
A Proofs of tempered overfitting

A.1 Proof of Theorem 3.1

Throughout the proof, given a sample S = (xi, yi)mi=1 ⇠ Dm we denote Sx = (xi)mi=1, Sy =
(yi)mi=1, and assume without loss of generality that x1  x2  · · ·  xm.
Lemma A.1. Denote by Ex the event in which the samples (xi)mi=1 ⇠ Dm

x satisfy

• (maximal gap isn’t too large) dmax := maxi2[m�1](xi+1 � xi)  log(8(m+1)/�)
m+1 .

• (most gaps aren’t too small) |{i 2 [m� 1] : xi+1 � xi <
1

10(m+1)}| <
m+1
8 .

• (no collisions) 8i 6= j 2 [m] : xi 6= xj .

Then there exists absolute m0 2 N such that 8m � m0 : PrSx⇠Dm
x
[Ex] � 1� �

4 .

Proof. Deferred to Appendix D.

Following the lemma above, we continue by conditioning on the probable event Ex, after which we
will conclude the proof by the union bound. We now state a lemma due to Safran et al. [2022] which
is crucial for our analysis.
Lemma A.2 (Lemma E.6. Safran et al., 2022). Suppose that i < j are such that yi, yi+1, . . . , yj =
�1. Then in the interval [xi, xj ] there are at most two points at which N

0
✓ increases.

We derive the following corollary:
Corollary A.3. Suppose that yi, yi+1, . . . , yi+4 = �1. Then there exists i  `  i + 3 for which
N✓|[x`,x`+1] < 0.

Proof. Assume towards contradiction that yi, . . . , yi+4 = �1, yet for any i  `  i+ 3 there exists
z` 2 (x`, x`+1) such that N✓(z`) � 0. Recall that N✓(xi), . . . , N✓(xi+3)  �1 by Eq. (3). Thus for
each i  `  i+ 2, looking at the segment (z`, z`+1) 3 x`+1 we see that N✓(z`) > 0, N✓(x`+1) 
�1, N✓(z`) > 0. In particular, by the mean value theorem, any such segment must contain a point at
which N

0
✓ increases. Obtaining three such points which are distinct contradicts Lemma A.2.

We assume without loss of generality that m is divisible by 5 and split the index set [m] into groups
consecutive five indices: we let I1 = {1, . . . , 5}, I2 = {6, . . . , 10} and so on up to Im/5. Denoting
by µ the (one dimensional) Lebesgue measure we get that under the event Ex it holds that
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where the last inequality follows from our conditioning on Ex. To see why, note that the sumP
i2[m/5]

P
l2[Ii]

min`2Ii(x`+1 � x`) is lower bounded by the sum of the m/5 smallest gaps, yet
under Ex this sum contains at least ⌦(m) summands larger than ⌦(1/m) — hence it is at least some
constant. We conclude that as long as Ex occurs we have ESy⇠Dm

y
[Prx⇠Dx [N✓(x) < 0]] � cp

5.
Moreover, we see by the analysis above that if a single label yl for some l 2 Ii ⇢ [m] is changed,
this can affect N✓(x) only in the segment [xminIi `, xmaxIi `] which is of length at most 7dmax =

O

⇣
log(m/�)

m

⌘
. Thus we can apply McDiarmid’s inequality to obtain that under Ex, with probability

at least 1� �/4 :

Pr
x⇠Dx

[N✓(x) < 0] � c

 
p
5 �

r
log(m/�)

m

!
.

Overall, by union bounding over Ex the inequality above holds with probability at least 1 � �/2,
which proves the desired lower bound.

We now turn to prove the upper bound. Let N⇤(·) be a 2-layer ReLU network of minimal width
n
⇤ 2 N that classifies the data correctly, namely yiN

⇤(xi) > 0 for all i 2 [m]. Note that n⇤ is
uniquely defined by the sample while N⇤ is not. Furthermore, n⇤ is upper bounded by the number of
neighboring samples with different labels.6 Hence,

ESy⇠Dm
y
[n⇤]  ESy⇠Dm

y
[|{i 2 [m� 1] : yi 6= yi+1}|] (6)

= (m� 1) · ESy⇠Dm
y
[ {y1 6= y2}]

= (m� 1) · Pr
Sy⇠Dm

y

[y1 6= y2]

= 2(m� 1)p(1� p) = O(pm) .

We conclude that the expected width of N⇤ (as a function of the sample) is at most n⇤ = O(pm).
By Safran et al. [2022, Theorem 4.2], this implies N✓ belongs to a class of VC dimension O(n⇤) =
O(pm). Thus by denoting the 0-1 loss L0�1(N✓) = Pr(x,y)⇠D[sign(N✓(x)) 6= y] and invoking a
standard VC generalization bound we get
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In order to relate the bound above to the clean test error, note that
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6This can be seen by considering a network representing the linear spline of the data, for which it suffices to
set a neuron for adjacent samples with alternating signs.
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As in our argument for the lower bound, we now note by Eq. (6) that flipping a single label yl for
some l 2 [m] changes n⇤ by at most 1, hence changing the test error by at most O(1/m). Therefore
we can apply McDiarmid’s inequality and see that under the event Ex, with probability at least
1� �/4 :

Pr
x⇠Dx

[N✓(x)  0]  C

 
p
p+

r
log(1/�)

m

!
.

Overall, by union bounding over Ex the inequality above holds with probability at least 1 � �/2,
which proves the upper bound and finishes the proof.

A.2 Proof of Theorem 3.2
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Figure 3: Illustration of the proof of Theorem 3.2 in case there is a single non-linearity along
[xi, xi+1]. If the network is not linear along [xi, xi+1], one of the cases illustrated in the top row (in
blue) must occur. In each case, the dashed green perturbation classifies correctly by altering exactly
two neurons while reducing the parameter norm. Moreover, if the network is linear along [xi, xi+1],
yet N✓(xi) < �1 or N✓(xi+1) > 1, one of the cases illustrated in the bottom row must occur. In
either case, the dashed green perturbation classifies correctly by altering exactly two neurons while
reducing the parameter norm.

Throughout the proof, given a sample S = (xi, yi)mi=1 ⇠ Dm we denote Sx = (xi)mi=1, Sy =
(yi)mi=1, and assume without loss of generality that x1  x2  · · ·  xm. Denote by Ex the event in
which the samples (xi)mi=1 ⇠ Dm

x satisfy

dmax := max
i2[m�1]

(xi+1 � xi) 
log(8(m+ 1)/�)

m+ 1
,

and recall that by Lemma A.1 we have PrSx⇠Dm
x
[Ex] � 1� �

4 for m larger than an absolute constant.
Therefore from here on throughout the proof we condition on Ex, after which we can conclude using
the union bound.

For any point x 2 (0, 1), denote by ix the maximal index i 2 [m] such that xi  x. Let Ax

denote the event in which yix�1 = 1, yix = �1 and yix+1 = 1. Note that for any x we have
PrSy⇠Dm

y
[Ax] = p(1� p)2 � 1

4p, so we get
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We aim to show that Prx⇠Dx [N✓(x) < 0 |Ax] = ⌦(1). In order to do so, note that conditioning the
uniform measure Dx = Unif([0, 1]) on the event Ax results in a uniform measure over the (union of)
segments between �1 labeled samples to +1 labeled samples that also satisfy the additional property
that the neighboring sample on their left is labeled +1. We will show that if ✓ is a local minimum of
Problem (1), then along any such segment N✓(x) is linear from �1 to +1:
Proposition A.4. Let i 2 [m � 1] be such that xi�1 < xi < xi+1 with yi�1 = 1, yi = �1 and
yi+1 = 1. If ✓ is a local minimum of Problem (1), it holds that N✓(xi) = �1, N✓(xi+1) = 1 and
N✓(·) is linear over (xi, xi+1).

In particular, the proposition above shows that

Pr
x⇠Dx

[N✓(x) < 0 |Ax] =
1

2
,

which plugged into Eq. (8) gives
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.

Moreover, noting that any local minimum is in particular a KKT point, we saw in the proof of
Theorem 3.1 that under the event Ex, changing a single label yl, l 2 [m] can change the test error
by at most O(dmax) = O(log(m/�)/m). By McDiarmid’s inequality this finishes the proof of the
desired lower bound.

As for the upper bound, for x 2 (0, 1) we denote by Bx the event in which yix = 1 = yix+1 = 1 —
namely, x is between two positively labeled samples. Note that for any x we have PrSy⇠Dm

y
[Bx] =

(1 � p)2 � 1 � 2p =) PrSy⇠Dm
y
[Bc

x]  2p. We will show that if ✓ is a local minimum of the
margin maximization problem, then Bx implies that N✓(x) � 0.
Proposition A.5. Let i 2 [m� 1] be such that yi = yi+1 = 1, and let x 2 [xi, xi+1]. If ✓ is a local
minimum of Problem (1), it holds that N✓(x) � 0.

In particular, the proposition above shows that

ESy⇠Dm
y ,x⇠Dx [ {N✓(x) < 0} |Bx] = 0 ,

so we get
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Sy⇠Dm
y ,x⇠Dx

[Bx]

+ ESy⇠Dm
y ,x⇠Dx [ {N✓(x) < 0} |Bc

x] · Pr
Sy⇠Dm

y ,x⇠Dx

[Bc
x]

 0 + 1 · 2p = 2p .

As in the lower bound proof, recalling that any local minimum is in particular a KKT point, we saw in
the proof of Theorem 3.1 that under the event Ex, changing a single label yl, l 2 [m] can change the
test error by at most O(dmax) = O(log(m/�)/m). Hence applying McDiarmid’s inequality proves
the upper bound thus finishing the proof.

Proof of Proposition A.4. Throughout the proof we fix i 2 [m] for which the conditions described
in the proposition hold, and we assume without loss of generality that the neurons are ordered
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with respect to their activation point: � b1
w1
 � b2

w2
 · · ·  � bn

wn
. Moreover, we may assume

without loss of generality that w1, . . . , wn � 0. Indeed, note that Eq. (1) is invariant under the
transformation vj  �vj , wj  �wj , bj  �bj which does not affect neither the parameter norm
nor the parameterized network in function space. Hence, any local minimum of Eq. (1) corresponds
to a local minimum with w1, . . . , wn � 0. Lastly, we will make frequent use of the following simple
observation. For differentiable x we have

N
0
✓(x) =

nX

j=1

vj · wj {wjx+ bj � 0}
| {z }

�0

, (9)

so if N 0
✓(z1) < N

0
✓(z2) for some z1 < z2, then there must exist j 2 [n] with vj > 0 and z1 < � bj

wj
<

z2. Similarly, N 0
✓(z1) > N

0
✓(z2) implies that there exists j 2 [n] with vj < 0, z1 < � bj

wj
< z2.

We split the proof of Proposition A.4 into two lemmas.

Lemma A.6. N✓(·) is linear over (xi, xi+1).

Proof. Recall that N✓(xi)  �1 and N✓(xi+1) � 1, so N✓ increases along the segment (xi, xi+1).
Thus, N✓(·) is not linear over (xi, xi+1) only if (at least) one of the following occur: (1) There exist
z1, z2 2 (xi, xi+1) such that z1 < z2 and 0 < N

0
✓(z1) < N

0
✓(z2); (2) there exist z1, z2 2 (xi, xi+1)

such that z1 < z2, N
0
✓(z1) > 0 and N

0
✓(z1) > N

0
✓(z2); or (3) there exists a single z 2 (xi, xi+1) at

which N✓ is non-differentiable, such that N 0
✓|(xi,z)  0 and N

0
✓|(z,xi+1) > 0. We will show either of

these contradict the assumption that ✓ is a local optimum of the margin maximization problem.

Case (1). The assumption on z1, z2 implies that there exists j1 2 [n] such that � bj1
wj1
2 (z1, z2)

and vj1 > 0. Let j2 > j1 be the minimal index j 2 {j1 + 1, . . . , n} for which vj < 0.7 For some
small � > 0, consider the perturbed network

N✓�(x) :=
X

j2[n]\{j1,j2}

vj� (wj · x+ bj) (10)

+ (1� �)vj1�

✓
wj1 · x+

✓
bj1 �

�

1� �

✓
wj1bj2

wj2

� bj1

◆◆◆

+

✓
1 + �

vj1wj1

vj2wj2

◆
vj2� (wj2 · x+ bj2) .

It is clear that k✓ � ✓�k
�!0�! 0, and we will show that for small enough � the network above still

satisfies the margin condition, yet has smaller parameter norm. To see why the margin condition is
not violated for small enough �, notice that N✓�(x) = N✓(x) for all x /2 (xi,�

bj2
wj2

) so in particular

N✓�(xl) = N✓(xl) for all l 2 [i], as well as for all xl � �
bj2
wj2

. Furthermore, by minimality of j2

we note that there cannot exist yk = �1 for k such that xk 2 (� bj1
wj1

,� bj2
wj2

). A direct computation
gives that N✓� � N✓ along this segment, so overall the margin condition is indeed satisfied for the

7We can assume that such j2 exists, by otherwise discarding j2 in the rest of the proof which would work
verbatim. Notably, the only case in which there does not exist such j2 is when xi is the last sample to be labeled
�1.
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entire sample. As to the parameter norm, we have

k✓�k2 =
X

j2[n]\{j1,j2}

(v2j + w
2
j + b

2
j ) + (1� �)2v2j1 + w
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✓
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◆◆2
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✓
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◆2

v
2
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2
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2
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=
X

j2[n]\{j1,j2}

(v2j + w
2
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2
j ) + (1� 2�)v2j1 + w
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2
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2�

1� �
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✓
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◆

+

✓
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vj2wj2

◆
v
2
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2
j2 + b

2
j2 +O(�2)

=
X

j2[n]

(v2j + w
2
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2
j )� 2�

✓
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2
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1� �

✓
wj1bj2
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◆
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vj2wj2

◆
+O(�2) .

Thus,

k✓k2 � k✓�k2 = 2�

✓
v
2
j1 �

vj1wj1vj2

wj2

� bj1

1� �

✓
bj1 �

wj1bj2

wj2

◆◆
+O(�2)

=) k✓k2 = k✓�k2 + 2�

✓
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vj1wj1vj2

wj2

� bj1

1� �

✓
bj1 �

wj1bj2

wj2

◆◆
+O(�2) . (11)

By construction, vj1 > 0 and vj2 < 0 hence � vj1wj1vj2
wj2

> 0. Moreover, � bj1
wj1

> 0 and wj1 > 0

so � bj1
1�� > 0 for � < 1. Lastly, recall that j2 > j1 =) � bj2

wj2
� � bj1

wj1
=) bj1 �

wj1bj2
wj2

� 0.
Overall, plugging these into Eq. (11) shows that k✓k2 > k✓�k2 for small enough �, contradicting the
assumption the ✓ is a local minimum.

Case (2). Since N✓(xi�1) � 1 and N✓(xi)  �1, N 0
✓ must be negative somewhere along the

segment (xi�1, xi). Yet, N 0
✓(z1) > 0 so there must exist j1 2 [n] such that � bj1

wj1
2 (xi�1, z1)

and vj1 > 0. Moreover, the assumption on z1, z2 implies that there exists j2 2 [n] such that
� bj2

wj2
2 (z1, z2) and vj2 < 0. For some small � > 0, consider the perturbed network

N✓�(x) :=
X

j2[n]\{j1,j2}

vj� (wj · x+ bj) (12)

+ (1� �)vj1� (wj1 · x+ bj1) + vj2�

✓✓
wj2 +

�vj1wj1

vj2

◆
· x+

✓
bj2 +

�vj1bj1

vj2

◆◆
.

It is clear that k✓ � ✓�k
�!0�! 0, and we will show that for small enough � the network above still

satisfies the margin condition, yet has smaller parameter norm. To see why the margin condition is
not violated for small enough �, notice that N✓�(x) = N✓(x) for all x /2 (xi�1, xi+1) so in particular
N✓�(xl) = N✓(xl) for all l 6= i. Furthermore, a direct computation yields N✓�(xi) < N✓(xi)  1.
As to the parameter norm, by a similar computation to that leading up to Eq. (11) we get that

k✓k2 = k✓�k2 + 2�

✓
v
2
j1 �

vj1wj1wj2

vj2

� vj1bj1bj2

vj2

◆
+O(�2) . (13)

By construction, vj1wj1 > 0 and vj2wj2 < 0 hence � vj1wj1wj2
vj2

> 0. Moreover, � bj1
wj1

> 0 and

� bj2
wj2

> 0 so we also have � vj1bj1bj2
vj2

> 0. Hence, Eq. (13) shows that k✓k2 > k✓�k2 for small
enough �, contradicting the assumption the ✓ is a local minimum.

Case (3). The assumption implies that there exists j1 2 [n] such that� bj1
wj1

= z 2 (xi, xi+1), vj1 >

0 and � bj1+1

wj1+1
� xi+1. Let j2 > j1 be the minimal index j 2 {j1 + 1, . . . , n} such that vj < 0 (see

Footnote 7). Consider the perturbed netowrk as in Eq. (10) and continue the proof as in Case (1)
verbatim.
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Lemma A.7. N✓(xi) = �1 and N✓(xi+1) = 1.

Proof of Lemma A.7. Recall that N✓(xi)  �1, so assume towards contradiction that N✓(xi) < �1.
Note that since N✓(xi�1) � 1, N✓(·) must decrease along (xi�1, xi), so there must exist j 2 [n] with
vj < 0 and � bj

wj
< xi. Denote by j1 2 [n] the maximal such index. Similarly, since N✓(xi+1) � 1

there must exist j2 2 [n] with vj2 > 0 and xi�1 < � bj2
wj2

< xi+1. Consider the perturbed network

N✓�(x) :=
X

j2[n]\{j1,j2}

vj� (wj · x+ bj) (14)

+ (1� �)vj1� (wj1 · x+ bj1) + vj2�

✓✓
wj2 +

�vj1wj1

vj2

◆
· x+

✓
bj2 +

�vj1bj1

vj2

◆◆

for some small � > 0. It is clear that k✓ � ✓�k
�!0�! 0, and we will show that for small enough �

the network above still satisfies the margin condition, yet has smaller parameter norm. To see why
the margin condition is not violated for small enough �, first notice that N✓�(x) = N✓(x) for all
x /2 (xi�1, xi+1). Furthermore, N✓�(xi) is continuous with respect to � so N✓(xi) < �1 implies
that N✓�(xi) < �1 for small enough �. As to the parameter norm, by a similar computation to that
leading up to Eq. (11) we get that

k✓k2 = k✓�k2 + 2�

✓
v
2
j1 �

vj1wj1wj2

vj2

� vj1bj1bj2

vj2

◆
+O(�2) . (15)

By construction, vj1 < 0 and vj2 > 0 hence � vj1wj1wj2
vj2

> 0. Moreover, � bj1
wj1

and � bj2
wj2

> 0

so we also have � vj1bj1bj2
vj2

> 0. Hence, Eq. (15) shows that k✓k2 > k✓�k2 for small enough �,
contradicting the assumption the ✓ is a local minimum.

Having proved that N✓(xi) = �1, we turn to prove that N✓(xi+1) = 1. Knowing that N✓(xi+1) � 1,
we assume towards contradiction that N✓(xi+1) > 1. Recalling that N✓(xi�1) � 1, N✓(xi)  1
and that N✓(·) is linear along (xi, xi+1) due to Lemma A.6, we conclude that there must exist
j1 2 [n] such that vj1 > 0 and xi�1 < � bj1

wj1
 xi. Denote by j2 > j1 the minimal index such

that vj2 < 0. Consider once again the perturbed network in Eq. (14) (only now j1, j2 are different,
as we just described). The same argument as in the previous part of the proof shows that for small
enough � the network above still satisfies the margin condition, while Eq. (15) once again implies
that k✓k2 > k✓�k2 for small enough � – contradicting the assumption the ✓ is a local minimum.

Overall, combining Lemma A.6 and Lemma A.7 finishes the proof of Proposition A.4.

Proof of Proposition A.5. The proof is essentially the same as Case (1) in the proof of Proposi-
tion A.4.

Throughout the proof we fix i 2 [m � 1] for which the conditions described in the proposition
hold, and we assume without loss of generality that the neurons are ordered with respect to their
activation point: � b1

w1
 � b2

w2
 · · ·  � bn

wn
. As in the proof of Proposition A.4, we may assume

without loss of generality that w1, . . . , wn � 0. Moreover, as explained there as a consequence of
Eq. (9), we observe that N 0

✓(z1) < N
0
✓(z2) for some z1 < z2 implies the existence of j1 2 [n] with

vj1 > 0 and z1 < � bj1
wj1

< z2. Similarly, N 0
✓(z1) > N

0
✓(z2) implies that there exists j2 2 [n] with

vj2 < 0, z1 < � bj2
wj2

< z2. With this choice of j1, j2, the proof continues as in Case (1) in the proof
of Proposition A.4 verbatim.
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B Proofs of benign overfitting

B.1 Proof of Theorem 4.1

We sample a dataset x1, . . . ,xm ⇠ Unif(Sd�1), and labels y1, . . . , ym ⇠ Dy, for p  c1 for some
universal constant c1. We first prove that the following properties holds with probability > 1� �:

1. For every i, j 2 [m], |hxi,xji| 

r
2 log

⇣
3m2

�

⌘

d

2. kXX
>k  C where C is some universal constant, and X is a matrix whose rows are equal

to xi.

3. |I�|  3pm
2 .

Lemma B.1. Let � > 0, assume that we sample x1, . . .xm ⇠ Unif(Sd�1), and y1, . . . , ym ⇠ Dy

for p  c1, and that m > c2
log( 1

� )
p , for some universal constant c1, c2 > 0. Then, with probability

> 1� � properties 1, 2, 3 holds.

Proof. By Lemma D.1 we have that Pr

|x>

i xj | �
q

2 log( 1
�0 )

d

�
 �

0. Take �0 = �
3m2 , and use union

bound over all i, j 2 [m] with i 6= j. This shows that for every i 6= j we have:

Pr

2

4|x>
i xj | �

s
2 log

�
3m2

�

�

d

3

5  �

3
.

This proves Property 1. Next, set X to be the matrix whose rows are equal to xi. By Lemma D.2
there is a constant c0 > 0 such that:

Pr

2

4kXX
> � Ik � c

0

d

0

@

s
d+ log

�
3
�

�

m
+

d+ log
�
3
�

�

m

1

A

3

5  �

3
. (16)

We can also bound kXX
>k  kIk + kXX

> � Ik  1 + kXX
> � Ik. Combining both bounds

and using the assumption that m � log
�
3
�

�
we get that there is a universal constant C > 0 such that

Pr
⇥
kXX

>k > C
⇤
 �

3 . This proves Property 2.

Finally, using Bernstein’s inequality over the choice of the labels yi have that:

Pr


|I�| �

3pm

2

�
 exp

✓
� p

2
m

2
/4

mp(1� p) +mp/6

◆
 exp

⇣
�pm

5

⌘
,

where we used that p  1. Hence, if m � c2
log( 1

� )
p for some universal constant c2 � 0, then

|I�|  3pm
2 . Applying union over those three arguments proves the lemma.

From now on we condition on the event that properties 1, 2, 3 hold, and our bounds will depend on
the probability of this event.

In the following lemma we show that if ✓ converges to a solution of the max margin problem and the
bias terms are relatively small, then the norm of ✓ is relatively large:

Lemma B.2. Assume that m � c2 log
�
3
�

�
and that ✓ = (wj , vj , bj)nj=1 is a solution to the max

margin problem of Eq. (1) with
Pn

j=1 vj�(bj) 
1
2 . Then,

Pn
j=1 kwjk2+v

2
j + b

2
j � C

p
|I+| where

C is some universal constant.
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Proof. Take i 2 [m], then we have that N✓(xi) � 1. By our assumption, this implies that:

1

2
 N✓(xi)�

nX

j=1

vj�(bj)

=
nX

j=1

vj�(w
>
j xi + bj)�

nX

j=1

vj�(bj)


nX

j=1

|vj | ·
���(w>

j xi + bj)� �(bj)
��


nX

j=1

|vj | · |w>
j xi|



vuut
nX

j=1

v2j

vuut
nX

j=1

(w>
j xi)2 ,

where in the last inequality we used Cauchy-Schwartz. Denote by S :=
Pn

j=1 kwjk2 + v
2
j + b

2
j .

Combining the above and that
qPn

j=1 v
2
j 
p
S we get:

nX

j=1

(w>
j xi)

2 � 1

4S
.

We sum the above inequality for every i 2 I+ to get:

|I+|
4S


nX

j=1

mX

i=1

(w>
j xi)

2

=
nX

j=1

mX

i=1

w>
j (xix

>
i )wj


nX

j=1

kwjk2 ·

�����

mX

i=1

xix
>
i

�����


nX

j=1

kwjk2 · C  S · C

where in the second to last to last inequality we used the Property 2 for some constant C > 0,
and in the last inequality we used that

Pn
j=1 kwjk2  S. Rearranging the above terms yields:

S �
q

|I+|
12C .

We now prove a lemma which constructs a specific solution that achieves a norm bound that depends
on |I+|.

Lemma B.3. Assume d � 50m2 log
⇣

3m2

�

⌘
and p  1

4 . There exists weights ✓ = (wj , vj , bj)nj=1

that attain a margin of at least 1 on every sample and have
Pn

j=1 kwjk2 + v
2
j + b

2
j  9

p
|I�|.

Proof. Assume without loss of generality that n is even (otherwise fix the last neuron to be 0). We
consider the following weight assignment: For every j  n

2 , consider wj = �
q

4

n
p

|I�|

P
i2I�

xi,

vj = 2

qp
|I�|
n and bj =

q
4

n
p

|I�|
. For every j >

n
2 , consider wj =

q
4

n
p

|I�|

P
i2I�

xi,

vj = �2
qp

|I�|
n and bj = 0.
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We first show that this solution attains a margin of at least 1. For every i 2 I+ we have:

N✓(xi) =
nX

j=1

vj�(w
>
j xi + bj)

=
X

jn/2

2

sp
|I�|
n

�

0

@
s

4

n
p
|I�|
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s

4

n
p
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3m2
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�

p
d

1

A

�n

2
· 4
n
·
✓
1� 1

10

◆
� n

2
· 4
n
· 1

10
� 1 ,

where we Property 1, that p  1
4 hence by Property 3 |I�|  m

2 and our assumption on m and d. For
i 2 I� we have:

N✓(xi) =
nX

j=1

vj�(w
>
j xi + bj)

=
X

jn/2

2

sp
|I�|
n

�

0

@
s

4

n
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|I�|
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4

n
p
|I�|
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1

A

�
X

j>n/2
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@
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4

n
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|I�|

X

r2I�
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r xi

1

A

=
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0
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X
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r xi
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2 log
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d

1

A
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2
· 4
n
· 1
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� n

2
· 4
n
·
✓
1� 1

10

◆
 �1 ,

where again we used properties 1 and 3, that p  1
4 hence |I�|  m

2 and our assumption on m and d.
This shows that this is indeed a feasible solution. We turn to calculate the norm of this solution. First
we bound the following:

������

X

i2I�

xi

������

2

=
X

i2I�

kxik2 +
X

i 6=j, i,j2I�

x>
i xj

 |I�|+ |I�|2 ·

q
2 log

�
3m2

�

�

p
d

 |I�| ·
11

10
,
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where we used Property 1 and the assumption on m and d. We now use the above calculation to
bound the norm of our solution:

nX

j=1

kwjk2 + v
2
j + b

2
j = n · 4

n
p
|I�|

������

X

i2I�

xi

������

2

+
2n
p
|I�|

n
+

n

2
· 4

n
p
|I�|


44
p
|I�|

10
+ 2
p
|I�|+

2p
|I�|

 9
p
|I�|

We are now ready to prove the main theorem of this subsection:

Proof of Theorem 4.1. Denote by K :=
Pn

j=1 kwjk2 + v
2
j + b

2
j , and assume that K  ap

pk✓
⇤k2,

where a will be chosen later and ✓⇤ is a solution to the max margin solution from Eq. (1). Assume on
the way of contradiction that

Pn
j=1 vj�(bj) 

1
2 , then by Lemma B.2 we know that: K � C

p
|I+| �

C

q�
1� 3p

2

�
m. On the other hand, by Lemma B.3 we know that k✓⇤k  9

p
|I�|  9

q
3p
2 m.

Combining this with the assumption we have on K we get that:

C

s✓
1� 3p

2

◆
m  9a

p
p

r
3pm

2
.

Picking a to be some constant with a <
C
p
2

18
p
3

contradicts the above inequality. Thus, there exists a
constant c4 := a

2 such that if K  c4p
pS then

Pn
j=1 vj�(bj) >

1
2 .

Suppose we sample x ⇠ N
�
0, 1

dI
�
, then we have:

N✓(x) =
nX

j=1

vj�(w
>
j x+ bj)

=
nX

j=1

vj�(bj)�

0

@
nX

j=1

vj�(bj)�
nX
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vj�(w
>
j x+ bj)

1
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� 1

2
�

0

@
nX

j=1

vj�(bj)�
nX

j=1

vj�(w
>
j x+ bj)

1
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� 1

2
�

nX
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|vj | · |w>
j x|

� 1

2
�

vuut
nX

j=1

v2j
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nX

j=1

(w>
j x)

2 . (17)

We will now bound the terms of the above equation. Note that
Pn

j=1 v
2
j  K  9

p
m. For the

second term, we denote by w̄j :=
wj

kwjk , and write:

nX

j=1

(w>
j x)

2 =
nX

j=1

kwjk2(w̄>
j x)

2

max
j2[n]

(w̄>
j x)

2 ·
nX

j=1

kwjk2 .

Again, we have that
Pn

j=1 kwjk2  K  9
p
m. By using the stationarity KKT condition from

Eq. (2) , we get that w̄j 2 span{x1, . . . ,xm}, thus we can write w̄j =
Pm

i=1 ↵i,jxi = X↵j where
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X is a matrix with rows equal to xi, and (↵j)i = ↵i,j . We will bound a := argmaxi |↵i,j |:

1 = kw̄jk2 =

�����

mX

i=1

↵i,jxi

�����

2

= kX↵jk2 = ↵>
j X

>
X↵j

= ↵>
j I↵j +↵>

j

�
X

>
X � I

�
↵j

� k↵jk2 � k↵jk2kX>
X � Ik

= k↵jk2 � k↵jk2kXX
> � Ik ,

where the last equality is true by using the SVD decomposition of X . Namely, write X = USV
>,

then kX>
X � Ik = kV S

2
V

> � Ik = kS2 � Ik = kU>
S
2
U � Ik = kXX

> � Ik. Note that in
Lemma B.1, Eq. (16) we have shown that kXX

> � Ik  c
0 for some constant c0. Note that we can

choose m large enough such that c0  1
2 . In total, this shows that k↵jk2  c

00 for some constant c00.

We now use Lemma D.1 and the union bound to get that with probability > 1� ✏ we have for every

i 2 I that |x>xi| 
q

2 log(m
✏ )

d . We condition on this event from now on. Applying both bounds we
get:
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Plugging in the bounds above to Eq. (17) we get:
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By choosing a constant c3 > 0 large enough such that if d � c3m
2
q

log
�
m
✏

�
then , then

81mc00
q

2 log(m
✏ )p

d
 1

4 we get that N✓(x) > 0.

B.2 Proof of Theorem 4.3

We sample a dataset x1, . . . ,xm ⇠ Unif(Sd�1), and labels y1, . . . , ym ⇠ Dy, for p  c1 for some
universal constant c1. We first prove that the following properties holds with probability > 1� �:

1. For every i, j 2 [m], |hxi,xji| 

r
2 log

⇣
2m2

�

⌘

d

2. |I�|  c1m
n2 .

Lemma B.4. Let � > 0, assume that we sample x1, . . .xm ⇠ Unif(Sd�1), and y1, . . . , ym ⇠ Dy

for p  c
n2 , and that m > c

0 log
�
2
�

�
, for some universal constant c, c0 > 0. Then, with probability

> 1� � properties 1 and 2 holds.
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The proof is the same as in Lemma B.1 so we will not repeat it for conciseness. The only different is
that here we only need |I�| to be smaller than c1m

n2 which is independent of p. Hence, for p  c
n2

we get this concentration where m depends only on the probability. From now on we condition on
the event that properties 1 and 2 hold, and our bounds will depend on the probability that this event
happens.

In this section we consider a networks of the form:

N✓(x) =

n/2X

j=1

�(w>
j x+ bj)�

nX

j=n/2+1

�(w>
j x+ bj)

That is, the output weights are all fixed to be ±1, equally divided between the neurons. We will use
the stationarity condition (Eq. (2)) freely throughout the proof. For our network it means that we can
write for every j 2 [n]:

wj = vj

X

i2[m]

�i�
0
i,jyixi

bj = vj

X

i2[m]

�i�
0
i,jyi ,

where �0
i,j = (w>

j xi+ bj >), vj = 1 for j 2 {1, . . . , n/2} and vj = �1 for j 2 {n/2+1, . . . , n}.

The next lemma shows that all the biases are positive. Note that this lemma relies only on that the
dimension is large enough, and that Property 1 of the data holds:

Lemma B.5. Assume that d � 8m4 log
⇣

2m2

�

⌘
. Then for every j 2 [n] we have bj � 0.

Proof. Assume on the way of contradiction that bj < 0 for some j 2 [n]. We assume without loss of
generality that j 2 {1, . . . , n/2}, the proof for j 2 {n/2 + 1, . . . , n} is done similarly. Denote by
I
0
+ = {i 2 I+ := �i,j = 1} and I
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Note that �i � 0 for every i, hence I
0
� is non empty, otherwise bj � 0. Take �r = argmaxi2I0
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we have:
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where we used that bj < 0 and kxrk = 1. Rearranging the terms and using Property 1:
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Denote �s := argmaxi2I0
+[I0
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�i, then from the above we have shown that �r  �sm
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2 log
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d ,
since |I 0+ [ I

0
�|  m. In particular, s 2 I

0
+, otherwise, �r = �s which means that �r < 0 since
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d < 1 which is a contradiction. We can now write:
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By our assumption on d, we have that m2
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d  1
2 , hence bj � �s

2 . But, by our assumption,
bj < 0 which is a contradiction since �s � 0.

The following lemma is a general property of the KKT conditions:

Lemma B.6. Let i 2 I+ (resp. i 2 I�) with �i > 0. Then, there is a neuron k with positive output
weight (resp. negative output weight) s.t �0

i,k = 1.

Proof. We prove it for i 2 I+, the other case is similar. Assume otherwise, that is for every neurons
with positive output j we have �

0
i,j = 0, that is w>

j xi + bj  0 by the definition of �0
i,j . This

means that N✓(xi)  0, since all the positive neurons are inactive on xi, which is a contradiction to
N✓(xi) � 1.

The next lemma shows that if the bias terms are smaller than 1
4 , then the �i’s for i 2 I+ cannot be

too small.
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(18)

We will bound the two terms above. For the first term, note that all the terms inside the ReLU are
positive, since by Lemma B.5 we have bj � 0, and �i � 0 by Eq. (4) hence we can remove the ReLU

27



function. Using Property 1 we can bound:
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where we used that �0
i,j  1. For the second term in Eq. (18) we use the fact that the ReLU function

is 1-Lipschitz to get that:
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where we again used Lemma B.5 to get that bj � 0, and Property 1. Combining Eq. (19) and Eq. (20)
with Eq. (18) we get that:
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Rearranging the terms above, and using our assumption on the biases we get that:
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and note that since �s � 0, m
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where we used that � is 1-Lipschitz and that �s is the largest among the �i’s. For a neuron with a
negative output weight, we can write:
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But then, looking at the output of the network on �r (recall that by our assumption �r  1
4n ) we get:
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By our assumption mn
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Case II. Assume s 2 I�. By Lemma B.6 there is k 2 {n/2 + 1, . . . , n} with �
0
s,k = 1. Note that

since �s 6= 0 we have that N✓(xs) = �1 (i.e this sample is on the margin). We have that:
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where we used that mn
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2 and bj � 0 by Lemma B.5, hence in the second to last

inequality the term inside the ReLU is positive. In addition, we used that the ReLU function is

1-Lipschitz, and that �s is the largest amont the �i’s. Since mn
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To conclude, both cases are not possible, hence �r � 1
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Proof. Take �s := argmaxi2[m] �i. We split into two cases:

Case I. Assume s 2 I�. Note that �s > 0, otherwise �i = 0 for every i, which means that N✓(x) is
the zero function. Hence, xs lies on the margin, and also by Lemma B.6 there is a neuron j with a
negative output weight such that �0

s,j = 1. By the same calculation as in Eq. (24) we have::
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Case II. Assume s 2 I+. Denote by �r := S argmaxi2I� �i. By Lemma B.6 there is at least one
neuron k with a positive output weight such that �0

s,k = 1, for this neuron we can bound:
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Lemma B.6, for every i 2 I+ there is some j 2 {1, . . . , n/2} with �
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i,j = 1. This means that:
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Combining the two bounds above we get that:
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where in the last inequality we used that n � 1. Taking c to be a small enough constant (i.e. c < 1
22 ),

we get that
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We are now ready to prove the main theorem of this section:
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Case I. Assume s 2 I+. Note that xs lies on the margin, otherwise �i = 0 for every i 2 I , which
means that N✓ is the zero predictor, this contradicts the assumption that N✓ classifies the data
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where we used Lemma B.6 to show that there is at least one k 2 {1, . . . , n/2} with �
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Case II. Assume s 2 I�. Take �r := argmaxi2I+ �i. By Lemma B.5 there is at least one neuron
k 2 {n/2 + 1, . . . , n} with �

0
s,k = 1. We have that:

1

4


n/2X

j=1

bj �
nX

j=n/2+1

bj


n/2X

j=1

X

i2[m]

�iyi�
0
i,j �

nX

j=n/2+1

X

i2[m]

�iyi�
0
i,j  mn�r � �s .

Rearranging the terms we get �s  mn�r � 1
4  mn�r. Note that xr lies on the margin, otherwise

�s = 0, which similarly to Case I is a contradiction. Again, using a similar analysis to Case I we get:

1 = N✓(xr) =

n/2X

j=1

�(w>
j xr + bj)�

nX

j=n/2+1

�(w>
j xr + bj)

=

n/2X

j=1

�(
X

i2[m]

yi�i�
0
i,jx

>
i xs + bj)�

nX

j=n/2+1

�(�
X

i2[m]

yi�i�
0
i,jx

>
i xs + bj) +

n/2X

j=1

�(bj)�
n/2X

j=1

�(bj)

� �r +

n/2X

j=1

�(�
X

i2I\{s}

�i|x>
i xs|+ bj)�

nX

j=n/2+1

�(
X

i2I\{s}

�i|x>
i xs|+ bj) +

n/2X

j=1

�(bj)�
n/2X

j=1

�(bj)

�
n/2X

j=1

bj �
nX

j=n/2+1

bj + �r � �smn

s
2 log

�
2m2

�

�

d

� 1

4
+ �r � �rm

2
n
2

s
2 log

�
2m2

�

�

d
,

By our assumption, m2n2 log(d)2
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2 for a large enough constant c3. Hence, rearranging the terms
we get �r  6
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We now turn to calculate the output of N✓ on the sample x. Suppose we sample x ⇠ Unif(Sd�1),
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In both bounds above we used that �s is the largest among the �i’s. Combining both bounds, we have
that:
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8 for a large enough constant c3, hence N✓(x) � 1
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8 > 0, this

finishes the proof.

C Proofs from Section 4.2

C.1 Proof of Proposition 4.4.

We first note that there exists j 2 {1, 2} with vj < 0, since otherwise the network wouldn’t be able
to classify samples with a negative label (which exist by assumption). Assuming without loss of
generality that v2 < 0, for any w1 we also have that Prx⇠Unif(Sd�1)[w

>
1 x  0] = 1
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C.3 Proof of Proposition 4.6
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all points lie on the margin. In addition, it is not difficult to see that this network satisfies the other
KKT conditions with �i = 1 for every i 2 [m]. Note that Prx⇠Unif(Sd�1)[w

>
k+1x < 0] = 1

2 and
Prx⇠Unif(Sd�1)[8i 2 I�, w>

i x < 0] = 1
2k , since all the xi are orthogonal. Thus, we get that

Pr
x⇠Unif(Sd�1)

[N✓(x)  0] � Pr
x⇠Unif(Sd�1)

[w>
k+1x < 0]� Pr

x⇠Unif(Sd�1)
[8i 2 I�, w

>
i x < 0] � 1

2
� 1

2k
.
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D Additional probabilistic lemmas

D.1 Proof of Lemma A.1

Clearly, the third (no collisions) condition holds almost surely, so it suffices to analyze the gaps
between samples. The distribution of distances between uniformly random points on a segment is
well studied [Pyke, 1965, Holst, 1980] and the lemma can be derived by known results. Nonetheless
we provide a proof for completeness.

Denote by �1  �2  · · ·  �m+1 the ordered spacings x1, (x2�x1), . . . , (xm�xm�1), (1�xm).
With this notation, note that Ex occurs if �m+1  log(8(m+1)/�)

m+1 and �m/8 � 1
10m . We will show

that each of these conditions holds with probability at least 1� �
4 , under which we would conclude

by the union bound. Let Z1, . . . , Zm+1
iid⇠ Exp(1) be unit mean exponential random variables, and

denote their ordering by Z(1)  · · ·  Z(m+1). The main well known observation which we use is

that for any j 2 [m+ 1] : �j
d
=

Z(j)Pm+1
i=1 Zi

(see Holst, 1980). Hence for any t > 0 :

Pr[(m+ 1)�j � log(m+ 1)  t]

=Pr

"
Z(j) � log(m+ 1)  t+ (t+ log(m+ 1))

 Pm+1
i=1 Zi

m+ 1
� 1

!#
.

Note that
Pm+1

i=1 Zi

m+1 � 1
p�! 0 as E

hPm+1
i=1 Zi

m+1

i
= 1 and Var

hPm+1
i=1 Zi

m+1

i
= m+1

(m+1)2
m!1�! 0.

Furthermore,
Pr
⇥
Z(j) � log(m+ 1)  t

⇤
= Pr

⇥
Z(j)  t+ log(m+ 1)

⇤
= Pr[Z(1), . . . , Z(j)  t+ log(m+ 1)]

=
⇣
1� e

�t�log(m+1)
⌘j

=

✓
1� e

�t

m+ 1

◆j

.

By introducing the change of variables r = t+log(m+1)
m+1 we conclude that

lim
m!1

Pr[�j  r] =

✓
1� e

�(m+1)r+log(m+1)

m+ 1

◆j

.

It remains to plug in our parameters of interest. For j = m+ 1 we get

lim
m!1

Pr[�m+1  r] = lim
m!1

✓
1� e

�(m+1)r+log(m+1)

m+ 1

◆m+1

= lim
m!1

exp
⇣
�e�(m+1)r+log(m+1)

⌘
.

Noting that for r = 8 log(8(m+1)/�)
m+1 it holds that e�(m+1)r+log(m+1) ! 0 so we can use the Taylor

approximation exp(z) ⇡ 1 + z and conclude that

lim
m!1

Pr[�m+1  r] = 1� e
�(m+1)r+log(m+1) = 1� �

8
,

where the last equality holds for r = log(8(m+1)/�)
m+1 . Overall for m larger than some numerical

constant, the left hand side is larger than 1� �/4 as required.

The second condition follows a similar computation for j = m+1
8 , r = log(m/8 log(8/�))

8(m+1) , while using

the fact Pr
h
�m/8 >

1
10(m+1)

i
= 1� Pr

h
�m/8  1

10(m+1)

i
.

D.2 Concentration bounds for vectors on the unit sphere

Here we present some standard concentration bounds for uniformly sampled points on the unit sphere
in high dimension.

Lemma D.1 (Lemma 2.2 from Ball, 1997). Pru,v⇠Unif(Sd�1)[|u>v| � t]  2 exp
⇣

�dt2

2

⌘
.

Lemma D.2 (Exercise 4.7.3 from Vershynin, 2018). Let x1, . . . ,xm ⇠ Unif(Sd�1), and denote by
X the matrix whose i’th row is xi. Then, there is a universal constant c > 0 such that:

Pr

"
��XX

> � I
�� � c

d
·
 r

d+ t

m
+

d+ t

m

!#
 2e�t

.
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