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Abstract
We study the connection between gradient-based meta-learning and convex op-
timisation. We observe that gradient descent with momentum is a special case
of meta-gradients, and building on recent results in optimisation, we prove con-
vergence rates for meta-learning in the single task setting. While a meta-learned
update rule can yield faster convergence up to constant factor, it is not sufficient
for acceleration. Instead, some form of optimism is required. We show that opti-
mism in meta-learning can be captured through the recently proposed Bootstrapped
Meta-Gradient [9] method, providing deeper insight into its underlying mechanics.

1 Introduction
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Figure 1: ImageNet. We compare training a 50-
layer ResNet using SGD against variants that tune
an element-wise learning rate online using standard
meta-learning or optimistic meta-learning. Shad-
ing depicts 95% confidence intervals over 3 seeds.

In meta-learning, a learner is using a param-
eterised algorithm to adapt to a given task.
The parameters of the algorithm are then meta-
learned by evaluating the learner’s resulting per-
formance [25, 10, 2]. As such, meta-learning
features a complex interaction between the
learner and the meta-learner. The learner’s
problem is to minimize the expected loss f of
a stochastic objective by adapting its parame-
ters x ∈ Rn. The learner has an update rule
ϕ at its disposal that generates new parameters
xt = xt−1 + ϕ(xt−1, wt); we suppress data
dependence to simplify notation. A simple ex-
ample is when ϕ represents gradient descent
with wt = η its step size, that is ϕ(xt−1, η) =
−η∇f(xt−1) [17, 26]; several works have ex-
plored meta-learning other aspects of a gradient-
based update rule [6, 21, 7, 30, 31, 9, 15, 22]. ϕ
need not be limited to a gradient-based update,
it can represent some algorithm implemented
within a Neural Network [25, 11, 1, 29].

The meta-learner’s problem is to optimise the
meta-parameters wt to yield effective updates.
In a typical (gradient-based) meta-learning setting, it does so by treating xt as a function of w. Let
ht, defined by ht(w) = f(xt−1 + ϕ(xt−1, w)), denote the learner’s post-update performance as a
function of w. The learner and the meta-learner co-evolve according to

xt = xt−1 + ϕ(xt−1, wt), wt+1 = wt −∇ht(wt) = wt −Dϕ(xt−1, wt)
T∇f(xt),
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where Dϕ(x,w) denotes the Jacobian of ϕ with respect to w. The nested structure between these
two updates makes it challenging to analyse meta-learning, in particular it depends heavily on the
properties of the Jacobian. In practice, ϕ is highly complex and so Dϕ is almost always intractable.
For this reason, the only theoretical results we are aware of specialise to the multi-task setting, where
the learner must adapt to a new task ft. Acceleration in this setup is driven by the tasks similarity. That
is, if all tasks are sufficiently similar, a meta-learned update can accelerate convergence [14]. However,
these results do not yield acceleration in the absence of a task distribution to the best of our knowledge.

This paper provides an alternative view. We study the classical convex optimisation setting of
approximating the minimiser minx f(x). We observe that setting the update rule equal to the gradient,
i.e. ϕ : (x,w) 7→ w∇f(x), recovers gradient descent. Similarly, we show in Section 4 that ϕ can be
chosen to recover gradient descent with momentum. This offers another view of meta-learning as
a non-linear transformation of classical optimisation. An implication thereof is that task similarity
is not necessary condition for improving the rate of convergence via meta-learning. While there
is ample empirical evidence to that effect [30, 31, 9, 16], we are only aware of theoretical results
in the special case of meta-learned step sizes [17, 26].

Given a function f that is convex with Lipschitz smooth gradients, meta-learning improves the rate
of convergence by a multiplicative factor of λ to O(λ/T ) via the smoothness of the update rule. To
achieve accelerated convergence, O(1/T 2), some form of optimism is required, typically in the form
of a prediction of the next gradient. We consider optimism with meta-learning in the convex setting
and prove accelerated rates of convergence, O(λ/T 2). Again, meta-learning affects these bounds
by a multiplicative factor. Our main contributions are as follows:

1. We show that meta-gradients contain gradient descent with momentum (Heavy Ball [23];
Section 4) and Nesterov Acceleration [20] as special cases (Section 5).

2. We show that gradient-based meta-learning can be understood as a non-linear transformation
of an underlying optimisation method (Section 4).

3. We establish rates of convergence for meta-learning in the convex setting (Section 4).
4. We show that optimism can be expressed through the recently proposed Bootstrapped Meta-

Gradient method [BMG; 9]. Our analysis provides a first proof of convergence for BMG
and highlights the underlying mechanics that enable faster learning with BMG (Section 6).

2 Meta-Learning as Convex Optimisation

Problem definition. This section defines the problem studied in this paper and introduces our
notation (see Appendix A, Table 1). Let f : X → R be a proper and convex function. The problem
of interest is to approximate the global minimum minx∈X f(x). We assume a global minimiser
exists and is unique, defined by

x∗ = arg min
x∈X

f(x). (1)

We assume that X ⊆ Rn is a closed, convex and non-empty set. f is differentiable and has Lipschitz
smooth gradients with respect to a norm ‖ · ‖, meaning that there exists L ∈ (0,∞) such that
‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖ for all x, y ∈ X , where ‖ · ‖∗ is the dual norm of ‖ · ‖. We consider
the noiseless setting for simplicity; our results carry over to the stochastic setting by replacing the
key online-to-batch bound used in our analysis by its stochastic counterpart [13].

Algorithm. Let [T ] = {1, 2, . . . , T}. We are given weights {αt}Tt=1, each αt > 0, and an
initialisation (x̄0, w1) ∈ X ×W . At each time t ∈ [T ], an update rule ϕ : X ×W → X generates
the update xt = ϕ(x̄t−1, wt), where W ⊆ Rm is closed, convex, and non-empty. We discuss ϕ
momentarily. The algorithm maintains the online average

x̄t =
x1:t

α1:t
= (1− ρt)x̄t−1 + ρtxt, (2)

where x1:t =
∑t
s=1 αsxs, α1:t =

∑t
s=1 αs, and ρt = αt/α1:t. Our goal is to establish conditions

under which {x̄t}Tt=1 converges to the minimiser x∗. While this moving average is not always used
in practical applications, it is required for accelerated rates in online-to-batch conversion [27, 3, 13].
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Algorithm 1: Meta-learning in practice.

input :Weights {βt}Tt=1
input :Update rule ϕ
input :Initialisation (x0, w1)
for t = 1, 2, . . . , T :

xt = xt−1 + ϕ(xt−1, wt)
ht(·) = f(xt−1 + ρtϕ(xt−1, ·))
wt+1 = wt − βt∇ht(wt)

return xT

Algorithm 2: Meta-learning in the convex setting.

input :Weights {αt}Tt=1, {βt}Tt=1
input :Update rule ϕ
input :Initialisation (x̄0, w1)
for t = 1, 2, . . . , T :

xt = ϕ(x̄t−1, wt)
x̄t = (1− αt/α1:t)x̄t−1 + (αt/α1:t)xt
gt = Dϕ(x̄t−1, wt)

T∇f(x̄t)

wt+1=arg minw∈W
∑t
s=1αs〈gs, w〉+

1
2βt
‖w‖2

return x̄T

Convergence depends on how meta-parameters wt are chosen. The meta-learner faces a sequence of
losses ht :W → R defined by the composition ht(w) = f((1− ρt)x̄t−1 + ρtϕ(x̄t−1, w)). As such,
the meta-learner is facing an online optimization, which we model under Follow-The-Regularized-
Leader (FTRL; reviewed in Section 3): given w0, each wt is chosen according to

wt+1 = arg min
w∈W

(
t∑

s=1

αs〈∇hs(ws), w〉+
1

2β
‖w‖2

)
. (3)

Note that Eq. 3 subsumes the standard meta-gradient; if ‖ · ‖ is the Euclidean norm, an interior
solution yields wt+1 = wt − αtβ∇ht(wt). It is straightforward to extend Eq. 3 to account for
meta-updates that use AdaGrad-like [5] acceleration by altering the norms (see [12]).

Update rule. It is not possible to prove convergence outside of the convex setting, since ϕ may
reach a local minimum, where local changes to w do not yield better updates in x, yet the x sequence
is not converging. Convexity means that each ht must be convex, which requires that ϕ is affine in w
(but may vary non-linearly in x). We also assume that ϕ is smooth with respect to ‖·‖, in the sense that
it has bounded norm; for all x ∈ X and all w ∈ W we assume that there exists λ ∈ (0,∞) for which

‖Dϕ(x,w)T∇f(x)‖2∗ ≤ λ‖∇f(x)‖2∗.

Limitations. Our analysis makes relatively strict assumptions. Most meta-learning systems are not
affine in w. A notable case where our assumptions to hold is meta-learned step-sizes or precondition-
ing matrices. For other update rules, our analysis holds up to first-order Taylor approximation error.
We carry out experiments in Section 7 to empirically verify our theoretical insights.

3 Preliminaries: Online Convex Optimisation
In this section, we present analytical tools from the optimisation literature that we build upon. In
a standard optimisation setting, there is no update rule ϕ; instead, the iterates xt are generated by
a gradient-based algorithm, akin to Eq. 3. Our problem setting reduces to standard optimisation
if ϕ is defined by ϕ : (x,w) 7→ w, in which case xt = wt. In this paper, we use batch-to-online
conversion as our analytical tool. This strategy treats the iterates x1, x2, . . . as generated by an online
learning algorithm, for which we can obtain a regret bound. This regret bound can then be turned
into a convergence rate, detailed momentarily.

Online Optimisation. In online convex optimisation [32], a learner is given a convex decision
set U and faces a sequence of convex loss functions {αtft}Tt=1. At each time t ∈ [T ], it must
make a prediction ut prior to observing αtft, after which it incurs a loss αtft(ut) and receives a
signal—either αtft itself or a (sub-)gradient of αtft(ut). The learner’s goal is to minimise regret,
R(T ) :=

∑T
t=1 αt(ft(ut)− ft(u)), against a comparator u ∈ U . An important property of a convex

function f is f(u′) − f(u) ≤ 〈∇f(u′), u′ − u〉. Hence, the regret is largest under linear losses:∑T
t=1 αt(ft(ut)− ft(u)) ≤

∑T
t=1 αt〈∇ft(ut), ut − u〉. For this reason, it is sufficient to consider

regret under linear loss functions. An algorithm has sublinear regret if limT→∞R(T )/T = 0.

FTRL & AO-FTRL. The meta-update in Eq. 3 is an instance of Follow-The-Regularised-Leader
(FTRL) under linear losses. In Section 6, we show that BMG is an instance of the Adaptive-Optimistic
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FTRL (AO-FTRL) [24, 19, 13, 28]. In AO-FTRL, we have a strongly convex regulariser ‖ · ‖2. AO-
FTRL sets the first prediction u1 to minimise ‖ · ‖2. Given linear losses {gs}t−1

s=1 and learning rates
{βt}Tt=1, each βt > 0, the algorithm proceeds according to

ut = arg min
u∈U

(
αt〈g̃t, u〉+

t−1∑
s=1

αs〈gs, u〉+
1

2βt
‖u‖2

)
, (4)

where each g̃t is a “hint” that enables optimistic learning [24, 19]; setting g̃t = 0 recovers the original
FTRL algorithm. The goal of a hint is to predict the next loss vector gt; if the predictions are accurate
AO-FTRL can achieve lower regret than its non-optimistic counter-part. Since ‖ · ‖2 is strongly
convex, FTRL is well defined in the sense that the minimiser exists, is unique, and finite [18]. The
regret of FTRL and AO-FTRL against any comparator u ∈ U can be upper-bounded by

R(T ) =

T∑
t=1

αt〈gt, ut − u〉 ≤
‖u‖2

2βT
+

1

2

T∑
t=1

α2
tβt ‖gt − g̃t‖

2
∗ . (5)

Hence, hints that predict gt well can reduce the regret substantially. Without hints, FTRL can
guarantee O(

√
T ) regret (for non strongly convex loss functions). However, [4] show that under

linear losses, if hints are weakly positively correlated—defined as 〈gt, g̃t〉 ≥ ε‖gt‖2 for some ε > 0—
then the regret guarantee improves to O(log T ), even for non strongly-convex loss functions. We
believe optimism provides an exciting opportunity for novel forms of meta-learning. Finally, we note
that these regret bounds (and hence our analysis) can be extended to stochastic optimisation [19, 12].

Online-to-batch conversion. The main idea behind online to batch conversion is that, for f convex,
Jensen’s inequality gives f(x̄T ) − f(x∗) ≤

∑T
t=1 αt〈∇f(xt), xt − x∗〉/α1:T . That is, the sub-

optimality gap of the average iterate x̄T can be bounded by the regret in the sequence x1, x2, . . . , xT .
Applying this bound naively yields O(1/T ) rate of convergence. In recent work, [3] shows that one
achieve tighter bounds by instead querying the gradient at the average iterate, f(x̄T ) − f(x∗) ≤∑T
t=1 αt〈∇f(x̄t), xt − x∗〉/α1:T . A tighter bound means a faster rate of convergence. Recently,

[13] tightened the analysis further and proved that the sub-optimality gap can be bounded by

f(x̄T )− f(x∗) ≤
1

α1:T

(
Rx(T )− αt

2L
‖∇f(x̄t)−∇f(x∗)‖2∗ −

α1:t−1

2L
‖∇f(x̄t−1)−∇f(x̄t)‖2∗

)
,

(6)

were we define Rx(T ) :=
∑T
t=1 αt〈∇f(x̄t), xt − x∗〉 as the regret of the sequence {xt}Tt=1 against

the comparator x∗. With this machinery in place, we now turn to deriving our main results.

4 Meta-Gradients without Optimism
The main difference between classical optimisation and meta-learning is the introduction of the
update rule ϕ. To see how this acts on optimisation, consider two special cases. If the update rule just
return the gradient, ϕ = ∇f , Eq. 3 reduces to gradient descent (with averaging). This inductive bias
is fixed and does not change with experience, so acceleration is not possible: the rate of convergence
is O(1/

√
T ) [28]. The other extreme is an update rule that only depends on the meta-parameters,

ϕ(x,w) = w. Here, the meta-learner has ultimate control and selects the next update without
constraints. The only relevant inductive bias is contained in w. To see how this inductive bias is
formed, suppose ‖ · ‖ = ‖ · ‖2 so that Eq. 3 yields wt+1 = wt − αtρtβ∇f(x̄t) (assuming an interior
solution). Combining this with the moving average in Eq. 2, we may write the learner’s iterates as

x̄t = x̄t−1 + ρ̃t (x̄t−1 − x̄t−2)− β̃t∇f(x̄t−1),

where each ρ̃t = ρt
1−ρt−1

ρt−1
and β̃t = αtρtβ. Setting β = 1/(2L) and each αt = t yields ρ̃t = t−2

t+1

and β̃t = t/(4(t+1)L), which recovers Polyak’s canonical Heavy-Ball method [23]. Hence, gradient
descent with momentum is a special case of meta-learning under the update rule ϕ : (x,w) 7→ w.
Because Heavy Ball carries momentum from past updates, it can encode a model of the learning
dynamics that leads to faster convergence, on the order O(1/T ). The implication of this is that the
dynamics of meta-learning are fundamentally momentum-based and thus learns an inductive bias in
the same cumulative manner. This similarity carries in our theoretical analysis, which we turn to next.
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The central challenge in applying the bound in Eq. 6 to Algorithm 2 is that the iterates xt are generated
under the update rule ϕ. Hence, we cannot apply standard regret bounds directly. Instead, observe that

Rx(T ) =

T∑
t=1

αt〈∇f(x̄t), xt − x∗〉 =

T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, wt)− x∗〉

=

T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w
∗)〉︸ ︷︷ ︸

regret under losses `t(·)=αt〈∇f(x̄t),ϕ(x̄t−1,·)〉

+

T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, w
∗)− x∗〉︸ ︷︷ ︸

difference in comparator capacity

.

The first term in the final inequality can be understood as the regret under convex losses `t(·) =
αt〈∇f(x̄t), ϕ(x̄t−1, ·)〉. Since ϕ is affine, `t is convex and thus this regret can be upper-bounded
by linearising the losses. The linearisation reads 〈Dϕ(x̄t−1, wt)

T∇f(x̄t), ·〉, which is identical the
linear losses 〈∇ht(wt), ·〉 faced by the meta-learner in Eq. 3. In other words, the regret component
can be upper-bounded by the of the meta-learner,

Rw(T ) :=

T∑
t=1

αt〈∇ht(wt), wt − w∗〉 ≥
T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w
∗)〉.

The regret of the learner is therefore upper bounded by

Rx(T ) ≤ Rw(T ) +

T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, w
∗)− x∗〉. (7)

The last term captures the difference in comparator capacity and more specifically the amount of
regret they can inflict. If the comparator w∗ has more power than that of x∗, it can accumulate a
lower total loss, in which case this term will be negative, allowing us to discard it. Intuitively, the
comparator x∗ is non-adaptive. It must make one choice x∗ and suffer the average loss. In contrast,
the comparator w∗ becomes adaptive under the update rule; it can only choose one w∗, but on each
round it plays ϕ(x̄t−1, w

∗). If ϕ is sufficiently flexible, this gives the comparator w∗ more power
than x∗, and hence it can force the meta-learner to suffer greater regret. When this is the case, we say
that regret is retained when moving from x∗ to w∗. As long as ϕ is not degenerate, this is typically
easy to satisfy by making W sufficiently large.

Definition 1. Given f , {αt}Tt=1, and {xt}Tt=1, an update rule ϕ : X ×W → X preserves regret if
there exists a comparator w ∈ W that satisfies

T∑
t=1

αt〈ϕ(x̄t−1, w),∇f(x̄t)〉 ≤
T∑
t=1

αt〈x∗,∇f(x̄t)〉. (8)

If such w exists, let w∗ denote the comparator with smallest norm ‖w‖.
Lemma 1. Given f , {αt}Tt=1, and {xt}Tt=1, if ϕ preserves regret, then

Rx(T ) =

T∑
t=1

αt〈∇f(x̄t), xt − x∗〉 ≤
T∑
t=1

αt〈∇f(x̄t), ϕ(x̄t−1, wt)− ϕ(x̄t−1, w
∗)〉 = Rw(T ).

Proof: Appendix D. From Eq. 8, it is clear that for ϕ to retain regret, it must admit a parameterisation
that correlates negatively with the gradient. In other words, ϕ must be able to behave as a gradient
descent algorithm. However, this must not hold on every step, only sufficiently often. For instance,
ϕ(x, ·) affine can be made to satisfy this condition if X andW are chosen appropriately.

Theorem 1. Let ϕ preserve regret and satisfy the assumptions in Section 2. Then

f(x̄T )− f(x∗) ≤ 1

α1:T

(
‖w∗‖2

β
+

T∑
t=1

λβα2
t

2
‖∇f(x̄t)‖2∗

− αt
2L
‖∇f(x̄t)−∇f(x∗)‖2∗ −

α1:t−1

2L
‖∇f(x̄t−1)−∇f(x̄t)‖2∗

)
.

If x∗ is a global minimiser of f , setting αt = 1 and β = 1
λL yields f(x̄T )− f(x∗) ≤ λL diam(W)

T .
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Algorithm 3: BMG in practice.

input :Weights {βt}Tt=1
input :Update rule ϕ, divergence Bµ
input :Target oracle
input :Initialisation (x0, w1)
for t = 1, 2, . . . , T :

xt = xt−1 + ϕ(xt−1, wt)
Query zt from target oracle
dt(·) = Bµzt(xt−1 + ϕ(xt−1, ·))
wt+1 = wt − βt∇dt(wt)

return xT

Algorithm 4: Convex optimistic meta-learning.

input :Weights {αt}Tt=1, {βt}Tt=1
input :Update rule ϕ
input :Hints {g̃t}Tt=1
input :Initialisation (x̄0, w1)
for t = 1, 2, . . . , T :

xt = ϕ(x̄t−1, wt)
x̄t = (1− αt/α1:t)x̄t−1 + (αt/α1:t)xt
gt = Dϕ(x̄t−1, wt)

T∇f(x̄t)

vt = αt+1g̃t+1 +
∑t
s=1 αsgs

wt+1 = arg minw∈W〈vt, w〉+ 1
2βt
‖w‖2

return x̄T

Proof: Appendix D. Compared to Heavy Ball, meta-learning introduces a constant λ that captures
the smoothness of the update rule. Hence, while meta-learning does not achieve better scaling in T
through ϕ, it can improve upon classical optimisation by a constant factor if λ < 1.

That meta-learning can improve upon momentum is borne out experimentally. We consider the
problem of minimizing an ill-conditioned convex quadratic and compare standard momentum to
a version with meta-learned step-size, i.e. ϕ : (x,w) 7→ w � ∇f(x), where � is the Hadamard
product. We find that introducing a non-linearity ϕ leads to a sizeable improvement in the rate of
convergence. See Section 7.1 for further details.

5 Meta-Gradients with Optimism
It is well known that minimizing a smooth convex function admits convergence rates of O(1/T 2).
Our analysis of meta-learning does not achieve these rates. Previous work indicate that we should
not expect it to either; to achieve the theoretical lower-limit of O(1/T 2), some form of optimism
(c.f. Section 3) is required. A typical form of optimism is to predict the next gradient. This is how
Nesterov Acceleration operates [20], and is the reason for its O(1/T 2) convergence guarantee.

From our perspective, meta-learning is a non-linear transformation of the iterate x. Hence, we should
expect optimism to play a similarly crucial role. Formally, optimism comes in the form of hint
functions {g̃t}Tt=1, each g̃t ∈ Rm, that are revealed to the meta-learner prior to selecting wt+1. These
hints give rise to Optimistic Meta-Learning (OML) via meta-updates

wt+1 = arg min
w∈W

(
αt+1g̃t+1 +

t∑
s=1

αs〈∇hs(ws), w〉+
1

2βt
‖w‖2

)
. (9)

If the hints are accurate, meta-learning with optimism can achieve an accelerated rate of O(λ̃/T 2),
where λ̃ is a constant that characterises the smoothness of ϕ, akin to λ. Again, we find that meta-
learning behaves as a non-linear transformation of classical optimism and its rate of convergence
is governed by the geometry it induces.

For a complete description, see Algorithm 4. These updates do not correspond to the typical meta-
update in Algorithm 1; however, we show momentarily that they can be interpreted as the targets in
the BMG method, summarised in Algorithm 3. Before turning to BMG, we establish that optimistic
meta-learning in the convex setting does indeed yield acceleration.

Theorem 2. Let ϕ preserve regret and assume Algorithm 4 satisfy the assumptions in Section 2. Then

f(x̄T )− f(x∗) ≤ 1

α1:T

(
‖w∗‖2

βT
+

T∑
t=1

α2
tβt
2
‖Dϕ(x̄t−1, wt)

T∇f(x̄t)− g̃t‖2∗

− αt
2L
‖∇f(x̄t)−∇f(x∗)‖2∗ −

α1:t−1

2L
‖∇f(x̄t−1)−∇f(x̄t)‖2∗

)
.

Proof; Appendix D. From Theorem 2, it is clear that if g̃t is a good predictor of
Dϕ(x̄t−1, wt)

T∇f(x̄t), then the positive term in the summation can be cancelled by the nega-
tive term. In a classical optimisation setting, Dϕ = In, and hence it is easy to see that simply
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choosing g̃t to be the previous gradient is sufficient to achieve the cancellation [13]. Indeed, this
choice gives us Nesterov’s Accelerated rate [28]. The upshot of this is that we can specialise Algo-
rithm 4 to capture Nesterov’s Accelerated method by choosing ϕ : (x,w) 7→ w—as in the reduction
to Heavy Ball—and setting the hints to g̃t = ∇f(x̄t−1). Hence, while the standard meta-update
without optimism contains Heavy Ball as a special case, the optimistic meta-update contains Nesterov
Acceleration as a special case.

In the meta-learning setting, Dϕ is not an identity matrix, and hence the best targets for meta-learning
are different. Naively choosing g̃t = Dϕ(x̄t−1, wt)

T∇f(x̄t−1) would lead to a similar cancellation,
but this is not allowed. At iteration t, we have not computed wt when g̃t is chosen, and hence
Dϕ(x̄t−1, wt) is not available. The nearest term that is accessible is Dϕ(x̄t−2, wt−1).

Corollary 1. Let each g̃t+1 = Dϕ(x̄t−1, wt)
T∇f(x̄t). Assume that ϕ satisfies∥∥Dϕ(x′, w)T∇f(x)−Dϕ(x′′, w′)T∇f(x′)

∥∥2

∗ ≤ λ̃ ‖∇f(x′)−∇f(x)‖2∗
for all x′′, x′, x ∈ X and w,w′ ∈ W , for some λ̃ > 0. If each αt = t and βt = t−1

2tλ̃L
, then

f(x̄T )− f(x∗) ≤ 4λ̃L diam(W)
T 2−1 .

Proof: Appendix D.

These predictions hold empirically in a non-convex setting. We train a 50-layer ResNet using either
SGD with a fixed learning rate, or an update rule that adapts a per-parameter learning rate online,
ϕ : (x,w) 7→ w � ∇f(x). We compare the standard meta-learning approach without optimism
to optimistic meta-learning. Figure 1 shows that optimism is critical for meta-learning to achieve
acceleration, as predicted by theory (experiment details in Appendix C).

6 Bootstrapped Meta-Gradients as a form of Optimism
Given Theorem 2, it is of interest to study practical ways of implementing optimism in meta-learning.
We study a recently proposed variant of meta-gradients, Bootstrapped Meta-Gradients (BMG) [8].
Informally, instead of directly minimising the loss f , the meta-objective in BMG is the distance
between the meta-learner’s output xt and a desired target zt. The target is computed by unrolling the
meta-learner for a further number of steps, thus implicitly embodying a form of optimism, before
a gradient step is taken: zt = xt + ϕ(xt, wt) − ∇f(xt + ϕ(xt, wt)). This encodes optimism via
ϕ because it encourages the meta-learner to build up momentum (i.e. to accumulate past updates).
To see this formally, we turn to AO-FTRL. First, we provide a more general definition of BMG.
Let µ : X → R be a convex distance generating function and define the Bregman Divergence
Bµ : Rn×Rn → R by

Bµz (x) = µ(x)− µ(z)− 〈∇µ(z), x− z〉.
Given initial condition (x0, w1), the BMG updates proceed according to

xt = xt−1 + ϕ(xt−1, wt)

wt+1 = wt − βt∇dt(wt)
= wt − βtDϕ(xt−1, wt)

T (∇µ(xt)−∇µ(zt)) , (10)
where dt : Rn → R is defined by dt(w) = Bµzt(xt−1 + ϕ(xt−1, wt)); each zt ∈ Rn is referred to
as a target. See Algorithm 3 for an algorithmic summary. To show how this relates to AO-FTRL,
let µ = f . In this case, the BMG update reads wt+1 = wt − βtDϕ(xt−1, wt)

T (∇f(zt)−∇f(xt)).
We can obtain these updates via our convex framework (i.e. Algorithm 4) by setting g̃t+1 = ∇f(zt).
In this case, we have that (Corollary 3, Appendix E) AO-FTRL reduces to

wt+1 =
βt+1

βt
wt − βtDϕ(x̄t−1, wt)

T (αt+1∇f(zt)− αt∇f(x̄t)) + ξt,

where ξt = βtαtDϕ(x̄t−2, wt−1)T∇f(zt−1) denotes an error correction term that removes the
previous target. This error correction term is theoretically important for stability [13], as the accu-
mulation of hints can otherwise dominate the true signal. That the original BMG does not feature
this error term may explain the instabilities the authors observed when setting too aggressive targets
[8]. Since Algorithm 3 does not average its iterates—while Algorithm 4 does—we see that these
updates (ignoring ξt) are identical up to scalar coefficients (that can be controlled for by scaling
each βt and each g̃t+1 accordingly). Our next results present formulas for constructing targets in
BMG or hints in AO-FTRL so that the two commute.
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Theorem 3. Targets in Algorithm 3 and hints in algorithm 4 commute in the following sense. BMG
→ AO-FTRL. Let BMG targets {zt}Tt=1 by given. A sequence of hints {g̃}Tt=1 can be constructed
recursively by

αt+1g̃t+1 = Dϕ(x̄t−1, wt)
T (∇µ(x̄t)−∇µ(zt)− αt∇f(x̄t)) + αtg̃t, t ∈ [T ], (11)

so that interior updates for Algorithm 4 are given by

wt+1 =
βt
βt−1

wt − βt (∇µ(zt)−∇µ(x̄t)) .

AO-FTRL→ BMG. Conversely, assume a sequence {ỹt}Tt=1 are given, each ỹt ∈ Rn. If µ strictly
convex, a sequence of BMG targets {zt}Tt=1 can be constructed recursively by

zt = ∇µ−1 (∇µ(xt)− (αt+1ỹt+1 + αt∇f(xt))) t ∈ [T ],

so that BMG updates in Eq. 10 are given by

wt+1 = wt − βt
(
αt+1g̃t+1 + αt(Dϕ(x̄t−1, wt)

T∇f(x̄t)− g̃t)
)
,

where each g̃t+1 is given by

αt+1g̃t+1 = αt+1Dϕ(xt−1, wt)
T ỹt+1 + αtg̃t.

Proof; see Appendix E. As an immediate consequence of this, we can apply our optimistic meta-
gradient analysis (Theorem 2) to BMG to obtain a rate of convergence. This is captured in the
following corollary.

Corollary 2. Let each g̃t+1 = Dϕ(x̄t−1, wt)
T ỹt+1, for some ỹt+1 ∈ Rn. If each ỹt+1 is a better

predictor of the next gradient than∇f(x̄t−1), in the sense that

‖Dϕ(x̄t−2, wt−1)T ỹt −Dϕ(x̄t−1, wt)
T∇f(x̄t)‖∗ ≤ λ̃‖∇f(x̄t)−∇f(x̄t−1)‖∗,

then Algorithm 4 guarantees convergence at a rate O(λ̃/T 2).

In other words, for certain choices of targets, BMG yields accelerated rates of convergence.

7 Experiments
In this section, we detail experiments borne out to test our theoretical predictions. Section 7.1 tests
predictions about meta-gradients without optimism, by comparing meta-learned variants of standard
optimisers to their non-meta-learned counterparts. Section 7.2 test predictions about optmistic
meta-gradients, by comparding an optimistic meta-gradient approach to gradient descent.

7.1 Convex Quadratic Experiments
Loss function. We consider the problem of minimising a convex quadratic loss functions f :
R2 → R of the form f(x) = xTQx for some Q that is sampled such that it is ill-conditioned
(see Appendix B for details).

Protocol. Given that the solution is always (0, 0), this experiment revolves around understanding
how different algorithms deal with curvature. Given symmetry in the solution and ill-conditioning,
we fix the initialisation to x0 = (4, 4) and run each algorithm for 100 iterations. For each Q and
each algorithm, we sweep over the learning rate, decay rate, and the initialization of w (see Table 2
for values) and report results for the best performing hyper parameters.

Results. We report the learning curves for the best hyper-parameter choice for 5 randomly sampled
problems in the top row of Figure 2 (columns correspond to different Q). We also study the sensitivity
of each algorithm to the learning rate in the bottom row Figure 2. For each learning rate, we report
the cumulative loss during training. While baselines are relatively insensitive to hyper-parameter
choice, meta-learned improve for certain choices, but are never worse than baselines.

7.2 Imagenet Experiments
Protocol. We train a 50-layer ResNet following a standard protocol (Appendix C) with SGD as
the baseline optimiser. We compare SGD to a variant that meta-learns an element-wise learning rate
online, i.e. (x,w) 7→ w �∇f(x). We sweep over the learning rate (for SGD) or meta-learning rate
and report results for the best hyper-parameter over three independent runs.
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Figure 2: Convex Quadratic. We generate convex quadratic loss functions with ill-conditioning and
compare gradient descent with momentum and AdaGrad to meta-learning variants. Meta-Momentum
uses ϕ : (x,w) 7→ w �∇f(x) while Meta-AdaGrad uses ϕ : (x,w) 7→ ∇f(x)/

√
w, where division

is element-wise. Top: loss per iteration for randomly sampled loss functions. Bottom: cumulative
loss (regret) at the end of learning as a function of learning rate; details in Appendix B.

Standard meta-learning. In the standard meta-learning setting, we apply the update rule once
before differentiating w.r.t. the meta-parameters. That is, the meta-update takes the formwt+1 = wt−
β∇ht(wt), where ht = f(xt+wt�∇f(xt)). Because the update rule is linear inw, we can compute
the meta-gradient analytically: ∇ht(wt) = ∇wf(x+ ϕ(x,w)) = Dϕ(x,w)T∇f(x′) = ∇f(x)�
∇f(x′), where x′ = x+ϕ(x,w). Hence, we can compute the meta-updates in Algorithm 1 manually
aswt+1 = max{wt−β∇f(xt)�∇f(xt+1), 0.}, where we introduce the max operator on an element-
wise basis to avoid negative learning rates. Empirically, this was important to stabilize training.

Optimistic meta-learning. For optimistic meta-learning, we proceed much in the same way, but in-
clude a gradient prediction g̃t+1. For our prediction, we use the previous gradient, ∇f(xt+1),
as our prediction. This yields meta-updates of the form wt+1 = max {wt − β∇f(xt+1) �
(∇f(xt+1) +∇f(xt)) − ∇f(xt) � ∇f(xt), 0.},.

Results. We report Top-1 accuracy on the held-out test set as a function of training steps in Figure 1.
Tuning the learning rate does not yield any statistically significant improvements under standard
meta-learning. However, with optimistic meta-learning, we obtain a significant acceleration as well
as improved final performance, increasing the mean final top-1 accuracy from 72% to 75%.

8 Conclusion
This paper explores a connection between convex optimisation and meta-learning. We construct an
algorithm for convex optimisation that aligns as closely as possible with how meta-learning is done
in practice. Meta-learning introduces a transformation and we study the effect this transformation has
on the rate of convergence. We find that, while a meta-learned update rule cannot generate a better
dependence on the horizon T , it can improve upon classical optimisation up to a constant factor.

An implication of our analysis is that for meta-learning to achieve acceleration, it is important to
introduce some form of optimism. From a classical optimisation point of view, such optimism
arises naturally by providing the meta-learner with hints. If hints are predictive of the learning
dynamics these can lead to significant acceleration. We show that the recently proposed BMG
method provides a natural avenue to incorporate optimism in practical application of meta-learning.
Because targets in BMG and hints in optimistic online learning commute, our results provide first
rigorous proof of convergence for BMG, while providing a general condition under which optimism
in BMG yields accelerated learning.

9



References
[1] M. Andrychowicz, M. Denil, S. Gómez, M. W. Hoffman, D. Pfau, T. Schaul, and N. de Freitas.

Learning to Learn by Gradient Descent by Gradient Descent. In Advances in Neural Information
Processing Systems, 2016.

[2] Y. Bengio, S. Bengio, and J. Cloutier. Learning a Synaptic Learning Rule. Université de
Montréal, Département d’informatique et de recherche opérationnelle, 1991.

[3] A. Cutkosky. Anytime Online-to-Batch, Optimism and Acceleration. In International Confer-
ence on Machine Learning, 2019.

[4] O. Dekel, A. Flajolet, N. Haghtalab, and P. Jaillet. Online learning with a hint. In Advances in
Neural Information Processing Systems, 2017.

[5] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

[6] C. Finn, P. Abbeel, and S. Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. In International Conference on Machine Learning, 2017.

[7] S. Flennerhag, P. G. Moreno, N. D. Lawrence, and A. Damianou. Transferring Knowledge
across Learning Processes. In International Conference on Learning Representations, 2019.

[8] S. Flennerhag, Y. Schroecker, T. Zahavy, H. van Hasselt, D. Silver, and S. Singh. Bootstrapped
Meta-Learning. arXiv preprint arXiv:2109.04504, 2021.

[9] S. Flennerhag, Y. Schroecker, T. Zahavy, H. van Hasselt, D. Silver, and S. Singh. Bootstrapped
Meta-Learning. In International Conference on Learning Representations, 2022.

[10] G. E. Hinton and D. C. Plaut. Using Fast Weights to Deblur Old Memories. In Cognitive
Science Society, 1987.

[11] S. Hochreiter, A. S. Younger, and P. R. Conwell. Learning To Learn Using Gradient Descent.
In International Conference on Artificial Neural Networks, 2001.

[12] P. Joulani, A. György, and C. Szepesvári. A modular analysis of adaptive (non-) convex
optimization: Optimism, composite objectives, and variational bounds. Journal of Machine
Learning Research, 1:40, 2017.

[13] P. Joulani, A. Raj, A. Gyorgy, and C. Szepesvári. A Simpler Approach to Accelerated Optimiza-
tion: Iterative Averaging Meets Optimism. In International Conference on Machine Learning,
2020.

[14] M. Khodak, M.-F. F. Balcan, and A. S. Talwalkar. Adaptive Gradient-Based Meta-Learning
Methods. In Advances in Neural Information Processing Systems, 2019.

[15] L. Kirsch, S. van Steenkiste, and J. Schmidhuber. Improving Generalization in Meta Reinforce-
ment Learning Using Learned Objectives. arXiv preprint arXiv:1910.04098, 2019.

[16] J. Luketina, S. Flennerhag, Y. Schroecker, D. Abel, T. Zahavy, and S. Singh. Meta-gradients in
non-stationary environments. In ICLR Workshop on Agent Learning in Open-Endedness, 2022.

[17] A. R. Mahmood, R. S. Sutton, T. Degris, and P. M. Pilarski. Tuning-Free Step-Size Adaptation.
In ICASSP, 2012.

[18] H. B. McMahan. A survey of algorithms and analysis for adaptive online learning. The Journal
of Machine Learning Research, 18(1):3117–3166, 2017.

[19] M. Mohri and S. Yang. Accelerating Online Convex Optimization via Adaptive Prediction. In
International Conference on Artificial Intelligence and Statistics, 2016.

[20] Y. E. Nesterov. A method for solving the convex programming problem with convergence rate
o (1/kˆ 2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

10



[21] A. Nichol, J. Achiam, and J. Schulman. On First-Order Meta-Learning Algorithms. arXiv
preprint ArXiv:1803.02999, 2018.

[22] J. Oh, M. Hessel, W. M. Czarnecki, Z. Xu, H. P. van Hasselt, S. Singh, and D. Silver. Discovering
Reinforcement Learning Algorithms. In Advances in Neural Information Processing Systems,
volume 33, 2020.

[23] B. T. Polyak. Some Methods of Speeding up the Convergence of Iteration Methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[24] S. Rakhlin and K. Sridharan. Optimization, Learning, and Games with Predictable Sequences.
In Advances in Neural Information Processing Systems, 2013.

[25] J. Schmidhuber. Evolutionary Principles in Self-Referential Learning. PhD thesis, Technische
Universität München, 1987.

[26] T. van Erven and W. M. Koolen. MetaGrad: Multiple Learning Rates in Online Learning. In
Advances in Neural Information Processing Systems, 2016.

[27] J.-K. Wang and J. Abernethy. Acceleration through Optimistic No-Regret Dynamics. arXiv
preprint arXiv:1807.10455, 2018.

[28] J.-K. Wang, J. Abernethy, and K. Y. Levy. No-regret dynamics in the fenchel game: A unified
framework for algorithmic convex optimization. arXiv preprint arXiv:2111.11309, 2021.

[29] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo, R. Munos, C. Blundell,
D. Kumaran, and M. Botvinick. Learning to Reinforcement Learn. In Annual Meeting of the
Cognitive Science Society, 2016.

[30] Z. Xu, H. P. van Hasselt, and D. Silver. Meta-Gradient Reinforcement Learning. In Advances
in Neural Information Processing Systems, 2018.

[31] T. Zahavy, Z. Xu, V. Veeriah, M. Hessel, J. Oh, H. P. van Hasselt, D. Silver, and S. Singh. A
Self-Tuning Actor-Critic Algorithm. In Advances in Neural Information Processing Systems,
volume 33, 2020.

[32] M. Zinkevich. Online Convex Programming and Generalized Infinitesimal Gradient Ascent. In
International Conference on Machine Learning, 2003.

11


	Introduction
	Meta-Learning as Convex Optimisation
	Preliminaries: Online Convex Optimisation
	Meta-Gradients without Optimism
	Meta-Gradients with Optimism
	Bootstrapped Meta-Gradients as a form of Optimism
	Experiments
	Convex Quadratic Experiments
	Imagenet Experiments

	Conclusion

