
Supplementary Material for Understanding and
Improving Ensemble Adversarial Defense

Yian Deng
Department of Computer Science

The University of Manchester
Manchester, UK, M13 9PL

yian.deng@manchester.ac.uk

Tingting Mu
Department of Computer Science

The University of Manchester
Manchester, UK, M13 9PL

tingting.mu@manchester.ac.uk

1 Studied Ensemble Adversarial Defense Techniques

We briefly explain four ensemble adversarial defense techniques including ADP [5], CLDL [6],
DVERGE [7] and SoE [1]. They are used to test the proposed enhancement approach iGAT. In general,
an ensemble model contains multiple base models, and the training is conducted by minimizing their
classification losses together with a diversity measure. The output of each base model contains the
probabilities of an example belonging to the C classes. For an input example x ∈ X , we denote its
output from the i-th base classifier by hi(x) =

[
hi
1(x)..., h

i
C(x)

]
for i ∈ [N], where N denotes the

base model number.

1.1 ADP Defense

ADP employs an ensemble by averaging, i.e., h(x) := 1
N

∑N
i=1 h

i(x). The base classifiers are
trained by minimizing a loss that combines (1) the cross entropy loss of each base classifier, (2)
the Shannon entropy of the ensemble prediction for regularization, and (3) a diversity measure to
encourage different predictions by the base classifiers. Its formulation is exemplified below using one
training example (x, yx):

LADP(x, yx) =
N∑
i=1

ℓCE(h
i(x), yx)︸ ︷︷ ︸

classification loss

−αH (h(x))︸ ︷︷ ︸
uncertainty

regularization

+β log(D(h1(x),h2(x), . . . ,hN (x), yx))︸ ︷︷ ︸
prediction diversity

,

(17)
where α, β ≥ 0 are hyperparameters, the Shannon entropy is H(p) = −

∑C
i=1 pi log(pi), and

D(h1,h2, . . .hN , y) measures the geometric diversity between N different C-dimensional prob-
ability vectors. To compute the diversity, a normalized (C − 1)-dimensional vector h̃i

\y is firstly

obtained by removing from hi the element at the position y ∈ [C], the resulting
{
h̃i
\y

}N

i=1
are stored

as columns of the (C − 1)×N matrix H̃\y , and then it has D(h1,h2, . . .hN , y) = det
(
H̃T

\yH̃\y

)
.

1.2 CLDL Defense

CLDL provides an alternative way to formulate the diversity between base classifiers, considering
both the base classifier prediction and its loss gradient. Its loss for the training example (x, yx) is

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

given by

LCLDL(x, yx) =
1

N

N∑
i=1

DKL
(
si(x)||hi(x)

)
︸ ︷︷ ︸

classification loss

−α log

 2

N(N − 1)

N∑
i=1

N∑
j=i+1

e
JSD

(
si\(x)||s

j
\(x)

)
︸ ︷︷ ︸

prediction diversity

+
2β

N(N − 1)

N∑
i=1

N∑
j=i+1

cos(∇DKL(s
i(x)||hi(x)),∇DKL

(
sj(x)||hj(x)

)
︸ ︷︷ ︸

gradient diversity

, (18)

where si(x) is a soft label vector computed for (x, yx) by a label smoothing technique called label
confusion model [3]. The vector si\ is defined as a (C − 1)-dimensional vector by removing from si

its maximal value. The Kullback–Leibler (KL) divergence is used to examine the difference between
the soft label vector and the prediction vector, serving as a soft version of the classification loss.
The other used divergence measure is Jensen–Shannon divergence (JSD), given as JSD (p||q) =
1
2 (DKL (p||g) + DKL (q||g)) with g = 1

2 (p+ q).

1.3 DVERGE Defense

DVERGE proposes a vulnerability diversity to help training the base classifiers with improved
adversarial robustness. For training the i-th base classifier, it minimizes

Loriginal
DVERGE(x, yx) = ℓCE(h

i(x), yx)︸ ︷︷ ︸
classification loss

+α
∑
j ̸=i

E(xs,yxs)∼D,l∈[L]

[
ℓCE

(
hi
(
x̃
(
hj
(l),x,xs

))
, yxs

)]
︸ ︷︷ ︸

adversarial vulnerability diversity

,

(19)
where α ≥ 0 is a hyperparameter. Given an input example x, x̃

(
hj
(l),x,xs

)
computes its distilled

non-robust feature vector proposed by Ilyas et al. [4]. This non-robust feature vector is computed
with respect to the l-th layer of the j-th base classifier with its mapping function denoted by hj

(l) and
a randomly sampled natural example xs, by

x̃
(
hj
(l),x,xs

)
= arg min

z∈Rd

∥∥∥hj
(l)(z)− hj

(l)(x)
∥∥∥2
2
, (20)

s.t. ∥z− xs∥∞ ≤ ϵ.

When x and xs belong to different classes, x̃ can be viewed as an adversarial example that is visually
similar to xs but is classified by the j-th base classifier into the same class as x. This represents a
weakness of hj , and as a correction, the i-th base classifier is trained to correctly classify x̃ into the
same class as xs. But when x and xs come from the same class, (x̃, yxs

) is just an example similar to
the natural one (xs, yxs

) ∈ D, for which the first and second loss terms play similar roles. Therefore,
DVERGE simplifies the above loss in practice, and trains each base classifier by

min
hi

LDVERGE(x, yx) = E(xs,yxs)∼D,l∈[L]

∑
j ̸=i

ℓCE

(
hi
(
x̃
(
hj
(l),x,xs

))
, yxs

) . (21)

It removes the classification loss on the natural data.

1.4 SoE Defense

SoE proposes a version of classification loss using adversarial examples and a surrogate loss that acts
similarly to the vulnerability diversity loss as in DVERGE. For each base classifier hi, an auxiliary

2

scalar output head gi is used to approximate its predicted probability for the true class. Its overall
loss exemplified by the training example (x, yx) is given as

LSoE(x, yx) =

N∑
j=1

ℓBCE

(
hj
yx

(
x̃i
)
, gj
(
x̃i
))

︸ ︷︷ ︸
adversarial classification loss

−σ ln

N∑
j=1

exp

(
−ℓCE

(
hj
(
x̃i
)
, yx
)

σ

)
︸ ︷︷ ︸

surrogate loss for vulnerability diversity

, (22)

where ℓBCE is the binary cross entropy loss, and σ > 0 is the weight parameter. Adversarial examples
are generated to compute the losses by using the PGD attack. For the j-th base classifier, the attack is
applied to each i-th (i ̸= j) base classifer to generate training data, resulting in x̃i = ϕ(hi,x,PGD).
SoE has two training phases and in the second training phase, rather than using x̃i, a different
adversarial example is generated by x̃ = ϕ(hk,x,PGD) where k = argmaxi∈[N] g

i(x), aiming at
attacking the best-performing base classifier.

2 Proof of Theoretical Results

Given a C-class L-layer MLP h : X → [0, 1]C described in Assumption 4.2, we study its cross-
entropy loss for one example (x, yx), i.e., ℓCE(h(x), yx) = − log hyx(x), where its partial derivative
with respect to the k-th element of x is given by

∂ℓCE(x)

∂xk
=

C∑
i=1

(hi(x)−∆i,yx)
∂zi
∂xk

, (23)

where ∆i,yx =

{
1, if i = yx,
0, otherwise. Perturbing the input x to x + δ, sometimes we simplify the

notation of the perturbed function output, for instance, ℓ̃(x) = ℓ(x + δ), h̃(x) = h(x + δ),
z̃(x) = z(x+ δ) and σ̃(x) = σ(x+ δ).

Our main theorem builds on a supporting Lemma 2.1. In the lemma, we derive an upper bound for
the difference between the predictions h(x) and h(z) for two examples, computed by an MLP h :
Rd → [0, 1]C satisfying Assumption 4.2. Before proceeding to prove the main theorem, we provide a
proof sketch. For each ambiguous pair, we firstly analyse its 0/1 risk under different situations when
being classified by a single classifier, and derive its empirical 0/1 risk as r1 = 1− p+ 1

2p
2. Then

we analyse the 0/1 risk for this pair under different situations when being classified by an ensemble
classifier, where both max and average combiners are considered. We derive the ensemble empirical
0/1 risk as r2 = 1− 3p2 + 3p3 − 3

4p
4. Finally, we prove the main result in Eq. (43) by obtaining a

sufficient condition for achieving a reduced ensemble risk, i.e., p > 0.425 which enables r2 ≤ r1.

2.1 Lemma 2.1 and Its Proof

Lemma 2.1. Suppose a C-class L-layer MLP h : Rd → [0, 1]C with softmax prediction layer
satisfies Assumption 4.2. For any x, z ∈ Rd and c = 1, 2 . . . , C , the following holds

|hc(x)− hc(z)| ≤ ∥x− z∥2B
√
C
(
λ̃2 − ξ

)
(24)

for some constant ξ ≤ λ̃2, where λ̃ and B are constants associated with the MLP family under
Assumption 4.2.

Proof. Define the perturbation vector δ ∈ Rd such that z = x+δ and denote its strength by ϵ = ∥δ∥2,
these will be used across the proof. We start from the cross-entropy loss curvature measured by Eq.
(2), given as

λ2
h(x, δ) =

1

ϵ2
∥∇ℓCE(h(x), yx)− ℓCE(h(x+ δ), yx)∥22 =

1

ϵ2

∑
k

(
∂ℓCE(x)

∂xk
− ∂ℓ̃CE(x)

∂xk

)2

.

(25)
Below we will expand this curvature expression, where we denote a perturbed function f(x) by using
f̃(x) and f(x+ δ) interchangeably.

3

By Eq. (23), it has∣∣∣∣∣∂ℓCE(x)

∂xk
− ∂ℓ̃CE(x)

∂xk

∣∣∣∣∣ =
∣∣∣∣∣

C∑
c=1

(hc(x)−∆i,yx)
∂zi
∂xk

−
C∑

c=1

(
h̃c(x)−∆i,yx

) ∂z̃i
∂xk

∣∣∣∣∣ . (26)

Working with the MLP formulation, it is straightforward to express the quantity ∂zi
∂xk

in terms of the
derivatives of the activation functions and the neural network weights, as

∂zi
∂xk

=
∂
∑

sL
w

(L)
i,sL

a
(L−1)
sL (x)

∂xk
=
∑
sL

w
(L)
i,sL

∂a
(L−1)
sL (x)

∂xk
. (27)

For the convenience of explanation, we simplify the notation by defining g(L−1),sL(x) =
∂a(L−1)

sL
(x)

∂xk
,

and we have
∂zi
∂xk

=
∑
sL

w
(L)
i,sL

g(L−1),sL(x), (28)

∂z̃i
∂xk

=
∑
sL

w
(L)
i,sL

g̃(L−1),sL(x). (29)

Applying multivariate Taylor expansion [2], we obtain

g̃(L−1),sL(x) = g(L−1),sL(x) +

d∑
k=1

∂g(L−1),sL(x)

∂xk
δk +

∑
n≥2

∑

ak∈Z0,
k∈[d],∑d
k=1 ak=n

C(a1,...,ad)
n δa1

1 ...δad

d

 ,

(30)
where Z0 denotes the set of nonnegative integers, δk is the k-th element of the perturbation vector δ,
and C

(a1,...,ad)
n denotes the coefficient of each higher-order term of δa1

1 ...δad

d . Combining the above
equations, we have

∑
k

(
∂ℓCE(x)

∂xk
− ∂ℓ̃CE(x)

∂xk

)2

(31)

=
∑
k

(
C∑
i=1

∑
sL

(
hi(x)g(L−1),sL(x)− h̃i(x)g̃(L−1),sL(x)

)
w

(L)
i,sL

−

∑
sL

(
g(L−1),sL(x)− g̃(L−1),sL(x)

)
w(L)

yx,sL

)2

=
∑
k

(
C∑
i=1

∑
sL

(
hi(x)− h̃i(x)

)
g(L−1),sL(x)w

(L)
i,sL

)2

︸ ︷︷ ︸
T (x)

+
∑
n≥1

∑

ak∈Z0,
k∈[d],∑d
k=1 ak=n

D(a1,...,ad)
n δa1

1 ...δad

d

︸ ︷︷ ︸

S(x)

,

where D
(a1,...,ad)
n denotes the coefficient of δa1

1 ...δad

d , computed from the terms like hi(x), h̃i(x),
C

(a1,...,ad)
n and the neural network weights. Define a C-dimensional column vector p(k) with its i-th

element computed by p
(k)
i =

∑
sL

g(L−1),sL(x)w
(L)
i,sL

and a matrix Ph =
∑

k p
(k)p(k)T , the term

T (x) can be rewritten as

T (x) =
∑
k

((
h(x)− h̃(x)

)T
pk

)2

=
(
h(x)− h̃(x)

)T
Ph

(
h(x)− h̃(x)

)
. (32)

4

The factorization Ph = MhM
T
h can be obtained by conducting singular value decomposition of Ph.

The above new expression of T (x) helps bound the difference between h(x) and h̃(x).

According to the norm definition, we have

∥Mh∥2 = max
q∈Rd ̸=0

∥Mhq∥2
∥q∥2

= max
q∈RC ̸=0

∥qTMh∥2
∥q∥2

, (33)

∥M†
h∥2 = max

q∈RC ̸=0

∥M†
hq∥2

∥q∥2
= max

q∈Rd ̸=0

∥qTM†
h∥2

∥q∥2
. (34)

Subsequently, the following holds for any nonzero q ∈ RC and p ∈ Rd

∥qTMh∥2 ≤ ∥Mh∥2∥q∥2, (35)

∥pTM†
h∥2 ≤ ∥M†

h∥2∥p∥2. (36)

Letting q = h(x) − h̃(x) and using the fact that each element in h(x) and h̃(x) is a probability
value less than 1, it has

T (x) =

∥∥∥∥(h(x)− h̃(x)
)T

Mh

∥∥∥∥2
2

≤ ∥Mh∥22
∥∥∥h(x)− h̃(x)

∥∥∥2
2
≤
(
sup
h

∥Mh∥2

)2

C, (37)

which results in the fact that T (x) is upper bounded by Assumption 4.2 where ∥Mh∥2 ≤ B0. Letting

p = MT
h

(
h(x)− h̃(x)

)
and using the Assumption 4.2 where

∥∥∥M†
h

∥∥∥
2
≤ B, it has

∥h(x)− h̃(x)∥2 =

∥∥∥∥(h(x)− h̃(x)
)T

MhM
†
h

∥∥∥∥
2

≤
∥∥∥M†

h

∥∥∥
2

∥∥∥∥(h(x)− h̃(x)
)T

Mh

∥∥∥∥
2

≤ B
√

T (x). (38)

Now we focus on analyzing T (x). Working with Eq. (31) and considering the fact that∑
k

(
∂ℓCE(x)

∂xk
− ∂ℓ̃CE(x)

∂xk

)2
is a positive term and T (x) is upper bounded, S(x) has to be lower

bounded. We express this lower bound by ξϵ2 using a constant ξ for the convenience of later
derivation, resulting in

S(x) ≥ ξϵ2. (39)
Given the perturbation strength ϵ2 = ∥δ∥22, applying the curvature assumption in Assumption 4.2,
i.e., λh(x, δ) ≤ λ̃, also Eqs. (25), (31) and (39), it has

T (x) + ξϵ2 ≤ λ̃2ϵ2 ⇒ T (x) ≤ (λ̃2 − ξ)ϵ2. (40)

Incorporating this into Eq. (38), it has

∥h(x)− h̃(x)∥2 ≤ ϵB

√
λ̃2 − ξ. (41)

Applying the inequality of
∑m

i=1 a
2
i ≥ 1

m (
∑m

i=1 ai)
2, also the fact

∑C
c=1 hc(x) =

∑C
c=1 h̃c(x) = 1,

the following holds for any class c ∈ {1, 2, . . . , C}:

∥h(x)− h̃(x)∥22 ≥
∑
j ̸=c

∣∣∣hj(x)− h̃j(x)
∣∣∣2 ≥ 1

C − 1

∑
j ̸=c

∣∣∣hj(x)− h̃j(x)
∣∣∣
2

≥ 1

C

∣∣∣∣∣∣
∑
j ̸=c

(
hj(x)− h̃j(x)

)∣∣∣∣∣∣
2

=
1

C

∣∣∣hc(x)− h̃c(x)
∣∣∣2 . (42)

Incorporating Eq. (41) to the above, we have∣∣∣hc(x)− h̃c(x)
∣∣∣ ≤ √

C∥h(x)− h̃(x)∥2 ≤ ϵB

√
C
(
λ̃2 − ξ

)
. (43)

5

Inserting back z = x+ δ and ϵ = ∥δ∥2 into Eq. (43), we have

|hc(x)− hc(z)| ≤ ∥x− z∥2B
√
C
(
λ̃2 − ξ

)
. (44)

This completes the proof.

2.2 Proof of Theorem 4.1

Single Classifier. We analyse the expected 0/1 risk of a single acceptable classifier h ∈ H for
a small dataset D2 = {(xi, yi), (xj , yj)} containing the two examples from the ambiguous pair
a = ((xi, yi), (xj , yj)). The risk is expressed by

Eh∈H[R̂0/1(D2,h)] = Eh∈H

[
1

2

(
1

[
hyi

(xi) < max
c ̸=yi

hc(xi)

]
+ 1

[
hyj

(xj) < max
d ̸=yj

hc(xj)

])]
.

(45)
We consider three cases.

Case I: Suppose the example (xi, yi) is correctly classified, thus, according to Assumption 4.4 for
acceptable classifiers, it has hyi

(xi) ≥ 0.5 + 1
J . As a result, its prediction score for a wrong class

(c ̸= yi) satisfies

hc(xi) ≤ 1− hyi
(xi) ≤ 1− (0.5 +

1

J
) = 0.5− 1

J
< 0.5 < hyi

(xi). (46)

Applying Lemma 2.1 for c = yi and Eq. (10) in Definition 4.3 for ambiguous pair, it has

hyi
(xi)− hyi

(xj) ≤ |hyi
(xi)− hyi

(xj)| ≤ ∥xi − xj∥2B
√

C
(
λ̃2 − ξ

)
≤ 1

J
. (47)

Combining the above with the Case I assumption of hyi
(xi) ≥ 0.5 + 1

J , it has

hyi(xj) ≥ hyi(xi)−
1

J
≥ (0.5 +

1

J
)− 1

J
= 0.5, (48)

and hence, for any c ̸= yi, it has

hc(xj) < 1− hyi(xj) ≤ 0.5 ≤ hyi(xj), (49)

which indicates that the example (xj , yj) is wrongly predicted to class yi in Case I. Therefore,

R̂(I)
0/1(D2,h) =

0 + 1

2
=

1

2
. (50)

Case II: Suppose the example (xj , yj) is correctly classified. Following exactly the same derivation
as in Case I, this results in the wrong classification of the other example (xi, yi) into class yj .
Therefore,

R̂(II)
0/1(D2,h) =

1 + 0

2
=

1

2
. (51)

Case III: Suppose both examples are misclassified, which simply results in

R̂(III)
0/1 (D2,h) =

1 + 1

2
= 1. (52)

Note that these three cases are mutually exclusive. Use E1, E2 and E3 to represent the three events
corresponding to Case I, Case II and Case III, respectively. Letting p denote the probability of correctly
classifying an example by an acceptable classifier, it is straightforward to obtain p(E3) = (1− p)2,
while p(E1) = p(E2) =

1
2

(
1− (1− p)2

)
= p− 1

2p
2. Therefore, it has

Eh∈H

[
R̂0/1(D2,h)

]
(53)

= R̂(I)
0/1(D2,h)p(E1) + R̂(II)

0/1(D2,h)p(E2) + R̂(III)
0/1 (D2,h)p(E3),

=
1

2
p(E1) +

1

2
p(E2) + p(E3) = p− 1

2
p2 + (1− p)2 = 1− p+

1

2
p2.

6

Ensemble Classifier. We next analyse using D2 the expected 0/1 risk of an ensemble of two
acceptable base classifiers (h0,h1 ∈ H) with a max or average combiner, in five cases.

Case I: Suppose the example (xi, yi) is correctly classified by both base classifiers. According
to Assumption 4.4 for acceptable classifiers, it has h0

yi
(xi) ≥ 0.5 + 1

J and h1
yi
(xi) ≥ 0.5 + 1

J .
Following exactly the same derivation as in the earlier Case I analysis for a single classifier, i.e., Eqs.
(46) and (49), the following holds for any c ̸= yi, as

h0
c(xi) < h0

yi
(xi), h

0
c(xj) < h0

yi
(xj), (54)

h1
c(xi) < h1

yi
(xi), h

1
c(xj) < h1

yi
(xj). (55)

As a result, for any c ̸= yi, the ensemble prediction satisfies the following

h(0,1)
e,yi

(xi) = max
(
h0
yi
(xi), h

1
yi
(xi)

)
> max(h0

c(xi), h
1
c(xi)) = h(0,1)

e,c (xi), (56)

h(0,1)
e,yi

(xi) =
1

2

(
h0
yi
(xi) + h1

yi
(xi)

)
>

1

2
(h0

c(xi) + h1
c(xi)) = h(0,1)

e,c (xi), (57)

each corresponding to the max and average combiners, respectively. This indicates a correct ensemble
classification of (xi, yi). Also, it satisfies

h(0,1)
e,yj

(xj) = max
(
h0
yj
(xj), h

1
yj
(xj)

)
< max(h0

yi
(xj), h

1
yi
(xj)) = h(0,1)

e,yi
(xj), (58)

h(0,1)
e,yj

(xj) =
1

2

(
h0
yj
(xj) + h1

yj
(xj)

)
<

1

2
(h0

yi
(xj) + h1

yi
(xj)) = h(0,1)

e,yi
(xj), (59)

when using the max and average combiners, respectively. This indicates a wrong classification of
(xj , yj). Finally, for Case I, we have

R̂(I)
0/1

(
D2,h

(0,1)
e

)
=

1

2
(0 + 1) =

1

2
, (60)

Case II: Suppose the example (xj , yj) is correctly classified by both base classifiers. By following
exactly the same derivation as in Case I as above, the ensemble correctly classifies (xj , yj), while
wrongly classifies (xi, yi). As a result, it has

R̂(II)
0/1

(
D2,h

(0,1)
e

)
=

1

2
(1 + 0) =

1

2
. (61)

Case III: Suppose the example (xi, yi) is correctly classified by h0, while the other example (xj , yj)
is correctly classified by h1, i.e., h0

yi
(xi) ≥ 0.5+ 1

J and h1
yj
(xj) ≥ 0.5+ 1

J according to Assumption
4.4. Following a similar analysis as in Case I for a single classifier, we know that h0 consequently
misclassifies (xj , yj) into yi, while h1 misclassifies (xi, yi) into yj . Also, by Assumption 4.4, it is
assumed that the misclassification happens with a less score than 0.5 + 1

J , thus, h0
yi
(xj) ≤ 0.5 + 1

J

and h1
yj
(xi) ≤ 0.5 + 1

J . Combining all these, for any c ̸= yi and d ̸= yj , we have

h1
d(xi) < 0.5 ≤ h1

yj
(xi) ≤ 0.5 +

1

J
≤ h0

yi
(xi), (62)

h0
c(xj) < 0.5 ≤ h0

yi
(xj) ≤ 0.5 +

1

J
≤ h1

yj
(xj), (63)

and according to the second condition in Assumption 4.4, it has

h0
c(xi) ≤

1− h0
yi
(xi)

C − 1
≤ h0

yi
(xi), (64)

h1
d(xj) ≤

1− h1
yj
(xj)

C − 1
≤ h1

yj
(xj). (65)

Subsequently, the ensemble prediction by a max combiner satisfies

h(0,1)
e,yi

(xi) =max
(
h0
yi
(xi), h

1
yi
(xi)

)
= h0

yi
(xi) > max(h0

c(xi), h
1
c(xi)) = h(0,1)

e,c (xi), (66)

h(0,1)
e,yj

(xj) =max
(
h0
yj
(xj), h

1
yj
(xj)

)
= h1

yj
(xj) > max(h0

d(xj), h
1
d(xj)) = h

(0,1)
e,d (xj), (67)

7

which indicates a correct classification of both examples.

Now we consider the slightly more complex situation of ensemble by averaging. According to the
previous analysis, we know that xi is classified by h1 to yj , and xi is classified by h0 to yi. Applying
the second condition in Assumption 4.4, we analyse the quantity 1− h1

yj
(xi)− h1

yi
(xi) as

1− h1
yj (xi)− h1

yi(xi) =
∑

c ̸=yi,yj

h1
c(xi) ≤ (C − 2)

1− h1
yj (xi)

C − 1
= 1− h1

yj (xi)−

(
1− h1

yj (xi)

C − 1

)
, (68)

resulting in

h1
yi
(xi) ≥

1− h1
yj
(xi)

C − 1
. (69)

Combining Eq. (62), Eq. (64) and Eq. (69), it has

h1
yi
(xi) ≥

1− h1
yj
(xi)

C − 1
>

1− h0
yi
(xi)

C − 1
≥ h0

c(xi). (70)

On the other hand, from Eq. (62), one can obtain

h0
yi
(xi) ≥ h1

c(xi). (71)

As a result, the ensemble prediction by an average combiner satisfies

h(0,1)
e,yi

(xi) =
1

2

(
h0
yi
(xi) + h1

yi
(xi)

)
>

1

2
(h0

c

(
xi) + h1

c(xi)
)
= h(0,1)

e,c (xi), (72)

for any c ̸= yi. Following the same way of deriving Eqs. (70) and (71), but for xj , we can obtain
another two inequalities h1

yj
(xj) ≥ h0

d(xj) and h0
yj
(xj) ≥ h1

d(xj), for any d ̸= yj , and subsequently,

h(0,1)
e,yj

(xj) =
1

2

(
h0
yj
(xj) + h1

yj
(xj)

)
>

1

2

(
h0
d(xj) + h1

d(xj)
)
= h

(0,1)
e,d (xj). (73)

Putting together Eqs. (72) and (73), a correct ensemble classification is achieved for both examples.
Finally, we conclude the following result

R̂(III)
0/1

(
D2,h

(0,1)
e

)
= 0, (74)

which is applicable to both the max and average combiners.

Case IV: Suppose the example (xi, yi) is correctly classified by h1 while the other example (xj , yj)
is correctly classified by h0. This is essentially the same situation as in Case III, and the same result
R̂(IV)

0/1

(
D2,h

(0,1)
e

)
= 0 is obtained.

Case V: This case represents all the remaining situations, where, for instance, the example (xi, yi)
and/or (xi, yi) is misclassified by both base classifiers. Here, we do not have sufficient information
to analyse the error in detail, and also it is not necessary to do so for our purpose. So we just simply
leave it as R̂(V)

0/1

(
D2,h

(0,1)
e

)
≤ 1.

These five cases are mutually exclusive, and we use {Hi}5i=1 to denote them accordingly. The
first four cases represent the same situation that each example is correctly classified by a single
base classifier, therefore p(H1) = p(H2) = p(H3) = p(H4) = p(E1)p(E2) =

(
p− 1

2p
2
)2

, while
p(H5) = 1 −

∑4
i=1 p(Hi) = 1 − 4

(
p− 1

2p
2
)2

= 1 − (2p − p2)2. Incorporating the result of

R̂0/1

(
D2,h

(0,1)
e

)
regarding to the five cases, we have

Eh0,h1∈H

[
R̂0/1

(
D2,h

(0,1)
e

)]
(75)

≤ 1

2
p(H1) +

1

2
p(H2) + 0(p(H3) + p(H4)) + p(H5)

=

(
p− 1

2
p2
)2

+ 1− (2p− p2)2 = 1− 3p2 + 3p3 − 3

4
p4.

8

Risk Comparison. We examine the sufficient condition for achieving a reduced ensemble loss for
this dataset D2, i.e.,

Eh0,h1∈H

[
R̂0/1

(
D2,h

(0,1)
e

)]
< Eh∈H

[
R̂0/1 (D2,h)

]
. (76)

Incorporating Eqs. (53) and (75), this requires to solve the following polynomial inequality, as

1− 3p2 + 3p3 − 3

4
p4 < 1− p+

1

2
p2, (77)

for which p > 0.425 provides a solution. Applying the expectation Ea∼A(D) over the data samples,
where the ambiguous pair a is equivalent to D2, Eq. (5) from the theorem is obtained. This completes
the proof.

3 A Toy Example for Theorem 4.1

���

���

���

���

��	

���

��
��
� xi xj

��� ���

��	
��
�

��������

���������������������������������

h0
yi

h1
yj

Figure 1: Illustration for Theorem 4.1.

Guided by Theorem 4.1, we aim to verify the difference between the single-branch and ensemble
mechanisms using 1-dimensional 2-class data. Suppose D = {(xi = 0.3, yi = 0), (xj = 0.7, yj =
1)}, we use it to construct an ambiguous pair a = ((xi, yi), (xj , yj)) as presented in Fig. 1. We
select two base models h0,h1 ∈ H such that h0 classifies xi well and h1 classifies xj well. W.l.o.g,
let h = h0. For the classifiers h, h0 and h1, we analyze the 0-1 loss defined in Eq. (4). Then, we
have

R̂0/1(a,max(h0,h1)) =
1

2

(
1 [max(0.9, 0.37) < max(0.1, 0.63)]

+ 1 [max(0.89, 0.36) < max(0.11, 0.64)]
)
= 0,

R̂0/1(a,
(
h0 + h1

)
/2) =

1

2

(
1 [(0.9 + 0.37)/2 < (0.1, 0.63)/2]

+ 1 [(0.89 + 0.36)/2 < (0.11 + 0.64)/2]
)
= 0,

R̂0/1(a,h) =
1

2

(
1 [0.9 < 0.63] + 1 [0.36 < 0.64]

)
= 0.5.

Hence, it has R̂0/1(a,max(h0,h1)) < R̂0/1(a,h) and R̂0/1(a,
(
h0 + h1

)
/2) < R̂0/1(a,h),

which matches the resulting inequality in Theorem 4.1.

4 Additional Experiments and Results

Extra Black-box Attacks: We conduct more experiments to test the effectiveness of iGAT, by
evaluating against another two time-efficient and commonly used black-box attacks, using the CIFAR-
10 dataset. Results are reported in Table 1. It can be seen that, in most cases, a robustness improvement
has been achieved by the enhanced defence.

9

Table 1: Results on two additional black-box attacks.

Simple Attack (%) Bandits Attack (%)

ADP 75.91 59.21
iGATADP 79.43 64.55
DVERGE 79.43 63.80
iGATDVERGE 79.61 64.89
CLDL 76.82 63.80
iGATCLDL 78.84 65.25
SoE 76.22 66.10
iGATSoE 75.18 66.50

Table 2: Comparison of the ensemble robustness (%) to adversarial attacks of various perturbation
strengths, using the AutoAttack on CIFAR-10. The results are averaged over five independent runs.

H
HHHH

ϵ
2/255 4/255 6/255 8/255 10/255

C
IF

A
R

10 CLDL 71.16 60.36 48.89 37.06 26.00
iGATCLDL 72.69 61.19 49.07 37.12 25.96

DVERGE 76.01 64.80 51.92 39.22 27.72
iGATDVERGE .76.19 65.14 52.52 39.48 28.59

ADP 71.93 59.53 47.27 35.52 25.01
iGATADP 76.02 64.76 52.44 40.38 29.46

C
IF

A
R

10
0 SoE 46.55 33.89 23.77 15.92 10.49

iGATSoE 45.72 33.18 23.28 16.09 10.52
DVERGE 48.87 35.81 25.35 17.26 11.18

iGATDVERGE 49.43 37.11 26.78 18.60 12.13
ADP 45.67 33.90 24.42 17.36 12.27

iGATADP 46.33 34.33 24.85 17.86 12.53

Varying Perturbation Strengths: In addition to the perturbation strength ϵ = 8/255 tested in the
main experiment, we compare the defense techniques under AutoAttack with different settings of
perturbation strength. Table 2 reports the resulting classification accuraccies, demonstrating that the
proposed iGAT is able to improve the adversarial robustness of the studied defense techniques in
most cases.

Comparison Against Single Classifiers: To observe how an ensemble classifier performs with
specialized ensemble adversarial training, we compare iGATADP based on the average combiner
against a single-branch classifier. This classifier uses the ResNet-18 architecture, and is trained using
only the standard adversarial training without any diversity or regularization driven treatment. Table
3 reports the results. It can be seen that the specialized ensemble adversarial training technique can
significantly improve both the natural accuracy and adversarial robustness.

Experiments Driven by Assumption 4.4: To approximate empirically the probability p that a trained
base classifier can correctly classify a challenging example, we generate a set of globally adversarial
examples X̃ by attacking the ensemble h (average combiner) using the PGD and then estimate p on
this dataset by p = Ei∈[N],(x,yx)∼(X̃,y)1[h

i
yx
(x) > maxc ̸=yx h

i
c(x)]. From Table 4, we can see that

all the enhanced ensembles contain base models with a higher probability for correct classifications.

We then examine the distributions of predicted scores by base models when classifying correctly the
globally adversarial data generated in the same as in Table 4. It can be seen that the case exists, where
a base model correctly classifies a challenging example with a sufficiently large predicted score.

10

Table 3: Comparison between iGATADP (average combiner) and a baseline single classifier, evaluated
using CIFAR-10 data and the PGD attack (ϵ = 8/255). The results are averaged over five independent
runs.

Natural (%) PGD (%) Model size

Single Classifier 81.23 38.33 43M
iGATADP 84.95 46.25 9M

Table 4: Probabilities of base models classifying correctly adversarial examples from the CIFAR-10.

ADP iGATADP DVERGE iGATDVERGE CLDL iGATCLDL

p 41.92% 45.98% 46.25% 47.82% 50.37% 51.02%

Table 5: Distributions of predicted scores by base models correctly classifying adversarial examples
from the CIFAR-10.

Interval <0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

iGATADP 43.55% 13.30% 11.15% 10.20% 10.62% 11.19%
iGATDVERGE 20.07% 13.15% 12.20% 12.46% 14.44% 27.69%
iGATCLDL 49.50% 14.12% 12.26% 13.53% 9.77% 0.81%

Table 6: Expectations of the maximum predicted scores on incorrect classes among base models
when tested on adversarial examples from the CIFAR-10.

ADP iGATADP DVERGE iGATDVERGE CLDL iGATCLDL

0.390 0.323 0.476 0.396 0.320 0.281

Next, we compute the quantity, i.e., the largest incorrectly predicted score
Ei∈[N],(x,yx)∼(X̃,y) maxc̸=yx h

i
c(x), to indirectly estimate whether the small-incorrect-prediction

condition, i.e., fc(x) ≤ 1−fŷ(x)
C−1 in Assumption 4.4, can be satisfied better after enhancement. Note

that yi ̸= ŷi indicates the incorrect classification while yi = ŷi indicates the opposite, both of which
are uniformly measured by the defined quantity. This quantity, which is expected to be small, can also
be used to evaluate the effect of the proposed regularization term in Eq. (15) on the training. Table 6
shows that the largest wrongly predicted scores by the base models have significantly dropped for all
the enhanced ensemble models.

Note that small values of hi
c ̸=yx

(x) is equivalent to the high values of hi
yx
(x), and in the theorem,

when ŷ ̸= yx, hi
yx
(x) ≥ 1−hi

ŷ(x)

C−1 is the actual condition expected to be satisfied. Therefore,
to examine the second item (the case of misclassification) in Assumption 4.4, we measure the

probability Ei∈[N],(x,yx)∼(X̃,y)1
[
hi
yx
(x) ≥ 1−hi

ŷ(x)

C−1

]
instead. Table 7 shows that after enhancement,

the probability of satisfying the condition increases.

As shown in Figure 1, as long as the peaks of two curves are above the line x = 0.5 and at similar
heights (in which case, are 0.89 and 0.90), whether their height are changed slightly to a higher or
lower position will not increase the 0-1 loss. Elevating the low predicted scores to the same level
as the high scores serves the crucial factor in fulfilling the cooperative function. Hence, we choose
to examine the effect of our distributing rule by checking whether the predicted scores by the best-
performing base models on incorrectly classified examples have been increased after enhancement,
using the quantity E(x,yx)∼(X̃,y),ŷh(x) ̸=yx

[maxi∈[N] h
i
yx
(x)]. It can be seen from Table 8 that base

models were kept improved on the examples they are already good at classifying.

Time Efficiency of iGAT: (1) On distributing rule: We expect the distributing rule to reduce the
training data size to 1

N for training each base classifier, where N is the number of base classifiers,
and therefore to improve the training time. We add an experiment by comparing the training time on

11

Table 7: Probabilities of hi
yx
(x) ≥ 1−hi

ŷ(x)

C−1 for yx ̸= ŷ when tested on adversarial examples from
the CIFAR-10.

ADP iGATADP DVERGE iGATDVERGE CLDL iGATCLDL

68.74% 73.12% 78.99% 80.19% 78.39% 80.87%

Table 8: Predicted scores on incorrectly classified adversarial examples by the best-performing base
model using the CIFAR-10.

ADP iGATADP DVERGE iGATDVERGE CLDL iGATCLDL

0.264 0.291 0.231 0.240 0.235 0.241

N = 1000 training samples required by a full version of iGATADP and that by a modified version
with this distributing rule removed. CIFAR-10 data is used for Evaluation. The observed time for
iGATADP without the distributing design is 5.63 seconds, while with the distributing design is 5.42
seconds, indicating a slightly reduced training time. (2) On overall training: We illustrate the training
epochs between the ADP defense and its enhancement iGATADP. ADP necessitates 691 epochs for
ADP, whereas iGATADP only requires 163 epochs. Based on these, we can conclude that iGATADP
trains faster than ADP.

Observation of Curvature: We investigated empirically the value of the network curvature λ̃ using
neural networks trained by the ADP defense techniques, and recorded a λ̃ value around 0.06. The
smaller value of λ̃ indicates a looser upper bound in Eq. (10). According to our Definition 4.3, a
looser upper bound allows to define an ambiguous pair containing two intra-class examples that are
less close to each other, thus less challenging to classify.

References
[1] Sen Cui, Jingfeng Zhang, Jian Liang, Bo Han, Masashi Sugiyama, and Changshui Zhang.

Synergy-of-experts: Collaborate to improve adversarial robustness. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 35:32552–32567, 2022.

[2] Gerald B Folland. Higher-order derivatives and taylor’s formula in several variables. Preprint,
pages 1–4, 2005.

[3] Biyang Guo, Songqiao Han, Xiao Han, Hailiang Huang, and Ting Lu. Label confusion learning
to enhance text classification models. In The AAAI Conference on Artificial Intelligence (AAAI),
volume 35, pages 12929–12936, 2021.

[4] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Alek-
sander Madry. Adversarial examples are not bugs, they are features. Advances in neural
information processing systems (NeurIPS), 32, 2019.

[5] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness via
promoting ensemble diversity. In International Conference on Machine Learning (ICML), pages
4970–4979, 2019.

[6] Lele Wang and Bin Liu. Adversarial ensemble training by jointly learning label dependencies
and member models. In International Conference on Intelligent Computing (ICIC), pages 3–20,
2023.

[7] Huanrui Yang, Jingyang Zhang, Hongliang Dong, Nathan Inkawhich, Andrew Gardner, Andrew
Touchet, Wesley Wilkes, Heath Berry, and Hai Li. Dverge: diversifying vulnerabilities for
enhanced robust generation of ensembles. Advances in Neural Information Processing Systems
(NeurIPS), 33:5505–5515, 2020.

12

	Studied Ensemble Adversarial Defense Techniques
	ADP Defense
	CLDL Defense
	DVERGE Defense
	SoE Defense

	Proof of Theoretical Results
	Lemma 2.1 and Its Proof
	Proof of Theorem 4.1

	A Toy Example for Theorem 4.1
	Additional Experiments and Results

