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Abstract

As concerns about data privacy continue to grow, differential privacy (DP) has
emerged as a fundamental concept that aims to guarantee privacy by ensuring
individuals’ indistinguishability in data analysis. Local differential privacy (LDP)
is a rigorous type of DP that requires individual data to be privatized before being
sent to the collector, thus removing the need for a trusted third party to collect
data. Among the numerous (L)DP-based approaches, functional DP has gained
considerable attention in the DP community because it connects DP to statistical
decision-making by formulating it as a hypothesis-testing problem and also exhibits
Gaussian-related properties. However, the utility of privatized data is generally
lower than that of non-private data, prompting research into optimal mechanisms
that maximize the statistical utility for given privacy constraints. In this study,
we investigate how functional LDP preserves the statistical utility by analyzing
minimax risks of univariate mean estimation as well as nonparametric density esti-
mation. We leverage the contraction property of functional LDP mechanisms and
classical information-theoretical bounds to derive private minimax lower bounds.
Our theoretical study reveals that it is possible to establish an interpretable, contin-
uous balance between the statistical utility and privacy level, which has not been
achieved under the ϵ-LDP framework. Furthermore, we suggest minimax optimal
mechanisms based on Gaussian LDP (a type of functional LDP) that achieve the
minimax upper bounds and show via a numerical study that they are superior to the
counterparts derived under ϵ-LDP. The theoretical and empirical findings of this
work suggest that Gaussian LDP should be considered a reliable standard for LDP.

1 Introduction

It has been widely accepted that anonymization is insufficient in protecting privacy (Sweeney, 2000,
2002; Dinur and Nissim, 2003). The concerns about data privacy have grown significantly, particularly
with the advancement of computer science technology and the rise in data generated by individuals
and tech companies. Such concerns are shared by politics and industry, leading to the adoption of
France’s “Loi pour une République numérique (Law for the Digital Republic)" in October 2016
(Algan et al., 2016), EU’s General Data Protection Regulation in May 2018, and the California
Consumer Privacy Act (Wang et al., 2022), all of which regulate data protection, collection, and
processing. Also, data privacy techniques have been implemented in industries such as Google
(Erlingsson et al., 2014; Fanti et al., 2016), Apple (Thakurta et al., 2017; Tang et al., 2017), Microsoft
(Ding et al., 2017), and SAP (Kessler et al., 2019).
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Differential privacy (DP), suggested by Dwork et al. (2006b), has become a fundamental foundation
of the modern privacy concept. Its core idea is that privacy can be protected not by how well the
sensitive information is hidden but rather by how individuals are indistinguishable in the privatized
data. Dwork et al. (2006b) first introduced the notion of ϵ-DP for a randomized mechanism that
yields a likelihood ratio between its outputs from ‘neighboring’ data that is bounded by a privacy
budget ϵ. Despite its intuitive appeal, ϵ-DP has been found to lack generality in explaining some
common privacy mechanisms including the Gaussian mechanism (Mironov, 2017; Dong et al., 2022).
A generalized version of ϵ-DP, (ϵ, δ)-DP, is introduced in Definition 1.1. Let X be the sample space
and M : Xn −→ P (Z) be a randomized mechanism, where P(Z) is a family of distributions over
Z . Let S ∼ S′ denote that data sets S and S′ are neighbors, differing only by one individual. The
following definition states that the output distribution of M does not heavily depend on the presence
of a specific individual. Note that (ϵ, 0)-DP reduces to ϵ-DP.

Definition 1.1 ((ϵ, δ)-DP, Dwork et al. (2006a)). A mechanism M is (ϵ, δ)-DP if the following holds:

sup
S,S′⊂X ,S∼S′

sup
A⊂Z

P (M(S) ∈ A)− eϵP (M(S′) ∈ A) ≤ δ.

Another type of DP, local differential privacy (Duchi et al., 2013, LDP), provides strong privacy
guarantees by privatizing raw data before releasing it to a data collector. It is commonly used for
private statistical inference since it gives the adversary access to privatized data that is the same size
as the original data. Note that unlike in Definition 1.1, the inputs of LDP mechanisms are not the
whole data set S but each individual observation xi ∈ S.

As expected, the accuracy of statistical analysis performed on privatized data is often worse than
that of non-private data. This has prompted researchers to seek a balance between privacy and utility
as well as to find the optimal mechanism given privacy constraints. The efforts to balance noise
contamination and utility date back to Carroll and Hall (1988), which predated the emergence of
DP. Later, Duchi et al. (2013) proposed a framework for quantifying the trade-off between privacy
and statistical utility using ϵ-LDP and minimax risk analysis. With the minimax framework, one can
study the minimum loss that can be attained in the worst-case scenario for statistical utility, given a
specific privacy constraint. Since then, numerous researchers have explored minimax risks for various
inference problems under ϵ-LDP (Li et al., 2022; Chhor and Sentenac, 2023; Rohde and Steinberger,
2020; Butucea et al., 2020).

However, despite the inherent continuity in the definitions of ϵ-LDP and (ϵ, δ)-LDP, some studies
on LDP mechanisms have revealed an inexplicable discrepancy in the statistical utility achieved by
the two techniques (Asoodeh et al., 2021). One possible explanation for this phenomenon is the
inefficiency of the composition rule used in (ϵ, δ)-LDP, which has been found to perform poorly in
tracking privacy leakage resulting from the compositions of multiple mechanisms or subsampling, as
pointed out by some studies including Dong et al. (2022); Mironov (2017). Since data are frequently
reused multiple times in most data analysis scenarios, the privacy level must be calculated by taking
the composition of multiple mechanisms into account. An accurate assessment of privacy under such
compositions is critical, since underestimating privacy would force a mechanism to sacrifice utility to
ensure the desired privacy level.

This work explores the trade-off between statistical utility and local privacy under the framework
of functional differential privacy (Dong et al., 2022, FDP), which is known to provide more precise
privacy control. The core idea of FDP connects the fundamental DP concept, which involves making
two outputs based on different inputs indistinguishable, to the concept of statistical decision-making.
Since an adversary’s goal is to identify whether given privatized Z is from S or S′ when S ∼ S′, we
consider the following hypothesis testing problem for a given output of mechanism M :

H0 : Z ∼ M(S) vs. H1 : Z ∼ M(S′). (1)

The difficulty of this hypothesis testing problem is directly related to the privacy level of the given
mechanism. A mechanism is said to satisfy f -FDP if the above testing problem has a “trade-off”
function f(α), which is the minimum Type II error for a given Type I error no greater than α ∈ [0, 1].
FDP, particularly in the context of Gaussian differential privacy (GDP) (see Section 2), has been
found to provide superior privacy control compared to (ϵ, δ)-DP, with better interpretation.

Another advantage of the FDP framework is its superiority in composition rules, which regards
accurately measuring the privacy level when multiple mechanisms are sequentially applied. Many
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types of DP, including (ϵ, δ)-(L)DP, have been criticized for their inefficient composition rules. They
tend to overestimate privacy leakage, which, in turn, leads to excessive perturbation of estimations.
This is demonstrated in Section 4, in which ϵ-LDP is empirically shown to be inefficient in controlling
the privacy of a high-dimensional problem. On the other hand, FDP possesses an effective composition
rule that strikes the right balance between privacy protection and estimation accuracy.

1.1 Related Works
Since DP was introduced, the trade-off between privacy and statistical utility has been studied in
global DP settings as well as local DP settings. Kamath et al. (2022) and Kamath and Ullman
(2020) investigated the trade-off under ϵ-DP by studying sample complexity of covariance matrix
estimation of Gaussian distribution and univariate mean estimation, respectively. Cai et al. (2021) es-
tablished minimax optimality under (ϵ, δ)-DP for high-dimensional mean estimation of sub-Gaussian
distributions.

In the local DP setting, analyzing minimax risks under ϵ-LDP for various estimation problems has
been a main focus. Duchi et al. (2018) provided bounds of minimax optimal privacy mechanisms for
some canonical estimation problems including mean and density estimation and suggested optimal
estimators under ϵ-LDP. Other estimation problems that have been investigated under ϵ-LDP include
the estimation of functionals of a probability distribution (Rohde and Steinberger, 2020), and discrete
distribution estimation (Chhor and Sentenac, 2023). Private minimax risk of nonparametric density
estimation has been addressed by Butucea et al. (2020) who observed an elbow effect in Lr risk
over Besov spaces and by Li et al. (2022) who considered a data contamination scenario. Some
efforts have also been made under (ϵ, δ)-LDP. Asoodeh et al. (2021) studied minimax risks for mean
estimation, while Kroll (2021) considered nonparametric density estimation at fixed points.

Among the existing works, Duchi et al. (2018) and Asoodeh et al. (2021) are more relevant to the
present work than others, as they also studied the mean estimation and/or nonparametric density
estimation. We show that the minimax optimal rates for f -FLDP, local version of f -FDP, are
equivalent to those for ϵ-LDP, if f satisfies some condition (see Lemma 1). We argue that our result
can also be useful for understanding (ϵ, δ)-LDP, since f -FLDP includes (ϵ, δ)-LDP as a special
case.

1.2 Our Contributions
We derive the minimax risk bounds under the framework of FLDP as well as Gaussian LDP (GLDP)
for two classic statistical problems: univariate mean estimation (Section 3.1) and nonparametric
density estimation (Section 3.2). We investigate the private minimax risks using Le Cam’s (Theorem 1)
and Assouad’s bounds (Theorem 3), respectively. To the best of our knowledge, our work is the first
to investigate the minimax risk bounds under the FLDP framework.

Our theoretical investigation yields two important results: First, we show that our bounds achieve the
same rates under some conditions as those under ϵ-LDP, thereby extending the contraction inequality
established by Duchi et al. (2018) under ϵ-LDP to FLDP (Theorem 2). Also, as a special case, we
show that the established lower bound becomes tight under GLDP. Second, we demonstrate that
f -FLDP provides a continuous trade-off between privacy and statistical utility, unlike (ϵ, δ)-LDP
(Corollaries 1 and 3). In the view of (ϵ, δ)-LDP, one can see that ϵ-LDP and non-private settings are
continuously related by a quantity δ. However, the existing results do not reflect such continuity with
respect to the minimax rate. So far, any slightest privacy measure seems to increase the minimax
rate with the increment rate not related to the privacy level. For example, the minimax rate of
nonparametric density estimation worsens from n− 2β

2β+1 to n− 2β
2β+2 under ϵ-LDP, where β denotes

the degree of smoothness. But the change of rate is irrelevant to ϵ even though ϵ-LDP becomes
non-private if we set ϵ → ∞.

We also present optimal mechanisms that attain the minimax upper bounds (Corollaries 2 and 4), and
evaluate their utilities compared to optimal mechanisms derived under ϵ-LDP. Our experiments show
that the proposed minimax optimal estimators under GLDP achieve better utility for the equivalent
level of privacy constraints (Section 4).

2 Backgrounds
We introduce some notations and review key concepts in differential privacy in this section. Let
M : Xn −→ P (Z) be a multivariate randomized mechanism or equivalently, a collection of
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randomized mechanisms M = {Mi}ni=1 such that Z = (z1, . . . , zn) := M(x1, . . . , xn) where
zi = Mi(x1, . . . , xn) for i = 1, . . . , n. Here, M denotes a locally private mechanism as it pri-
vatizes a data set D ∈ Xn, producing perturbed data with the same size as the original data.
Furthermore, M is called a sequential mechanism if zi depends only on xi and z1, . . . , zi−1, so
zi = Mi(xi, z1, . . . , zi−1).

2.1 Functional Local Differential Privacy
The hypothesis testing aspect of DP expressed in (1) was first discussed by Wasserman and Zhou
(2010). Recently Dong et al. (2022) gave a formal treatment by formulating the difficulty of the
testing as follows. Let ϕ be the rejection rule and α be the level of the test. Then we define the
trade-off function2 as the minimum type II error for a given α.

Definition 2.1 (Trade-off function, Dong et al. (2022)). For two distributions P,Q ∈ P(Z) and
α ∈ [0, 1], the trade-off function T (P,Q) : [0, 1] −→ [0, 1] between P and Q is defined as

T (P,Q)(α) = inf
ϕ

{
1−

∫
Z
ϕ(z)dQ(z)

∣∣∣∣ ϕ : Z −→ [0, 1],

∫
Z
ϕ(z)dP (z) ≤ α

}
.

It is clear that the larger the trade-off function, the smaller the power, and consequently the more
private the mechanism. A randomized mechanism is said to satisfy f -FDP if the corresponding
trade-off function is at least f for all α ∈ [0, 1].

Definition 2.2 (Functional differential privacy, FDP), Dong et al. (2022)). Let f : [0, 1] −→ [0, 1] be
a trade-off function for some distributions P and Q. A given mechanism M is f -FDP if

T (M(S),M(S′))(α) ≥ f(α)

for every S ∼ S′ ⊂ Xn and α ∈ [0, 1].

The following proposition shows that (ϵ, δ)-DP defined in (1.1) is a special case of f -FDP.

Proposition 1 (Dong et al. (2022)). A convex conjugate of f is defined as δf (y) = supx∈[0,1] 1−
yx− f(x). Then a mechanism M satisfies an f -FDP iff it is (ϵ, δf (eϵ))-DP for every ϵ ≥ 0.

According to Proposition 1, all information regarding the privacy of the mechanism from the per-
spective of (ϵ, δ)-DP is contained in FDP. It also indicates that the privacy characterization of a
mechanism may require more than just two numbers ϵ and δ.

A useful subclass of FDP is the Gaussian differential privacy (GDP), which has the trade-off function
Gµ = T (N(0, 1), N(µ, 1)). That is, the hypothesis testing problem in (1) compares two normal
distributions with respective means 0 and µ with unit variance. It is known that Gµ(x) = F (F−1(1−
x)− µ) where F is the cumulative distribution function of the standard normal distribution.

Definition 2.3 (Gaussian differential privacy, GDP). A mechanism M is µ-GDP if it is Gµ-FDP.

In addition to its intuitive interpretation, µ-GDP also possesses appealing asymptotic properties
regarding compositions of different DP mechanisms. It has been shown by Dong et al. (2022) that
the trade-off function of a composition of mechanisms converges to Gµ under some mild conditions.
Due to these desirable features, it is suggested to be used as a standard for the comparison of different
DP methods.

In this work, we focus on the utility of estimation under local µ-GDP, i.e., µ-GLDP. For all DP
concepts introduced so far, their corresponding local versions are naturally defined by a locally private
sequential mechanism M = {Mi}, i = 1, . . . n, that privatizes the ith observation, respectively. For
example, f -FLDP and µ-GLDP are characterized by the following:

T (Mi(x),Mi(x
′))(α) ≥ f(α) (or Gµ(α))

for every x, x′ ∈ X and i = 1, 2, . . . , n. Some exemplary trade-off functions of µ-GLDP as well as
those of ϵ-LDP are displayed in Fig. 1a.

2not to be confused with the trade-off between privacy and statistical utility.
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2.2 Private Minimax Risk
Consider an estimation problem in a private setting. Suppose n i.i.d. observations X1, . . . , Xn ∈ X
are drawn from a distribution P in some family of distributions P ⊂ P(X ). The data are privatized
into (Z1, . . . , Zn) = M(X1, . . . , Xn) where M is an f -FLDP mechanism. Let θ = θ(P) ∈ Θ be a
parameter of interest where Θ is the parameter space and θ̂ : Xn −→ Θ be an estimator. For a metric
ρ : Θ2 −→ R≥0 and an increasing function Φ : R≥0 −→ R≥0, use Φ ◦ ρ as the loss function, we
define the private minimax risk:

Definition 2.4 (Private minimax risk).

Rn(θ(P),Φ ◦ ρ,Mf ) := inf
M∈Mf

inf
θ̂

sup
P∈P

EP

[
Φ ◦ ρ

(
θ̂ (M(X1, . . . , Xn)) , θ(P )

)]
.

Here, Mf is a family of f -FLDP mechanism defined over Xn. As long as privacy is guaranteed at
a certain level (i.e., given f ), one wishes to find an optimal privatizing mechanism M for a given
estimation problem (i.e., θ) that yields uniformly optimal loss over every distribution in P . One can
also use the minimax risk not only to find the optimal achievable estimation risk but to judge the
efficiency of the estimator under the given privacy level f -FLDP.

3 Minimax Risk Analysis Under FLDP
Minimax risks of classical, non-private estimation problems have been addressed by numerous
approaches including Le Cam, Fano, and Assouad methods, among others (Tsybakov, 2009). In this
section, we take Le Cam’s and Assouad’s approaches and apply them to mean and nonparametric
density estimation, respectively, under f -FLDP. All proofs are presented in the supplementary
material.

3.1 Le Cam’s Bound on Mean Estimation
Le Cam’s method involves reducing an estimation problem to a two-point hypothesis testing problem,
in which the minimax risk is bounded by calculating the worst-case risk for only two distributions,
P1 and P2, selected from P , as defined in Section 2.2.

We first state the private Le Cam’s lower bound under f -FLDP in the theorem below. The following
quantity represents the contraction factor of the effective sample size due to the privatization:

cf,κ = 2κκ (1− κ)
1−κ

∫ ∞

0

(1 + κ)tκ−1δf (t)dt,

where 0 ≤ κ ≤ 1 and δf (t) is the convex conjugate of f , as defined in Proposition 1.

Theorem 1 (Private Le Cam’s bound). For given 0 ≤ κ ≤ 1 and a trade-off function f , if∫∞
0

tκ−1δf (t)dt is finite and ρ(θ(P1), θ(P2)) ≥ 2η > 0 for two distributions P1, P2 ∈ P , then

Rn (θ(P),Φ ◦ ρ,Mf ) ≥
Φ (η)

2

1−
√
ncf,κ

∥P1 − P2∥1+κ
TV

(1− ∥P1 − P2∥TV )κ

 ,

where ∥·∥TV denotes total variation.

The minimax lower bound on the right-hand side can serve as an indicator of the trade-off between
privacy and utility. Note that cf,κ ≤ cg,κ if f(t) ≥ g(t) for all t ∈ [0, 1], which implies higher
privacy would yield greater contraction of the effective sample size. That is, the minimax lower bound
on the right-hand side would become lower under a loosened privacy constraint, which coincides
with the intuition that less privacy would enhance the utility.

Next, we use Le Cam’s method to obtain a lower bound of minimax risk for univariate mean
estimation with bounded moments under the squared loss. For k > 1, define a family of distributions
with bounded kth moment Pk = {P ∈ P (R) | |EP [X]| ≤ 1,EP

[
|X|k

]
≤ 1}. The parameter

of interest is θ(P ) = EP [X] with loss function Φ ◦ ρ where ρ(θ1, θ2) = |θ1 − θ2| and Φ(t) = t2.
Applying Theorem 1, we obtain the following result.
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Corollary 1 (Univariate mean estimation). For given 0 ≤ κ ≤ 1 and a trade-off function f , if∫∞
0

tκ−1δf (t) dt is finite, then

Rn

(
θ(Pk), |·|2,Mf

)
≥ c0 (ncf,κ)

− 1
1+κ

2(k−1)
k ,

for n > c1 where c0 only depends on k and κ, and c1 depends on cf,κ.

Note that the minimax risk for mean estimation is known to be O
(
n−min{1,2− 2

k }
)

in a non-private

setting and O
(
(nϵ2)−

k−1
k

)
under ϵ-LDP (Duchi et al., 2018). Corollary 1 implies that the minimax

lower bound continuously reaches the two scenarios. Specifically, the minimax risk bound of κ = 0
corresponds to that of the non-private setting, and the minimax risk bound of κ = 1 corresponds to
that of the ϵ-LDP case. Moreover, the fact that for any trade-off function f , there exists fϵ such that
fϵ-FLDP is equivalent with ϵ-LDP implies that the minimax rate of mean estimation under f -FLDP is
O
(
n− k−1

k

)
when cf,1 is finite. In the following lemma, we further identify which trade-off function

f would yield the private minimax risk bound of f -FLDP equivalent to that of ϵ-LDP.

Lemma 1. If a given trade-off function f(x) ≥ 1 − c0x
c1 for some c0 > 0 and c1 ∈ (0.5, 1) on

[0, 1], or δf (x) ≤ c3x
−1−c2 for x > x0 and some c3, c2, x0 > 0, then

∫∞
0

δf (t) dt is finite.

(a) Trade-off functions (b) Lemma 1

Figure 1: (a) Trade-off functions of ϵ-LDP with ϵ = 0.4 (red), 6.4 (green), µ-GLDP with µ = 1
(blue) and non-private setting (cyan). (b) Example of trade-off functions (not) satisfying Lemma 1.

Under the condition of Lemma 1, the minimax risk of univariate mean estimation under f -FLDP is
O(n− k−1

k ) by Corollary 1, which is the same rate for ϵ-LDP. Here, we note that the assumption of
Lemma 1 is quite general. Fig. 1b shows some examples of trade-off functions satisfying Lemma 1.
It can be seen that Lemma 1 requires the slope at x = 0 of the trade-off function should not be
too steep. Nonetheless, note that there exists a trade-off function requiring κ < 1 in order to make
cf,κ finite. For example, f(x) = 1 − x

κ
1+κ is a trade-off function with δf (t) = κκ

(1+κ)1+κ t
−κ for

t > κ
1+κ . Therefore,

∫
tκ−1δf (t)dt does not converge, and neither does cf,κ. Thus, there exist some

mechanisms that Corollary 1 cannot guarantee the minimax rate equivalent with the optimal rate
under ϵ-LDP. In other words, they may enjoy better minimax rates. In the supplementary material, it
is shown that Gµ satisfies Lemma 1 for any µ > 0.

Combining it with Corollary 1, we can bound the minimax risk of univariate mean estimation under
µ-GLDP. Denote Mµ for a family of µ-GLDP mechanisms.

Corollary 2. The minimax risk of univariate mean estimation under µ-GLDP mechanism is bounded
as follows:

c0

(
ne

1
2µ

2
)−(1− 1

k ) ≤ Rn

(
θ
(
Pk, |·|22,Mµ

))
≤ c1(nµ

2(4 + µ2)−1)−(1−
1
k ),

for n > c2 where c0, c1 > 0 are constants depending only on k, and c2 is a constant depending only
on µ and k.
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We present the following µ-GLDP algorithm that can be shown to be minimax optimal, as it achieves
the rate of O(n− k−1

k ). See the supplementary material for a proof and empirical comparison of other
LDP mechanisms including the minimax optimal ϵ-LDP mechanism in Duchi et al. (2018).

1. T =

[
n
(
1 + 4

µ2

)−1
] 1

2k

.

2. Mi(Xi) = max{−T,min{Xi, T}}+ ϵi where ϵi ∼ N
(
0, 4T 2

µ2

)
.

3. θ̂ (M(X1, . . . , Xn)) :=
1
n

∑n
i=1 Mi(Xi).

The fact that µ-GLDP and ϵ-LDP have the same minimax rate might be unexpected to some, especially
considering that the former is a more relaxed concept than the latter. In the following lemma, we
present an interesting inequality that can shed light on their connection.

Lemma 2. Let M : X −→ P(Z) be a locally private mechanism taking only one data for its input.
For P1, P2 ∈ P(X ), denote mi for density of M(Pi) for i = 1, 2. If M is f -FLDP, then for a ≥ 2,

Pm2

(
m1(Z)

m2(Z)
> a

)
≤ δf (a− 1).

Lemma 2 implies that, for sufficiently small δf (eϵ − 1), an f -FLDP mechanism behaves like ϵ-LDP
with high probability (1− δf (e

ϵ − 1)). Moreover, this lemma provides a probabilistic interpretation
for (ϵ, δ)-LDP: the probability that the likelihood ratio between output distributions exceeds eϵ + 1
is bounded by δ. In the DP literature (Mironov, 2017; Meiser, 2018), (ϵ, δ)-DP is often informally
explained as “an ϵ-DP with probability 1− δ,” which can cause confusion. In this regard, here we
provide an accurate statement specifying the respective roles of ϵ and δ.

In addition, the µ-GLDP mechanism possesses a similar contraction ability to ϵ-LDP. The term
contraction of a mechanism is generally used to describe the reduction of distance measures be-
tween distributions that is altered by a mechanism. In Duchi et al. (2018), it was shown that
Dkl (M(P1)||M(P2)), the Kullback-Leibler (K-L) divergence between privatized distributions un-
der ϵ-LDP, is bounded by 2(eϵ − 1)2∥P1 − P2∥2TV . We establish a similar bound under f -FLDP.
Following the notations in Lemma 2, the following theorem describes the contraction of f -FLDP
mechanism in terms of K-L divergence.

Theorem 2. For given 0 ≤ κ ≤ 1 and a trade-off function f , if
∫∞
0

tκ−1δf (t)dt is finite, then

Dsy
kl (m1||m2) := Dkl(m1||m2) +Dkl(m2||m1) ≤ cf,κ

∥P1 − P2∥1+κ
TV

(1− ∥P1 − P2∥TV )
κ

holds for any f -FLDP mechanism M : X −→ P (Z) and distributions P1 and P2 over X .

In the case of µ-GLDP, the bound comes down to O
(
∥P1 − P2∥2TV

)
since

∫∞
0

tκ−1δf (t)dt is finite
for κ = 1. Because f -FLDP includes ϵ-LDP, our result is more general than Duchi et al. (2018) and
further gives an insight into why ϵ-LDP and µ-GLDP have indistinguishable privatizing power. Our
analysis also improves the bound found by Asoodeh et al. (2021), which is expressed as a constant
multiple of Dkl (P1||P2) thus could be unbounded for point distributions. Our result bounds the
divergence by total variation between P1 and P2, which is finite for any two arbitrary distributions.
See the supplementary material for an elaborated illustration.

3.2 Assouad’s Bound for Nonparametric Density Estimation
This section aims to derive the minimax risks of private nonparametric density estimation under
f -FLDP and µ-GLDP. While Le Cam’s method is effective for many problems, it may not be
suitable for high-dimensional structured problems. In such cases, Assouad’s method offers a solution
by reformulating the estimation problem as a multiple-binary hypothesis testing problem. Given
the parameter space Θ, there exists a map V : Θ −→ {−1,+1}d and a family of distributions
{Pv}v∈{−1,+1}d for d ∈ N such that

Φ(ρ(θ, θ(Pv))) ≥ 2η

d∑
j=1

1{[V (θ)]j ̸= vj}
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for every v ∈ {−1,+1}d. We say {Pv}v∈{−1,+1}d induces a 2η-Hamming separation under loss
Φ ◦ ρ. Assouad’s method establishes a lower bound of minimax risk by assuming not the worst case
but a randomly selected case in {Pv}v∈{−1,+1}d . We present the Assouad’s bound under f -FLDP
mechanisms.

Theorem 3 (Private Assouad’s bound). For given 0 ≤ κ ≤ 1 and a trade-off function f , if∫∞
0

tκ−1δf (t) dt is finite and a set of distributions {Pv}v∈{−1,+1}d ⊂ P induces 2η-Hamming
separation under Φ ◦ ρ, then

Rn (θ(P),Φ ◦ ρ,Mf ) ≥ dη

1−
√√√√ncf,κ

d

d∑
j=1

∥P+j − P−j∥1+κ
TV

(1− ∥P+j − P−j∥TV )κ

 (2)

where P±j =
1

2d−1

∑
v:vj=±1 Pv .

We can use Theorem 3 to obtain the lower bound of minimax risk of private nonparametric density
estimation. The true density is assumed to be in the elliptical Sobolev space, as defined below:

Definition 3.1 (Elliptical Sobolev space). For a given orthonormal basis {ϕj}∞j=1 of L2([0, 1]),
smoothness parameter β > 1

2 , and radius r > 0, the elliptical Sobolev space is the following set:

Fβ [r] =

h ∈ L2[0, 1]

∣∣∣∣h =

∞∑
j=1

θjϕj ,

∞∑
j=1

j2βθ2j ≤ r2

 .

If we use the trigonometric basis, then Fβ represents a set of distributions with the bounded norm
of β-derivatives with coinciding derivatives of degree< β at endpoints of [0, 1] (Tsybakov, 2009).
Applying Theorem 3, we can obtain the following lower bound.

Corollary 3 (Nonparametric density estimation). For given 0 ≤ κ ≤ 1 and a trade-off function f , if∫∞
0

tκ−1δf (t)dt is finite, then

Rn

(
θ(Fβ [r]), ∥·∥22,Mf

)
≥ r

2
β+1 c1(ncf,κ)

− 2β
(β+1)(1+κ)

for n > c2 where c1, c2 > 0 are constant depends on β.

It is known that the minimax risk in the non-private setting is O
(
n− 2β

2β+1

)
(Tsybakov, 2009) and

O
(
(nϵ2)−

2β
2β+2

)
under ϵ-LDP (Duchi et al., 2018). Thus according to Corollary 3, the minimax rate

of f -FLDP with κ = 1 is the same as that of ϵ-LDP. As in Section 3.1, we can obtain the bounds of
minimax risk of nonparametric density estimation under µ-GLDP, using Lemma 1 .

Corollary 4. The minimax risk of nonparametric density estimation under µ-GLDP is bounded as
follows:

c0r
2

β+1

(
ne

1
2µ

2
)− 2β

2β+2 ≤ Rn

(
θ(Fβ [r]), ∥·∥22,Mµ

)
≤ c1r

2
β+1 (nµ2)−

2β
2β+2

for n > c2 where c0, c1 > 0 are constants depending only on β, and c2 is a constant depending only
on µ and β.

Note that the minimax rate in Corollary 4 is essentially the same as that of ϵ-LDP. However, under
µ-GLDP, one can find the optimal mechanism in a more straightforward way. This is in contrast to the
discussion in Duchi et al. (2018) that the Laplacian mechanism, the canonical mechanism under ϵ-LDP,
cannot achieve the optimal minimax rate. They instead proposed a complicated mechanism to achieve
optimality. Our minimax optimal mechanism and density estimator are presented below:

Suppose that n i.i.d. data X1, X2, . . . , Xn drawn from h ∈ Fβ [r] are available.

1. Set d = ⌊(0.5nµ2r2)
1

2β+2 ⌋ where ⌊x⌋ is the largest integer not exceeding x.

2. Mi(Xi) := (ϕ1(Xi), . . . , ϕd(Xi))
T + ϵ where ϵ ∼ N(0, 2d

µ2 Id×d).

3. Define a function ĥi : [0, 1] −→ R as ĥi :=
∑d

j=1[Mi(Xi)]jϕj .

4. Repeat 2 and 3 for i = 1, . . . , n.

5. ĥ = 1
n

∑n
i=1 ĥi is the obtained estimator.

8



4 Empirical Comparison of Minimax Optimal Mechanisms
In this section, we compare the optimal mechanisms for nonparametric density estimation under
ϵ-LDP, µ-GLDP, and non-private mechanisms. The simulation on univariate mean estimation is
provided in the supplementary material. Our proposed mechanism in Section 3.2 under µ-GLDP
is compared with the mechanism in Duchi et al. (2018) and the non-private mechanism, which is
obtained by using d = ⌊(nr2)

1
2β+1 ⌋ with ϵ = 0 in our µ-GLDP algorithm.

The true underlying density is given as the density of Beta(5, 5) distribution.3 We set ϵ ∈
{0.4, 0.8, 1.6, 3.2, 6.4} for ϵ-LDP and µ ∈ {0.5, 1} for µ-GLDP. We vary the sample size from
n = 100 to n = 2000. Estimation errors are calculated by integrated mean squared errors. We repeat
the experiment 100 times for each mechanism.

(a) Density estimates (b) Mean squared errors

Figure 2: (a) 95% confidence intervals calculated from private density estimates over 100 repetitions
for three LDP and non-private mechanisms. (b) The mean squared errors with one-standard errors of
density estimates for various LDP mechanisms and sample sizes.

The trade-off functions in Fig. 1a show that 6.4-LDP is very close to the non-private setting and
1-GLDP is between 0.4-LDP and 6.4-LDP almost everywhere in terms of privacy levels. However,
Fig. 2a, displaying the 95% point-wise confidence intervals obtained from estimated densities by
different methods, shows that estimates under 1-GLDP are more in agreement with the true density
than 6.4-LDP. The performance under 0.4-LDP is much worse than the others because it is the most
private mechanism. The superiority of 1-GLDP can also be seen in terms of mean squared errors. In
Fig. 2b, 1-GLDP performs better than all other ϵ-LDPs.

The utility of a private mechanism in this density estimation essentially depends on how well it
approximates the estimates of Fourier coefficients that would be obtained from the original data.
This task requires an efficient mechanism to estimate a multi-dimensional coefficient vector for each
observation. The optimal mechanism for this task under ϵ-LDP transforms a vector of non-private
Fourier coefficient estimates into a binomial vector, which limits the support in order to reduce
variance and achieve privacy. However, due to the inherent variance introduced by discretization, the

mean squared error is bounded by a constant multiple of
(

eϵ+1
eϵ−1

)2
. Explicitly, the optimal error bound

of the ϵ-LDP density estimation mechanism in Duchi et al. (2018) can be derived as follows:

Rϵ ≤ (β + 1)

(
β√
2πe

n

(
eϵ + 1

eϵ − 1

)−2
)− 2β

2β+2

r
2

β+1

where Rϵ is the expected error obtained from the ϵ-LDP density estimation mechanism in Duchi et al.
(2018). Hence, even with a lenient privacy constraint (i.e., a large ϵ), the estimation error may not
decrease significantly. In contrast, our µ-GLDP optimal mechanism generates an estimator by adding
noise with decreasing variance as µ tends to infinity. Again, the explicit optimal error bound is given

3We use β = 3 and r = 408.8979 for the proposed mechanism in Section 3.2
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as
Rµ ≤ (β + 1)

(
0.5βnµ2

)− 2β
2β+2 r

2
β+1 +O

(
n− 2β+1

2β+2

)
where Rµ is the expected error obtained from our µ-GLDP density estimation mechanism. The
comparison of the coefficients of n− 2β

2β+2 , which can be interpreted as the cost of privacy, gives the
asymptotic error ratio:

Rµ

Rϵ
≈

(√
πe

2
µ2

(
eϵ + 1

eϵ − 1

)2
)− 2β

2β+2

,

which exceeds 1 when µ = 1. Therefore, the estimation under ϵ-LDP is likely to produce higher
errors than the estimation under 1-GLDP for any ϵ. This is also evidenced by the result in Fig. 2a.
The fact that private estimation error under ϵ-LDP does not approach non-private estimation error
implies that ϵ-LDP adds more noise than necessary to high-dimensional data compared to µ-GLDP.
This highlights the limitation of ϵ-LDP and the advantage of µ-GLDP in achieving privacy for
multi-dimensional data, which can be practically beneficial for addressing other private estimation
problems.

5 Conclusion
The present work on f -FLDP establishes the private Le Cam and Assouad bounds reflecting the
continuous nature of privacy constraints. As the trade-off function f becomes more (less) private, the
supremum value of κ satisfying the conditions of Corollaries 1 and 3 increases (decreases), leading to
the ϵ-LDP (non-private, respectively) minimax rate in terms of n. This is in contrast to the somewhat
counter-intuitive minimax lower bounds derived under ϵ-LDP, whose utility never achieves that of
non-private estimation even as ϵ approaches infinity. Our simulation study in Section 4 shows that µ-
GLDP can offer similar or better privacy level than ϵ-LDP, while achieving higher accuracy in private
estimation. This suggests that µ-GLDP may be a better option for achieving both privacy and accurate
estimation. The results on the contraction inequality reported in Theorem 2 and in the supplementary
material provide additional support for this claim based on the privatizing characteristics of the
mechanisms. In summary, this work shows that µ-GLDP is theoretically comparable in terms of
both utility and privatizing ability while enjoying the better practical performance. This supports the
suggestion made by Dong et al. (2022) that we use G(L)DP as a reliable standard for (L)DP both
theoretically and empirically.

Possible limitations of this work are as follows: Although we establish lower bounds that connect
privacy and utility in a continuous manner through κ ∈ [0, 1], the suggested optimal mechanisms
only achieve the minimax rates for κ = 1. It will be desirable to identify private mechanisms and
estimators that can achieve minimax rates between the non-private and ϵ-LDP minimax rates, if such
mechanisms exist. Additionally, the condition in Theorems 1 and 3 does not hold for all possible
trade-off functions. Also, the bounds in Corollaries 1 and 3 require

∫
tκ−1δf (t)dt to be finite, which

restricts the potential application of the theory, even though most commonly used privatization
mechanisms, such as the Gaussian and Laplace mechanisms, satisfy this condition. Nevertheless,
these bounds only coincide with the true minimax rates for only limited categories of privacy. Hence,
we plan to explore whether there exists an optimal mechanism that enjoys a better minimax rate for
mean and density estimation. Additionally, our theoretical minimax bound for estimations under
µ-GLDP is tight in terms of the sample size n, but it notably lacks tightness with respect to the
privacy parameter µ. Our lower bound converges to a finite value when µ goes to 0 incompatible with
the upper bound. Hence, further efforts are required to establish a rigorous minimax rate in terms
of privacy constraints for local FDP. Finally, our results in Section 3.1 are restricted to univariate
mean estimation, and extending them to high-dimensional estimation under non-ϵ-LDP would be a
non-trivial task.
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