓k��L�4✓�✓µ✓⇢ + k✓k��L�2(�⇢�✓µ + �µ�✓⇢)

⇤

= � �L
k✓k�L+2

(�µ⇢✓� + �µ�✓⇢)�
�L

k✓k�L+2
✓µ

✓
�⇢� � (�L + 2)

✓⇢✓�
k✓k2

◆
. (105)

Note that the above expression implies that @
2
D

@✓@✓
is in fact a rank-3 tensor. Combined with the

expression of d✓⇢d✓� derived above, we have that

� = � k2�L
2k✓k�L+2

X

⇢,�

X

i

2

6664
�µ⇢✓� + �µ�✓⇢| {z }

H
⇢
µ�

+✓µ
✓
�⇢� � (�L + 2)

✓⇢✓�
k✓k2

◆

| {z }
P⇢�

3

7775
B�iBi⇢dt (106)

where H 2 Rd⇥d⇥d is a rank-3 tensor. To get the exact form of �, we need to have the exact forms
of

34

1.
P

⇢,�,i
H⇢

µ�
B�iBi⇢. Note that HBB 2 Rd and there are two different terms, both of which will

induce a same vector. In particular,
X

⇢,�,i

�⇢µ✓�B�iBi⇢ =
X

⇢�,i

BµiBi�✓� = (BBT ✓)µ

X

⇢,�,i

�µ�✓⇢B�iBi⇢ = ((✓TBBT)T)µ = (BBT ✓)µ.

Thus we have X

⇢,�,i

H⇢

µ�
B�iBi⇢ = 2(BTB✓)µ,

where

BBT ✓ =

✓
I + 2(L� 1)

✓✓T

k✓k2

◆
XTX

✓
I + 2(L� 1)

✓✓T

k✓k2

◆
✓

=

✓
I + 2(L� 1)

✓✓T

k✓k2

◆
XTX (✓ + 2(L� 1)✓)

= (2L� 1)

I + 2(L� 1)

✓✓T

k✓k2

�
XTX✓. (107)

2.
P

⇢,�,i
P�

⇢
Bi

�
B⇢

i
. Using the matrix notation, we can easily find that

X

⇢,�,i

P�

⇢
Bi

�
B⇢

i
= tr

�
BTPB

�
,

where, recall the definition of B in Eq. (101),

BTPB = X

✓
I + 2(L� 1)

✓✓T

k✓k2

◆✓
I � (�L + 2)

✓✓T

k✓k2

◆✓
I + 2(L� 1)

✓✓T

k✓k2

◆
XT

= X

I + (2(L� 1)� (�L + 2)� 2(L� 1)(�L + 2))

✓✓T

k✓k2

�

⇥

I + 2(L� 1)

✓✓T

k✓k2

�
XT

= X

I � 2(2L� 1)

✓✓T

k✓k2

�
I + 2(L� 1)

✓✓T

k✓k2

�
XT

= X

I � (8L2 � 10L+ 4)

✓✓T

k✓k2

�
XT . (108)

Taking the trace of the above equation gives us the second term of �:

tr
�
BTPB

�
= tr

�
XTX

�
� (8L2 � 10L+ 4)

✓T

k✓k2X
TX✓.

Now removing the µ subscript of the derived
P

⇢,�,i
H⇢

�,µ
B�iBi⇢ and recovering the matrix notation,

we have the final form of � by combining it with the result of tr
�
BTPB

�

� = � k2�L
2k✓k�L+2

2(2L� 1)

✓
I + 2(L� 1)

✓✓T

k✓k2

◆
XTX✓

�

� k2�L
2k✓k�L+2

✓tr
�
XTX

�
� (8L2 � 10L+ 4)

✓✓T

k✓k2X
TX✓

�

=
k2

2

� �L
k✓k�L+2

tr
�
XTX

�
✓ � 4(L� 1)

k✓k�L+2

✓
I � L

2L� 1

✓✓T

k✓2k

◆
XTX✓

�
dt. (109)

Thus the SDE of D now becomes
dD = @✓Dd✓

+

@tD � k2�L

2k✓k�L+2
tr
�
XTX

�
✓ � 2k2(L� 1)

k✓k�L+2

✓
I � L

2L� 1

✓✓T

k✓2k

◆
XTX✓

�
dt

35

To find the particular g(t) such that Eq. (98) is satisfied, we need to require that

@tD � k2�L
2k✓k�L+2

tr
�
XTX

�
✓ � 2k2(L� 1)

k✓k�L+2

✓
I � L

2L� 1

✓✓T

k✓2k

◆
XTX✓

= �8⌘L
n

(L� 1)⇠2

k✓k2

✓
I � 1

2

✓✓T

k✓k2

◆
XTX✓.

Recall that D = k✓k��L✓ + � + g(t), we have

@tD = g0(t),

which, noting that k2 = 4⇠4⌘L/n, further gives us that the following relation should be satisfied

g0(t)� 2⇠4⌘L
nk✓k�L+2

�Ltr

�
XTX

�
✓ + 4(L� 1)

✓
I � L

2L� 1

✓✓T

k✓2k

◆
XTX✓

�

= �8⌘L
n

(L� 1)⇠2

k✓k2

✓
I � 1

2

✓✓T

k✓k2

◆
XTX✓.

As a result of this, we can, noting that ⇠2 = k✓k2�L from k✓k2 = ⇠2kv1k2, give the required g(t)
that makes Eq. (98) satisfied by solving the following equation:

g0(t) =
2�L⌘tr

�
XTX

�
Lk✓k �L�2

n
✓

+
8⌘(L� 1)Lk✓k�L�2

n

I � I �

✓
L

2L� 1
� 1

2

◆�
XTX✓

=
2�L⌘Lk✓k �L�2

n
tr
✓✓

I � ✓✓T

k✓k2

◆
XTX

◆
✓. (110)

Now let the orthogonal projection operator of ✓ be P?(✓) = I � ✓✓
T

k✓k2 , then we can solve g(t) as

g(t) =
2�L⌘

n

Z
t

0
L(✓)k✓k �L�2✓tr

�
P?(✓)X

TX
�
ds. (111)

With this particular g(t), we can then give V S(✓, t)

V S(✓, t) =
1

⌦L

k✓k⌦L + ✓T

2�L⌘

n

Z
t

0
L(✓)k✓k �L�2✓tr

�
P?(✓)X

TX
�
ds� ✓(0)

k✓(0)k�L

�
(112)

that satisfies the relation

d@✓V
S(✓) = �r✓Ldt+ 2

r
⌘L⇠
n

XT dWt.

Moreover, a particular interesting case is that, as L ! 1,

lim
L!1

V (✓, t) = k✓k+ ✓T
"
2⌘

n

Z
T

0
L(✓)

��P?(✓)X
T
��2
F

✓

k✓kds�
✓(0)

k✓(0)k

#
. (113)

36

	Introduction
	Preliminaries and Setup
	Equivalence Between Implicit Bias of GD for Standard and Rank-1 Nets
	Implicit bias of GF for rank-1 linear networks
	Comparison between different architectures

	Implicit bias of SGD for Rank-1 Linear Networks
	Numerical Experiments
	Discussion & Conclusion
	Details of Numerical Experiments and Additional Experiments
	Details of Numerical Experiments in Section 5
	Additional Experiments of Comparison with Diagonal Nets
	Additional Experiments for the ``Alleviating'' Effect in Theorem 3
	Training loss for Fig. 4(b)

	Additional Experiments for Biased Initialization

	More Discussions
	Proofs for Section 3
	Balanced initialization
	Proof of Theorem 1
	Remove the assumption of convergence to the interpolation solution

	Proof of Theorem 2
	Proof of Proposition 1

	Proofs for Section 4
	SDE modelling details
	The SDE of
	Proof for Theorem 3

