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Abstract

The Gaussianity assumption has been consistently criticized as a main limitation of
the Variational Autoencoder (VAE) despite its efficiency in computational modeling.
In this paper, we propose a new approach that expands the model capacity (i.e.,
expressive power of distributional family) without sacrificing the computational
advantages of the VAE framework. Our VAE model’s decoder is composed of
an infinite mixture of asymmetric Laplace distribution, which possesses general
distribution fitting capabilities for continuous variables. Our model is represented
by a special form of a nonparametric M-estimator for estimating general quantile
functions, and we theoretically establish the relevance between the proposed model
and quantile estimation. We apply the proposed model to synthetic data generation,
and particularly, our model demonstrates superiority in easily adjusting the level of
data privacy.

1 Introduction

Variational Autoencoder (VAE) [31, 51] and Generative Adversarial Networks (GAN) [22] are
generative models that are used to estimate the underlying distribution of a given dataset. To avoid
the curse of dimensionality, VAE and GAN commonly introduce a low-dimensional latent space on
which a conditional generative model is defined. By minimizing an information divergence between
the original data and its generated data, the generative models are learned to produce synthetic data
similar to the original one. Accordingly, VAE and GAN have been applied in various applications,
such as generating realistic images, texts, and synthetic tabular data for privacy preservation purposes
[30, 60, 63, 65, 34].

However, the difference in the strength of the assumption about the generative distribution brings
significant contrasts in the VAE and GAN generation performances [30, 7, 17]. In the GAN frame-
work, the adversarial loss enables direct minimization of the Jensen-Shannon divergence between
the ground-truth density function and the generative distribution under no distributional assumption
[13, 59]. Roughly speaking, the GAN employs a nonparametric model as its conditional generative
model defined on the latent space.

On the contrary, in the VAE framework, the Gaussianity assumption has been favored [31, 32, 15, 10,
39]. It is because Gaussianity gives us three advantages: 1) the reconstruction loss can be interpreted
as the mean squared error that is one of the most popular losses in optimization theory, 2) generating
a new sample is computationally straightforward, and 3) KL-divergence is computed in a simple
closed form. However, these benefits have led us to pay the price for the distributional capacity
of the generative model, in that the generative model of the VAE is constrained in the form of
marginalization of the product of the two Gaussian distributions. Here, the distributional capacity
means the expressive power of the distributional family. This restricted distributional capacity has
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been the critical limitation [8, 33] and leads to a heavy parameterization of the decoder mean vector
to approximate complex underlying distributions.

To increase the distributional capacity in synthetic data generation, [63, 65] introduce the multi-
modality in the distributional assumption of the decoder, which is known as the mode-specific
normalization technique. Although the mixture Gaussian decoder modeling of [63, 65] allows
handling more complex distributions of the observed dataset while preserving all of the advantages
of Gaussianity, we numerically find that the mixture Gaussian is not enough to capture the complex
underlying distribution.

Our main contribution is that, beyond Gaussianity, we propose a novel VAE learning method that
directly estimates the conditional cumulative distribution function (CDF) while maintaining the
objective of maximizing the Evidence Lower Bound (ELBO) of the observed dataset. It implies that
we have a nonparametric distribution assumption on the generative model. We call this approach
distributional learning of the VAE, which is enabled by estimating an infinite number of conditional
quantiles [4, 20]. By adopting the continuous ranked probability score (CRPS) loss, the objective
function of our proposed distribution learning method is computationally tractable [21, 43, 20].

In our proposed distributional learning framework, 1) the reconstruction loss is equivalent to the
CRPS loss, which is a proper scoring rule [21, 43], 2) generating a new sample is still computationally
straightforward due to the inverse transform sampling, and 3) KL-divergence is still computed in a
simple closed form. To show the effectiveness of our proposed model in capturing the underlying
distribution of the dataset, we evaluate our model for synthetic data generation with real tabular
datasets.

2 Related Work

Modeling of the decoder and reconstruction loss. To increase the distributional capacity, many
papers have focused on decoder modeling while not losing the mathematical link to maximize the
ELBO. [57, 1] assume their decoder distributions as Student-t and asymmetric Laplace distributions,
respectively, to mitigate the zero-variance problem that the model training becomes unstable if the
estimated variance of the decoder shrinks to zero in Gaussian VAE [41, 55, 15]. [2] proposes a
general distribution of the decoder, which allows improved robustness by optimizing the shape of the
loss function during training. Recently, [5] proposes a reconstruction loss that directly minimizes the
blur error of the VAE by modeling the covariance matrix of multivariate Gaussian decoder.

On the other hand, there exists a research direction that focuses on replacing the reconstruction loss
without concern for losing the mathematical derivation of the lower bound. [38, 52, 46] replace the
reconstruction loss with an adversarial loss of the GAN framework. [27] introduces a feature-based
loss that is calculated with a pre-trained convolutional neural network (CNN). Another approach
by [14] adopts Watson’s perceptual model, and [28] directly optimizes the generative model in the
frequency domain by a focal frequency reconstruction loss. Most of the above-mentioned methods
aim to capture the properties of human perception by replacing the element-wise loss (L1 or L2-norm),
which hinders the reconstruction of images [38].

Synthetic data generation. The GAN framework is widely adopted in the synthetic data generation
task since it enables synthetic data generation in a nonparametric approach [12, 47, 63, 65]. [63, 65]
assume that continuous columns of tabular datasets can be approximated by the Gaussian mixture
distribution and model their decoder using Gaussian mixture distribution. Additionally, [63, 65]
preprocess the continuous variables using the variational Gaussian mixture model [3], which is
known as the mode-specific normalization technique. However, the preprocessing step requires
additional computational resources and hyperparameter tuning of the number of modes. Other
approaches by [47, 65] regularize the discrepancy between the first and second-order statistics of
the observed and synthetic dataset. [12] proposes the GAN-based synthesizer, which focuses on
generating high-dimensional discrete variables with the assistance of the pre-trained AutoEncoder.

3 Proposal

Let x ∈ Rp+q be an observation consisting of continuous and discrete variables and I = IC ∪ ID =
{1, · · · , (p + q)} be an index set of the variables, where IC and ID correspond to index sets of
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p continuous and q discrete variables. Tj denotes the number of levels for the discrete variables
xj , j ∈ ID. We denote the ground-truth underlying distribution (probability density function, PDF)
as p(x) and the ground-truth CDF as F (x).

Let z be a latent variable, where z ∈ Rd and d < p+ q. The prior and posterior distribution of z are
assumed to be p(z) = N (z|0, I) and q(z|x;φ) = N

(
z|µ(x;φ), diag(σ2(x;φ))

)
, respectively. Here,

I is d× d identity matrix, µ : Rp+q 7→ Rd, σ2 : Rp+q 7→ Rd
+ are neural networks parameterized with

φ, and diag(a), a ∈ Rd denotes a diagonal matrix with diagonal elements a. Moreover, we consider
α ∈ [0, 1] as a random variable having density p(α).

3.1 Distributional Learning

Our proposed model assumes that p(x) is parametrized by an infinite mixture of asymmetric Laplace
distribution (ALD) [4]. The ALD is characterized by two parameters: α, representing the asymmetry,
and β > 0, representing the scale. By considering these parameters, along with the model parameter
θ, we can define the probability model of x as follows:

p(x; θ, β) =

∫ ∫ 1

0

p(x|z, α; θ, β)p(z, α)dαdz.

Assumption 1. (1) {xj}j∈I are conditionally independent given z. (2) The discrete random variables
{xj}j∈ID are independent of α. (3) α and z are independent.

By Assumption 1-(1), we model the dependency between xjs solely through the latent variable z
[49]. Assumption 1-(2) implies that α is related only to the continuous variables. Then, the decoder
of our VAE model denoted as p(x|z, α; θ, β) is specified by equation (1):

p(x|z, α; θ, β) =
∏
j∈IC

p(xj |z, α; θj , β) ·
∏
j∈ID

p(xj |z; θj) (1)

=
∏
j∈IC

α(1− α)

β
exp

(
−ρα

(
xj −Dj(α, z; θj)

β

))
·
∏
j∈ID

Tj∏
l=1

πl(z; θj)
I(xj=l),

where θ = (θ1, · · · , θp+q), β is a non-trainable constant, ρv(u) = u(v − I(u < 0)) (check function),
and I(·) denotes the indicator function. Dj(·, ·; θj) : [0, 1] × Rd 7→ R is the location parameter of
ALD, which is parameterized with θj [1]. For discrete variables, π(·; θj) : Rd 7→ ∆Tj−1 is a neural
network parameterized with θj , where ∆Tj−1 is the standard (Tj − 1)-simplex for all z ∈ Rd, and
the subscript l referes to the lth element of the output π.

Assumption 1-(3) leads our objective function,

min
θ,φ

Ep(x)Eq(z|x;φ)

∑
j∈IC

∫ 1

0

ρα

(
xj −Dj(α, z; θj)

)
dα−

∑
j∈ID

Tj∑
l=1

I(xj = l) · log πl(z; θj)


+ β · Ep(x)[KL(q(z|x;φ)‖p(z))], (2)

where constant terms are omitted. In order to achieve balanced learning of the two reconstruction
losses in (2), we have removed the weight β associated with the second reconstruction loss. We refer
to our model as ‘DistVAE.’ The first term in (2) corresponds to the CRPS loss, which measures the
accuracy of the proposed CDF approximation with respect to the ground-truth CDF of the underlying
distribution [21, 43, 20].

Interestingly, (2) is the limit of the negative ELBO derived from a finite mixture of ALD. We introduce
α, a discrete uniform random variable taking values on αk = k/K for k = 1, · · · ,K. Then, the
negative ELBO of p(x; θ, β) scaled with β is written by

Eq(z|x;φ)

∑
j∈IC

1

K

K∑
k=1

ραk

(
xj −Dj(αk, z; θj)

)− β
p

K

K∑
k=1

logαk(1− αk) + βp log β

− β · Eq(z|x;φ)

∑
j∈ID

Tj∑
l=1

I(xj = l) · log πl(z; θj)

+ β · KL(q(z|x;φ)‖p(z)) (3)
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(see Appendix A.1 for detailed derivation). The reconstruction loss, which corresponds to the first
term of (3), is a composite quantile loss for estimating the target quantiles αks [64, 35, 45, 62, 9].
This entails adopting a Bayesian perspective for α as a prior (the Bayesian modeling for estimating
multiple quantiles). Furthermore, throughout the derivation of the reconstruction loss, the role of
α is pivotal in ensuring the representation of the reconstruction loss. To prevent the observation x
from influencing the distribution of α, α is only assigned with a prior distribution, and the resulting
reconstruction loss becomes the CRPS loss, a proper scoring rule.

However, for distributional learning of VAE, it is necessary to estimate conditional quantiles for an
infinite number of quantile levels, denoted by K → ∞ [50]. The subsequent Theorem 1 establishes
the convergence of the negative ELBO (3) to our objective function (2) as K → ∞ [4].

Theorem 1. For all j ∈ IC , suppose that
∫ 1

0
Ep(x)Eq(z|x;φ)ρα

(
xj − Dj(α, z; θj)

)
dα < ∞, and

Ep(x)Eq(z|x;φ)[ρα(xj −Dj(α, z; θj))] is continuous over α ∈ (0, 1). Then,

lim
K→∞

Ep(x)Eq(z|x;φ)

[
1

K

K∑
k=1

ραk

(
xj −Dj(αk, z; θj)

)]
= Ep(x)Eq(z|x;φ)

[∫ 1

0

ρα

(
xj −Dj(α, z; θj)

)
dα

]
,

and limK→∞
1
K

∑K
k=1 logαk(1− αk) =

∫ 1

0
logα(1− α)dα = −2.

3.2 Theoretical Results

In this section, we aim to provide theoretical insights into the ability of DistVAE, utilizing the
objective function (2), to recover the ground-truth distribution p(x). To simplify the analysis without
loss of generality, we consider the scenario where x comprises only p continuous random variables.
Hence, we have I = IC = {1, · · · , p}, and p(x) is defined over x ∈ Rp with p(x) > 0 for all
x ∈ Rp. First, define a function q(x|z;φ) by

q(x|z;φ) := p(x)q(z|x;φ)
q(z;φ)

,

where q(z;φ) :=
∫
q(z|x;φ)p(x)dx is the aggregated posterior [58]. Clearly, q(x|z;φ) is a PDF of

x for a given z. q(x|z;φ) is a conditional PDF of x parametrized by φ and it is an approximated PDF
of
∫ 1

0
p(x|z, α; θ, β)dα. Since we assume that xjs are conditionally independent in Assumption 1,

q(x|z;φ) =
∏p

j=1 qj(xj |z;φ) and the conditional CDF is written as

F (x|z;φ) =
p∏

j=1

Fj(xj |z;φ), where Fj(xj |z;φ) :=
∫ xj

−∞
qj(x|z;φ)dx. (4)

For notational simplicity, we let

θ∗(φ) ∈ argmin
θ

Ep(x)q(z|x;φ)

p∑
j=1

∫ 1

0

ρα(xj −Dj(α, z; θj))dα,

where θ∗(φ) = (θ∗1(φ), · · · , θ∗p(φ)).
Assumption 2. (1) Given an arbitrary φ, Fj(·|z;φ) : R 7→ [0, 1] is absolutely continuous and strictly
monotone increasing for all j = 1, · · · , p, and z ∈ Rd. (2) Given an arbitrary θ, Dj(·, z; θj) is
invertible and differentiable for all j = 1, · · · , p and z ∈ Rd. (3) The aggregated posterior q(·;φ) is
absolutely continuous to the prior distribution of z.

Theorem 2. Under Assumption 2, for an arbitrary φ,

KL

p(x)

∥∥∥∥∥
∫ p∏

j=1

d

dxj
D−1

j (xj , z; θ
∗
j (φ))q(z;φ)dz

 = 0.

Theorem 2 shows that DistVAE is capable of recovering the ground-truth distribution p(x), indicating
its ability to facilitate distributional learning rather than data reconstruction. Nevertheless, relying
on the aggregated posterior distribution may lead to overfitting [25, 42], and sampling from the
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aggregated posterior can introduce computational challenges due to the absence of a straightforward
closed-form representation for q(z;φ). To address these concerns, we propose an alternative approach
that leverages the prior distribution p(z) instead of q(z;φ), thereby enabling a computationally
efficient synthetic generation process. This is substantiated by Theorem 3.

We define the estimated PDF p̂(x; θ∗(φ)) and CDF F̂ (x; θ∗(φ)) as

p̂(x; θ∗(φ)) :=

∫ p∏
j=1

d

dxj
D−1

j (xj , z; θ
∗
j (φ))p(z)dz (5)

F̂ (x; θ∗(φ)) :=

∫ p∏
j=1

D−1
j (xj , z; θ

∗
j (φ))p(z)dz. (6)

Theorem 3. Suppose that φ is given such that KL(q(z;φ)‖p(z)) < ε for any ε > 0. Then, under
Assumption 2,

KL

p(x)

∥∥∥∥∥
∫ p∏

j=1

d

dxj
D−1

j (xj , z; θ
∗
j (φ))p(z)dz

 < ε.

Theorem 3 shows that even if we use the prior distribution p(z) instead of the aggregated posterior
q(z;φ), it is feasible to minimize the KL-divergence between the ground-truth PDF p(x) and our
estimated PDF p̂(x; θ∗(φ)) of (5). This is achievable because the KL-divergence term in (2) is
the upper bound of KL(q(z;φ)‖p(z)) and is minimized during the training process. Since each
conditional distribution of the estimated PDF depends on the same latent variable, it can be seen that
the correlation structure between covariates is modeled implicitly.

[24, 41, 37] have highlighted the role of the KL-divergence weight parameter β in controlling the
precision of reconstruction. In our case, where the reconstruction loss is based on the CRPS loss, an
increase in β leads to a less accurate estimation of the ground-truth CDF. It implies that a large β
corresponds to lower-quality synthetic data, but it also enhances privacy level. Thus, β introduces a
trade-off between the quality of synthetic data and the risk of privacy leakage. The privacy level can
be adjusted by manipulating β [47], as demonstrated in the experimental results presented in Section
4.

3.2.1 Synthetic Data Generation

By estimating the conditional quantile functions, we can transform the synthetic data generation
process into inverse transform sampling. This conversion offers a notable advantage as it provides a
straightforward and efficient approach to generating synthetic data. We denote a synthetic sample of
xj as x̂j for j ∈ I , and the synthetic data generation process can be summarized as follows:

1. Sampling from the prior distribution: z ∼ p(z).

2. Inverse transform sampling: For j ∈ IC , x̂j = Dj(uj |z; θj), where uj ∼ U(0, 1).

3. Gumbel-Max trick [23]: For j ∈ ID, x̂j = argmaxl=1,··· ,Tj
{log πl(z; θj) + Gl}, where

Gl ∼ Gumbel(0, 1), and l = 1, · · · , Tj .

Note that both continuous and discrete variables share the same latent variable z. This shared latent
variable allows for capturing the dependencies between variables. We numerically observe that the
sampling, implemented using the Gumbel-Max trick, maintains the imbalanced ratio of the labels in
the discrete variable.

3.2.2 Parameterization of ALD

As introduced in [20], for j ∈ IC , we parameterize the function Dj , the location parameter of ALD,
by a linear isotonic spline as follows:

Dj(α, z; θj) = γ(j)(z) +

M∑
m=0

b(j)m (z)(α− dm)+ s.t.
k∑

m=0

b(j)m (z) ≥ 0, k = 1, · · · ,M, (7)
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where γ(j)(z) ∈ R, b(j)(z) = (b
(j)
0 (z), · · · , b(j)M (z)) ∈ RM+1, d = (d0, · · · , dM ) ∈ [0, 1]M+1,

0 = d0 < · · · < dM = 1, and (u)+ := max(0, u). θj is a neural network parameterized mapping
such that θj : Rd 7→ R × RM+1, which takes z as input and outputs γ(j)(z) and b(j)(z). The
constraint is introduced to ensure monotonicity. As demonstrated in [20], the reconstruction loss
can be computed in a closed form by utilizing the parameterization of (7) (refer to Appendix A.5
for a detailed description of the loss function). This implies that our objective function (2) is
computationally tractable. Note that the linear isotonic spline is not differentiable for finite points
where the measure has no point mass.

4 Experiments

4.1 Overview

Dataset. For evaluation, we consider following real tabular datasets: covertype, credit, loan,
adult, cabs, and kings (see Appendix A.8 for detailed data descriptions). We treat the ordinal
variables as continuous variables and discretize the estimated CDF (see Appendix A.6 for the
discretization algorithm). Synthetic samples of ordinal variables are rounded to the first decimal
place.

Compared models. We compare DistVAE† with the state-of-the-art synthesizers; CTGAN [63],
TVAE [63], and CTAB-GAN [65]. All models have the same size of the latent dimension (d = 2).
The chosen latent space indeed limits the capacity of decoders for all models. However, we maintain
a small and consistent number of parameters across all models during the experiment to isolate
the performance differences in synthetic data generation to the methodologies of each synthesizer,
specifically emphasizing the contribution of the decoder model’s flexibility in estimating underlying
distributions (see Table 10 in Appendix A.9 for a comprehensive comparison of the model parameters).

4.2 Evaluation Metrics

To assess the quality of the synthetic data, we employ three types of assessment criteria: 1) machine
learning utility, 2) statistical similarity, and 3) privacy preservability. Each criterion is evaluated using
multiple metrics, and the performance of synthesizers is reported by averaged metrics over the real
tabular datasets. The synthetic dataset is generated to have an equal number of samples as the real
training dataset.

Machine learning utility. The machine learning utility (MLu) is measured by the predictive
performance of the trained model over the synthetic data. We consider three popular machine learning
algorithms: linear (logistic) regression, Random Forest [6], and Gradient Boosting [19]. We measure
the performance by utilizing the mean absolute relative error (MARE) for regression tasks [47] and
the F1 score for classification tasks [63, 65, 61, 29, 47, 12, 18].

Statistical similarity. The marginal distributional similarity between the real training and synthetic
datasets is evaluated using two metrics: the Kolmogorov statistic and the 1-Wasserstein distance
[18]. These metrics measure the distance between the empirical marginal CDFs [40]. The joint
distributional similarity is assessed by comparing the correlation matrices [65]. To compute the
correlation matrix and measure the L2 distance between the correlation matrices of the real training
and synthetic datasets, we employ the dython library ‡. These enable a comprehensive evaluation of
both marginal and joint distributional similarities between the real training and synthetic datasets.

Privacy preservability. The privacy-preserving capacity is measured using three metrics: the
distance to closest record (DCR) [47, 65], membership inference attack [54, 12, 47], and attribute
disclosure [12, 44]. As in [65], the DCR is defined as the 5th percentile of the L2 distances between
all real training samples and synthetic samples. Since the DCR is a L2 distance-based metric,
it is computed using only continuous variables. A higher DCR value indicates a more effective
preservation of privacy, indicating a lack of overlap between the real training data and the synthetic
samples. Conversely, an excessively large DCR score suggests a lower quality of the generated
synthetic dataset. Therefore, the DCR metric provides insights into both the privacy-preserving
capability and the quality of the synthetic dataset.

†We release the code at https://github.com/an-seunghwan/DistVAE.
‡http://shakedzy.xyz/dython/modules/nominal/#associations
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The membership inference attack evaluation follows the steps detailed in Appendix A.7. The
procedure is customized to be applied to a VAE-based synthesizer, such as DistVAE and TVAE. By
transforming the problem into a binary classification task, we aim to identify the intricate relationship
between the real training data and the synthetic samples. Higher binary classification scores indicate
a higher vulnerability of the target synthesizer to membership inference attacks.

Attribute disclosure refers to the situation where attackers can uncover additional covariates of a
record by leveraging a subset of covariates they already possess, along with similar records from the
synthetic dataset. To quantify the extent to which attackers can accurately identify these additional
covariates, we employ classification metrics. Higher attribute disclosure metrics indicate an increased
risk of privacy leakage, implying that attackers can precisely infer unknown variables. In terms of
privacy concerns, attribute disclosure can be considered a more significant issue than membership
inference attacks, as attackers are assumed to have access to only a subset of covariates for a given
record [12].

4.3 Results

Machine learning utility. We expect a high-quality synthesizer to generate synthetic data with
comparable predictive performance to the real training dataset, denoted as the ‘Baseline’ in Table 1.
The results in Table 1 demonstrate that DistVAE achieves a competitive MARE score and outperforms
other methods in terms of the F1 score. Furthermore, the performance of MLu improves as the value
of β decreases, indicating that the quality of the generated synthetic data is controlled by β. For a
comprehensive overview of the MLu scores for all tabular datasets, please refer to Appendix A.10.

Table 1: Averaged MLu metrics (MARE, F1). Mean and
standard deviation values are obtained from 10 repeated
experiments. ↑ denotes higher is better and ↓ denotes
lower is better.

Model MARE ↓ F1 ↑
Baseline 0.150±0.200 0.814±0.101

CTGAN 0.321±0.271 0.672±0.234

TVAE 0.225±0.215 0.594±0.295

CTAB-GAN 0.403±0.392 0.702±0.162

DistVAE(β = 0.5) 0.349±0.328 0.769±0.128

DistVAE(β = 1) 0.344±0.316 0.762±0.134

DistVAE(β = 5) 0.392±0.348 0.679±0.190

Table 2: Averaged correlation structural
similarity. ‘CorrDist’ represents L2 dis-
tance between the correlation matrices
of synthetic and real training datasets.
Mean and standard deviation values are
obtained from 10 repeated experiments.
Lower is better.

Model CorrDist

CTGAN 2.180±0.467

TVAE 2.739±0.796

CTAB-GAN 2.575±0.513

DistVAE(β = 0.5) 1.473±0.398

DistVAE(β = 1) 1.730±0.548

DistVAE(β = 5) 3.113±1.119

Statistical similarity. The evaluation results for joint and marginal distributional similarities are
presented in Table 2 and 3. In Table 2, DistVAE achieves the lowest CorrDist score, indicating its
ability to accurately preserve the correlation structure of the real training dataset in the generated
synthetic dataset. Furthermore, DistVAE surpasses other methods in Table 3 when it comes to
marginal distributional similarity, suggesting that it successfully captures the underlying distribution
of the observed dataset. Notably, reducing the value of β leads to an enhancement in the quality
of the synthetic dataset, as evidenced by improvements in the correlation structure and similarity
of the marginal distributions. Figure 1 provides visualizations of the estimated CDFs (6) for each
continuous (or ordinal) variable in the cabs dataset. For detailed statistical similarity scores and
additional visualizations of estimated CDFs for all tabular datasets, please refer to Appendix A.10.

Privacy preservability. The privacy preservability performances of synthesizers, as measured by
the DCR, are presented in Table 4. DistVAE performs best in preserving privacy, with the highest
DCR values compared to other methods. Notably, as the value of β increases in DistVAE, the DCR
between the real training and synthetic datasets (R&S) also increases. This indicates that the risk of
privacy leakage can be controlled by adjusting β, where higher values of β correspond to a higher
level of privacy protection. Moreover, DistVAE consistently achieves large DCR values for the
synthetic dataset (S) across all β values, indicating its ability to generate diverse synthetic samples.
On the other hand, CTAB-GAN generates duplicated records in the synthetic dataset, resulting in
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Table 3: Averaged marginal distributional similarity. K-S denotes the Kolmogorov-Smirnov statistic,
and 1-WD represents the 1-Wasserstein distance. Mean and standard deviation values are obtained
from 10 repeated experiments. Lower is better.

Continuous Discrete

Model K-S 1-WD K-S 1-WD

CTGAN 0.133±0.106 0.087±0.025 0.168±0.195 0.521±0.532

TVAE 0.196±0.135 0.220±0.099 0.385±0.144 1.681±1.668

CTAB-GAN 0.157±0.089 0.130±0.037 0.106±0.083 0.412±0.378

DistVAE(β = 0.5) 0.090±0.065 0.075±0.026 0.030±0.017 0.118±0.100

DistVAE(β = 1) 0.081±0.039 0.083±0.019 0.027±0.021 0.116±0.110

DistVAE(β = 5) 0.092±0.037 0.121±0.058 0.059±0.034 0.241±0.163

Figure 1: cabs dataset. Empirical (solid orange) and estimated (dashed blue) CDFs of continuous
and ordinal variables (Monte Carlo approximated with 5000 samples). We standardize covariates and
remove observations outside the 1% and 99% percentile range.

relatively lower DCR scores for the synthetic dataset (S). For detailed DCR scores for all tabular
datasets, please refer to Appendix A.10.

Table 4: Privacy preservability: Averaged distance to closest record (DCR) between real training
and synthetic datasets (R&S), between the same real training datasets (R), and between the same
synthetic datasets (S). Mean and standard deviation values are obtained from 10 repeated experiments.
The DCR (R) score represents the baseline diversity of datasets. Higher is better.

Model R&S R S

CTGAN 0.426±0.229 0.237±0.153 0.356±0.202

TVAE 0.470±0.181 0.237±0.153 0.278±0.195

CTAB-GAN 0.508±0.259 0.237±0.153 0.039±0.073

DistVAE(β = 0.5) 0.444±0.250 0.237±0.153 0.463±0.288

DistVAE(β = 1) 0.463±0.282 0.237±0.153 0.479±0.310

DistVAE(β = 5) 0.517±0.272 0.237±0.153 0.511±0.335

To evaluate the membership inference attack, we prepare one attack model per class. The attack
testing records comprise an equal number of real training and test records, distinguished by the labels
in and out, respectively. Note that the test records are not employed in constructing the attack models.
We employ gradient-boosting classifiers as the attack models, and for computational feasibility, we
limit the number of attack models to one (i.e., C = 1).

For the membership inference attack evaluation, we utilize accuracy and AUC (Area Under Curve)
as the evaluation metrics. Since the target labels (in/out) are balanced, and the task is a binary
classification problem, these metrics are appropriate. The results presented in Table 5 reveal that
both DistVAE and TVAE achieve nearly identical accuracy and AUC scores of 0.5. This indicates
that the attack models can not distinguish between members of the real training and test datasets.
Consequently, the membership inference attack is unsuccessful for both models. Therefore, DistVAE
effectively generates synthetic datasets while ensuring privacy against membership inference attacks.
A comprehensive assessment of membership inference attack performances for all tabular datasets
can be found in Appendix A.10.
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Table 5: Privacy preservability: Averaged membership inference attack performance. Mean and
standard deviation values are obtained from 10 repeated experiments.

Model Accuracy AUC

TVAE 0.495±0.019 0.495±0.019

DistVAE(β = 0.5) 0.500±0.003 0.500±0.003

Table 6: Privacy preservability: Averaged attribute disclosure performance with the F1 score. Mean
and standard deviation values are obtained from 10 repeated experiments. Lower is better.

Number of neighbors (k)

Model 1 10 100

CTGAN 0.262±0.091 0.282±0.087 0.275±0.087

TVAE 0.437±0.162 0.438±0.160 0.432±0.162

CTAB-GAN 0.257±0.123 0.258±0.114 0.261±0.111

DistVAE(β = 0.5) 0.328±0.088 0.328±0.076 0.310±0.072

DistVAE(β = 1) 0.307±0.073 0.313±0.068 0.297±0.066

DistVAE(β = 5) 0.265±0.105 0.253±0.103 0.232±0.101

We present the attribute disclosure performance results in Table 6. For each value of k, we observe
that as β increases, the F1 score of DistVAE decreases. Also, DistVAE achieves the smallest F1

score when k equals 10 and 100. Based on these results, we can conclude that DistVAE can generate
synthetic datasets with a low risk of attribute disclosure, and the level of privacy preservation is
controlled by β. Please refer to Appendix A.10 for a detailed evaluation of attribute disclosure
performance for all tabular datasets.

Quantile estimation. To investigate the quantile estimation performance, we also evaluate DistVAE
using the Vrate(α) metric [11]. The Vrate(α) is defined as 1

|Itest|
∑

i∈Itest
I(xi < Q̂α), where

α ∈ (0, 1), Itest is the set of indices for the test dataset, xi is the i-th sample in the test dataset,
and Q̂α is the empirical α-quantile of the synthetic data. Since Vrate(α) indicates the proportion of
compliance samples in the test dataset, the Vrate(α) score should be close to α.

Table 7: Averaged Vrate(α) and |α− Vrate(α)|.
α 0.1 0.3 0.5 0.7 0.9

Vrate(α) 0.204 0.373 0.533 0.725 0.908
|α− Vrate(α)| 0.104 0.083 0.04 0.032 0.008

The Vrate(α) evaluation results are presented in Table 7. Table 7 shows that the ratio of violated test
samples (|α− Vrate(α)|) decreases as α increases, indicating a better performance for estimating
larger quantiles. However, the ratio of violated test samples is relatively large for smaller α values,
which may be due to extremely skewed continuous variables, such as capital-gain and capital-
loss from adult dataset, that make the quantile estimation unstable.

5 Conclusion and Limitations

This paper introduces a novel distributional learning method of VAE, which aims to effectively
capture the underlying distribution of the observed dataset using a nonparametric approach. Our
proposed method involves directly estimating CDFs using the CRPS loss while maintaining the
mathematical derivation of the lower bound.

In our study, we confirm that the proposed decoder enhances the performance of generative models
for tabular data. However, this conclusion relies on the assumption of conditional independence
among the observed variables given the latent variable. When the dimension of the latent variable
is small, this assumption is prone to violation. Therefore, in cases where the size of the latent
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space is limited, the proposed nonparametric fitting of the decoder might not accurately represent
the underlying distribution. Particularly in the image domain, where adjacent pixel values exhibit
significant dependence, it remains uncertain whether our proposed model would lead to notable
improvements in image data generation with a low-dimensional latent space.

Nevertheless, classical image datasets, such as CIFAR-10 [36], often exhibit pixel value distributions
that deviate considerably from Gaussian, with the frequencies of edge values (0 and 255) dominating
more than other pixel values [16, 53]. Other image datasets, as presented in [48], demonstrate
multi-modality in pixel value distributions. These experimental findings suggest that leveraging
the capacity of distributional learning could be advantageous in approximating the ground-truth
distribution of image data when the latent variable effectively captures conditional independence
among the image pixels. Consequently, we expect that compromising biases arising from violating
conditional independence and marginally misspecified distributions may further enhance our results,
and we leave it for future research.

On the other hand, we consider two approaches to enhance the performance of quantile estimation.
Firstly, we plan to extend the parameterization of conditional quantile functions to a more flexible
monotonic regression model. Secondly, we intend to incorporate the Uniform Pessimistic Risk (UPR)
[26] into the VAE framework to handle lower quantile levels better. Furthermore, we are exploring the
expansion of DistVAE into a time-series distributional forecasting model by adopting the conditional
VAE framework [56]. This extension will enable the application of our method to time-series data,
opening new avenues for distributional forecasting.
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A Appendix

A.1 Derivation of ELBO

log p(x; θ, β)

= log

K∑
k=1

p(αk)

∫
p(x|z, αk; θ, β)p(z)dz

= log

K∑
k=1

p(αk)

∫
p(x|z, αk; θ, β)

p(z)

q(z|x;φ)
q(z|x;φ)dz

≥
K∑

k=1

p(αk)

∫
q(z|x;φ) log

(
p(x|z, αk; θ, β)

p(z)

q(z|x;φ)

)
dz

=
1

K

K∑
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Eq(z|x;φ)[log p(x|z, αk; θ, β)]−KL(q(z|x;φ)‖p(z))

=
1

K

K∑
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Eq(z|x;φ)

∑
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log p(xj |z, αk; θj , β) +
∑
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log p(xj |z; θj , β)

−KL(q(z|x;φ)‖p(z))
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β
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= Eq(z|x;φ)

− 1

β
·
∑
j∈IC

1

K

K∑
k=1

ραk

(
xj −Dj(αk|z, θj)

)+
p

K

K∑
k=1

logαk(1− αk)− p · log β

+Eq(z|x;φ)

∑
j∈ID

Tj∑
l=1

I(xj = l) · log πl(z; θj)

−KL(q(z|x;φ)‖p(z))

= − 1

β

(
Eq(z|x;φ)

∑
j∈IC

1

K

K∑
k=1

ραk

(
xj −Dj(αk|z, θj)

)− β
p

K

K∑
k=1

logαk(1− αk) + βp · log β

−β · Eq(z|x;φ)

∑
j∈ID

Tj∑
l=1

I(xj = l) · log πl(z; θj)

+ β · KL(q(z|x;φ)‖p(z))

)
,

by Jensen’s inequality.
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A.2 Proof of Theorem 1

Proof.

Ep(x)Eq(z|x;φ)

[
1
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xj −Dj(αk|z, θj)

)]
=

1

K

K∑
k=1

h(αk)

=

K∑
k=1

h(αk) · (αk − αk−1),
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[
ραk

(
xj −Dj(αk|z, θj)

)]
is denoted as h(αk).

Since αk ∈ [αk−1, αk] and h(·) : [0, 1] 7→ R is a continuous function, for j ∈ IC ,
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,

by the definition of the Riemann integral and the Fubini-Tonelli theorem. The proof is complete.

A.3 Proof of Theorem 2

Proof.
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The proof is complete.
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A.4 Proof of Theorem 3

Proof.
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 = KL

p(x)

∥∥∥∥∥
∫ p∏

j=1

qj(xj |z;φ)p(z)dz


= KL

(
p(x)

∥∥∥∥∥
∫

q(x|z;φ)p(z)dz

)

= KL

(
p(x)

∥∥∥∥∥
∫

p(x)q(z|x;φ)
q(z;φ)

p(z)dz

)

= KL

(
p(x)

∥∥∥∥∥p(x)
∫

p(z)q(z|x;φ)
q(z;φ)

dz

)

= Ep(x)

[
− log

∫
p(z)q(z|x;φ)

q(z;φ)
dz

]
≤ Ep(x)

[∫
q(z|x;φ) log q(z;φ)

p(z)
dz

]
=

∫∫
p(x)q(z|x;φ) log q(z;φ)

p(z)
dzdx

=

∫∫
p(x)q(z|x;φ) log q(z;φ)

p(z)
dxdz

=

∫
q(z;φ) log

q(z;φ)

p(z)
dz

= KL(q(z;φ)‖p(z))
< ε,

by Jensen’s inequality, Fubini-Tonelli theorem, and the assumptions. The proof is complete.

A.5 Closed Form Loss

2 ·
∫ 1

0

ρα

(
xj −Dj(α, z, θj)

)
dα = (2α̃j − 1)xj + (1− 2α̃j)γ

(j)(z)

+

M∑
m=1

b(j)m (z)

(
1− d3m

3
− dm −max(α̃j , dm)2 + 2max(α̃j , dm)dm

)
,

where Dj(α̃j , z; θj) = xj , α̃j =
xj−γ(j)(z)+

∑m0
m=0 b(j)m (z)dm∑m0

m=0 b
(j)
m (z)

, and Dj(dm0
, z; θj) ≤ xj ≤

Dj(dm0+1, z; θj).
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A.6 Discretization of Estimated CDF

To ensure appropriate discretization of the estimated CDF for ordinal variables, we propose a post-ad-
hoc discretization step [53]. We focus on the case where p = 1 and q = 0 for brevity. We denote the
set of observed possible values for the ordinal variable as x(1), x(2), · · · , x(m). The discretization
algorithm for the estimated CDF is presented in Algorithm 1, and we provide an example of the
discretization algorithm’s outcome in Figure 2.

Algorithm 1 Discretization of Estimated CDF

Input {x(1), x(2), · · · , x(m)}, Estimated CDF F̂ (·; θ)
Output Discretized CDF F̂ ∗(·; θ)
(1) Compute F̂ (x(i) − 0.5; θ) and F̂ (x(i) + 0.5; θ) for i = 1, · · · ,m.
(2) Discretization: For i = 1, · · · ,m,

F̂ ∗(x(i); θ) := F̂ ∗(x(i−1); θ)

+ F̂ (x(i) + 0.5; θ)− F̂ (x(i) − 0.5; θ),

where F̂ ∗(x(0); θ) := 0.
(3) Ensure monotonicity: For i = 1, · · · ,m− 1, if F̂ ∗(x(i); θ) > F̂ ∗(x(i+1); θ),

F̂ ∗(x(i+1); θ) := F̂ ∗(x(i); θ).

Figure 2: Discretized CDF for ordinal variable educational-num of adult dataset. ‘estimate’
indicates F̂ (·; θ), ‘calibration’ indicates F̂ ∗(·; θ), and ‘empirical’ indicates the empirical CDF of the
observed dataset.
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A.7 Membership Inference Attack

[47] propose the customized membership inference attack method of [54] to attack the GAN-based
synthesizer. Similarly, we propose the customized membership inference attack method of [54] to
attack the VAE-based synthesizer.
Assumption 3 ([54]). In the membership inference attack, the attacker attacks the target model
under the following assumptions:

(A1) The attacker is only allowed for black-box access, where the attacker can only supply inputs
to the model and receive the model’s output(s).

(A2) The attacker can obtain as many outputs as they want from a target model to attack.

(A3) The real and synthetic datasets should not have common records.

(A4) The attacker knows the algorithm and architecture of the target model.

Denote D∗
train and D∗

test as the real training and test datasets. Under Assumption 3, the overall steps
of the membership inference attack are outlined below:

1. Generate shadow training and test datasets D(i)
train, D

(i)
test, i = 1, · · · , C from M∗ by (A1),

where M∗ is the model attacker wants to attack. By (A2), the attacker is allowed to obtain
shadow datasets such as |D(i)

train| = |D∗
train| and D

(i)
train ∩D

(j)
test = ∅, for i = 1, · · · , C.

Under (A3), D(i)
train ∩D∗

train = ∅, for i = 1, · · · , C.
2. Train shadow models M1, · · · ,MC under (A4), i.e., each shadow model is trained similarly

to the target model M∗.
3. For i = 1, · · · , C,

(a) Obtain representation vectors z from the encoder of Mi with the input of D(i)
train. Then,

attacking training records are (y, z, in).

(b) Obtain representation vectors z from the encoder of Mi with the input of D(i)
test. Then,

attacking training records are (y, z, out).
where y is the labels of shadow dataset records. And we assume that y consists of the MLu
classification target.

4. Merge all attack training records, (y, z, in/out).
5. For each class of y, train attack model which is a binary classification model which classifies

in/out based on the representation vectors z.
6. Now it is ready to attack.

Note that we use the representation vector of VAE instead of the output of the GAN discriminator
[47].
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A.8 Dataset Descriptions

Websites

• covertype: https://www.kaggle.com/datasets/uciml/
forest-cover-type-dataset

• credit: https://www.kaggle.com/c/home-credit-default-risk
• loan: https://www.kaggle.com/datasets/teertha/personal-loan-modeling
• adult: https://www.kaggle.com/datasets/uciml/adult-census-income
• cabs: https://www.kaggle.com/datasets/arashnic/

taxi-pricing-with-mobility-analytics?select=test.csv
• kings: https://www.kaggle.com/datasets/harlfoxem/housesalesprediction

Table 8: Description of datasets. #C represents the number of continuous and ordinal variables. #D
denotes the number of discrete variables.

Dataset Train/Test Split Regression Target Classification Target #C #D

covertype 45k/5k Elevation Cover_Type 10 1
credit 45k/5k AMT_CREDIT TARGET 10 9
loan 4k/1k Age Personal Loan 5 6
adult 40k/5k age income 5 9
cabs 40k/1k Trip_Distance Surge_Pricing_Type 6 7
kings 20k/1k long condition 11 7
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A.9 Experimental Settings

We run all experiments using Geforce RTX 3090 GPU, and our experimental codes are all available
with pytorch.

Table 9: Hyper-parameter settings for tabular dataset experiments.

Model epochs batch size learning rate β (or decoder std range) d M

CTGAN 300 500 0.0002 - 2 -
TVAE 200 256 0.005 [0.1, 1] 2 -
CTAB-GAN 150 500 0.0002 - 2 -

DistVAE 100 256 0.001 0.5 2 10

Table 10: The number of model parameters for tabular dataset experiments.

Model covtype credit adult loan cabs kings

CTGAN 20k 32k 52k 13k 30k 51k
TVAE 10k 12k 13k 6k 10k 10k
CTAB-GAN 12k 13k 14k 5k 12k 15k

DistVAE 10k 12k 13k 6k 10k 16k

Table 11: Classifier and regressor used to evaluate synthetic data quality. The names of all parameters
used in the description are consistent with those defined in corresponding packages.

Tasks Model Description

Regression

Linear Regression Package: statsmodels.api.sm.OLS,
setting: without intercept, defaulted values

Random Forest Package: sklearn.ensemble.RandomForestRegressor,
setting: random_state=0, defaulted values

Gradient Boosting Package: sklearn.ensemble.GradientBoostingRegressor,
setting: random_state=0, defaulted values

Classification

Logistic Regression Package: sklearn.linear_model.LogisticRegression,
setting: multi_class=’ovr’, fit_intercept=False, defaulted values

Random Forest Package: sklearn.ensemble.RandomForestClassifier,
setting: random_state=0, defaulted values

Gradient Boosting Package: sklearn.ensemble.GradientBoostingClassifier,
setting: random_state=0, defaulted values
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A.10 Detailed Experimental Results

(a) covtype

(b) credit

(c) loan

Figure 3: Empirical and estimated CDFs of continuous and count variables (Monte Carlo approxi-
mated with 5000 samples). We standardize covariates and remove observations outside the 1% and
99% percentile range.
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(a) adult

(b) cabs

(c) kings

Figure 4: Empirical and estimated CDFs of continuous and count variables (Monte Carlo approxi-
mated with 5000 samples). We standardize covariates and remove observations outside the 1% and
99% percentile range.
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Table 12: MLu metrics (MARE, F1). Mean and standard deviation values are obtained from 10
repeated experiments. ↑ denotes higher is better and ↓ denotes lower is better.

(a)

Dataset covertype credit loan

Model MARE ↓ F1 ↑ MARE ↓ F1 ↑ MARE ↓ F1 ↑
Baseline 0.035 0.718 0.064 0.927 0.020 0.948
CTGAN 0.058±0.007 0.227±0.030 0.593±0.150 0.914±0.006 0.258±0.020 0.842±0.109

TVAE 0.079±0.007 0.504±0.032 0.260±0.135 0.091±0.286 0.124±0.033 0.785±0.288

CTAB-GAN 0.065±0.004 0.493±0.027 0.887±0.351 0.913±0.005 0.247±0.019 0.887±0.026

DistVAE(β = 0.5) 0.044±0.002 0.605±0.006 0.763±0.068 0.926±0.001 0.249±0.007 0.914±0.009

DistVAE(β = 1) 0.045±0.001 0.557±0.007 0.774±0.035 0.926±0.000 0.249±0.005 0.897±0.002

DistVAE(β = 5) 0.063±0.001 0.443±0.018 0.870±0.022 0.904±0.010 0.249±0.005 0.893±0.005

(b)

Dataset adult cabs kings

Model MARE ↓ F1 ↑ MARE ↓ F1 ↑ MARE ↓ F1 ↑
Baseline 0.216 0.854 0.565 0.743 0.001 0.695
CTGAN 0.297±0.030 0.796±0.022 0.721±0.046 0.674±0.024 0.001±0.000 0.579±0.035

TVAE 0.238±0.006 0.809±0.016 0.642±0.035 0.689±0.031 0.010±0.005 0.687±0.041

CTAB-GAN 0.321±0.036 0.730±0.069 0.894±0.116 0.582±0.047 0.001±0.000 0.608±0.022

DistVAE(β = 0.5) 0.232±0.004 0.825±0.009 0.803±0.129 0.707±0.010 0.001±0.000 0.640±0.002

DistVAE(β = 1) 0.234±0.006 0.822±0.003 0.760±0.062 0.725±0.004 0.001±0.000 0.644±0.003

DistVAE(β = 5) 0.327±0.008 0.751±0.010 0.839±0.042 0.447±0.009 0.002±0.000 0.637±0.004

Figure 5: Machine learning utilities for compared models and real tabular datasets.

For a detailed comparison of the models and their performance, we present the paired (MARE, F1)
scores for all tabular datasets in Figure 5. A better score, indicating a superior performance in terms
of MLu, is represented by a dot located in the upper left corner. Notably, Figure 5 consistently
demonstrates that DistVAE achieves the best or at least competitive MLu across all tabular datasets.
TVAE exhibits a notably low F1 score in the credit dataset because it fails to handle the highly
imbalanced discrete target variable. This comparative analysis highlights the strong MLu performance
of DistVAE and the specific limitations of TVAE in certain scenarios.
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Table 13: Correlation structure similarity. ‘CorrDist’ represents L2 distance between the correlation
matrix of synthetic and real datasets. Mean and standard deviation values are obtained from 10
repeated experiments. Lower is better.

Dataset covertype credit loan adult cabs kings

Model CorrDist CorrDist CorrDist CorrDist CorrDist CorrDist

CTGAN 2.167±0.419 2.323±0.362 2.282±0.177 1.788±0.217 1.679±0.129 2.839±0.246

TVAE 1.969±0.146 4.021±0.451 2.404±0.408 2.231±0.269 3.136±0.686 2.665±0.296

CTAB-GAN 2.351±0.185 2.696±0.275 2.073±0.110 2.387±0.470 2.532±0.225 3.411±0.399

DistVAE(β = 0.5) 1.179±0.090 2.072±0.162 1.654±0.050 0.830±0.078 1.481±0.071 1.559±0.135

DistVAE(β = 1) 2.359±0.018 2.229±0.102 1.910±0.019 0.746±0.042 1.495±0.047 1.621±0.149

DistVAE(β = 5) 2.946±0.007 3.161±0.006 2.113±0.015 3.186±0.007 1.930±0.004 5.339±0.006
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Table 14: Marginal statistical similarity. K-S denotes the KolmogorovSmirnov statistic and 1-WD
represents the 1-Wasserstein distance. Mean and standard deviation values are obtained from 10
repeated experiments. Lower is better.

(a) Continuous

Dataset covertype credit loan

Model K-S 1-WD K-S 1-WD K-S 1-WD

CTGAN 0.080±0.011 0.108±0.014 0.132±0.017 0.088±0.013 0.112±0.055 0.061±0.016

TVAE 0.088±0.008 0.156±0.018 0.156±0.036 0.200±0.035 0.162±0.024 0.201±0.024

CTAB-GAN 0.073±0.011 0.096±0.014 0.140±0.021 0.111±0.013 0.181±0.070 0.153±0.023

DistVAE(β = 0.5) 0.032±0.003 0.041±0.005 0.088±0.014 0.089±0.004 0.060±0.010 0.048±0.003

DistVAE(β = 1) 0.049±0.001 0.079±0.001 0.084±0.008 0.093±0.002 0.056±0.003 0.054±0.002

DistVAE(β = 5) 0.064±0.001 0.112±0.000 0.146±0.003 0.113±0.001 0.057±0.003 0.056±0.002

(b) Continuous

Dataset adult cabs kings

Model K-S 1-WD K-S 1-WD K-S 1-WD

CTGAN 0.323±0.126 0.086±0.017 0.045±0.007 0.060±0.011 0.109±0.012 0.116±0.016

TVAE 0.477±0.053 0.414±0.070 0.098±0.008 0.139±0.023 0.195±0.018 0.213±0.046

CTAB-GAN 0.275±0.122 0.178±0.053 0.086±0.008 0.118±0.015 0.188±0.035 0.128±0.019

DistVAE(β = 0.5) 0.209±0.064 0.114±0.009 0.044±0.003 0.067±0.003 0.110±0.008 0.089±0.003

DistVAE(β = 1) 0.138±0.041 0.111±0.007 0.046±0.002 0.068±0.003 0.115±0.007 0.093±0.002

DistVAE(β = 5) 0.115±0.005 0.234±0.002 0.052±0.001 0.074±0.002 0.120±0.002 0.137±0.002

(c) Discrete

Dataset covertype credit loan

Model K-S 1-WD K-S 1-WD K-S 1-WD

CTGAN 0.591±0.003 1.629±0.011 0.061±0.008 0.147±0.024 0.070±0.010 0.076±0.013

TVAE 0.238±0.042 0.606±0.033 0.583±0.045 1.566±0.116 0.193±0.028 0.221±0.043

CTAB-GAN 0.052±0.028 0.180±0.126 0.034±0.006 0.076±0.018 0.039±0.011 0.046±0.013

DistVAE(β = 0.5) 0.023±0.010 0.073±0.046 0.020±0.003 0.046±0.006 0.019±0.005 0.027±0.008

DistVAE(β = 1) 0.011±0.005 0.036±0.025 0.018±0.001 0.042±0.003 0.011±0.002 0.015±0.005

DistVAE(β = 5) 0.109±0.003 0.379±0.014 0.027±0.001 0.068±0.004 0.009±0.002 0.013±0.005

(d) Discrete

Dataset adult cabs kings

Model K-S 1-WD K-S 1-WD K-S 1-WD

CTGAN 0.065±0.008 0.463±0.051 0.069±0.016 0.238±0.036 0.140±0.018 0.529±0.064

TVAE 0.479±0.048 5.228±0.273 0.411±0.088 1.202±0.212 0.405±0.034 1.262±0.099

CTAB-GAN 0.169±0.018 0.745±0.294 0.086±0.013 0.443±0.074 0.255±0.027 0.979±0.107

DistVAE(β = 0.5) 0.037±0.004 0.248±0.026 0.060±0.017 0.241±0.084 0.022±0.004 0.071±0.012

DistVAE(β = 1) 0.031±0.004 0.239±0.019 0.070±0.003 0.292±0.010 0.023±0.003 0.073±0.008

DistVAE(β = 5) 0.070±0.002 0.457±0.010 0.083±0.003 0.326±0.011 0.059±0.002 0.204±0.011
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Table 15: Privacy preservability: Distance to closest record (DCR) between real training and synthetic
datasets (R&S), between the same real training datasets (R), and between the same synthetic datasets
(S). Mean and standard deviation values are obtained from 10 repeated experiments. Higher is better.

(a)

Dataset covertype

Model R&S R S

CTGAN 0.715±0.026 0.329±0.000 0.514±0.094

TVAE 0.676±0.031 0.329±0.000 0.482±0.025

CTAB-GAN 0.892±0.031 0.329±0.000 0.011±0.005

DistVAE(β = 0.5) 0.765±0.008 0.329±0.000 0.819±0.010

DistVAE(β = 1) 0.878±0.008 0.329±0.000 0.906±0.009

DistVAE(β = 5) 0.907±0.012 0.329±0.000 0.939±0.008

(b)

Dataset credit

Model R&S R S

CTGAN 0.624±0.033 0.452±0.000 0.592±0.061

TVAE 0.627±0.118 0.452±0.000 0.423±0.212

CTAB-GAN 0.715±0.025 0.452±0.000 0.014±0.006

DistVAE(β = 0.5) 0.692±0.012 0.452±0.000 0.742±0.012

DistVAE(β = 1) 0.700±0.006 0.452±0.000 0.750±0.005

DistVAE(β = 5) 0.718±0.007 0.452±0.000 0.757±0.007

(c)

Dataset loan

Model R&S R S

CTGAN 0.249±0.017 0.109±0.000 0.243±0.024

TVAE 0.298±0.057 0.109±0.000 0.154±0.026

CTAB-GAN 0.272±0.024 0.109±0.000 0.076±0.051

DistVAE(β = 0.5) 0.244±0.025 0.109±0.000 0.245±0.020

DistVAE(β = 1) 0.238±0.019 0.109±0.000 0.241±0.023

DistVAE(β = 5) 0.243±0.015 0.109±0.000 0.240±0.025

(d)

Dataset adult

Model R&S R S

CTGAN 0.063±0.017 0.000±0.000 0.000±0.000

TVAE 0.277±0.039 0.000±0.000 0.000±0.000

CTAB-GAN 0.152±0.064 0.000±0.000 0.000±0.000

DistVAE(β = 0.5) 0.060±0.040 0.000±0.000 0.005±0.001

DistVAE(β = 1) 0.048±0.027 0.000±0.000 0.003±0.000

DistVAE(β = 5) 0.177±0.002 0.000±0.000 0.001±0.000

(e)

Dataset cabs

Model R&S R S

CTGAN 0.353±0.006 0.332±0.000 0.341±0.010

TVAE 0.339±0.008 0.332±0.000 0.195±0.015

CTAB-GAN 0.423±0.025 0.332±0.000 0.012±0.023

DistVAE(β = 0.5) 0.364±0.004 0.332±0.000 0.368±0.005

DistVAE(β = 1) 0.364±0.004 0.332±0.000 0.367±0.004

DistVAE(β = 5) 0.368±0.003 0.332±0.000 0.365±0.005

(f)

Dataset kings

Model R&S R S

CTGAN 0.550±0.016 0.199±0.000 0.447±0.030

TVAE 0.603±0.091 0.199±0.000 0.414±0.053

CTAB-GAN 0.596±0.030 0.199±0.000 0.122±0.135

DistVAE(β = 0.5) 0.540±0.009 0.199±0.000 0.600±0.013

DistVAE(β = 1) 0.552±0.008 0.199±0.000 0.605±0.014

DistVAE(β = 5) 0.692±0.013 0.199±0.000 0.763±0.015

Table 16: Privacy preservability: Membership inference attack performance. Mean and standard
deviation values are obtained from 10 repeated experiments.

(a)

Dataset covertype

Model Accuracy AUC

TVAE 0.499±0.007 0.499±0.007

DistVAE(β = 0.5) 0.500±0.003 0.500±0.003

(b)

Dataset credit

Model Accuracy AUC

TVAE 0.500±0.001 0.500±0.001

DistVAE(β = 0.5) 0.500±0.001 0.500±0.001

(c)

Dataset loan

Model Accuracy AUC

TVAE 0.497±0.015 0.497±0.015

DistVAE(β = 0.5) 0.502±0.006 0.502±0.006

(d)

Dataset adult

Model Accuracy AUC

TVAE 0.493±0.017 0.493±0.017

DistVAE(β = 0.5) 0.500±0.000 0.500±0.000

(e)

Dataset cabs

Model Accuracy AUC

TVAE 0.480±0.033 0.480±0.033

DistVAE(β = 0.5) 0.498±0.003 0.498±0.003

(f)

Dataset kings

Model Accuracy AUC

TVAE 0.507±0.025 0.507±0.025

DistVAE(β = 0.5) 0.502±0.004 0.502±0.004
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Table 17: Privacy preservability: Attribute disclosure performance with F1 score. Mean and standard
deviation values are obtained from 10 repeated experiments. Lower is better.

(a) covtype

Number of neighbors (k)

Model 1 10 100

CTGAN 0.161±0.030 0.175±0.029 0.155±0.041

TVAE 0.356±0.086 0.357±0.091 0.349±0.094

CTAB-GAN 0.200±0.035 0.225±0.042 0.238±0.033

DistVAE(β = 0.5) 0.308±0.025 0.338±0.037 0.313±0.035

DistVAE(β = 1) 0.264±0.024 0.294±0.036 0.282±0.029

DistVAE(β = 5) 0.141±0.019 0.135±0.013 0.115±0.011

(b) credit

Number of neighbors (k)

Model 1 10 100

CTGAN 0.319±0.009 0.330±0.009 0.323±0.011

TVAE 0.615±0.147 0.618±0.143 0.614±0.145

CTAB-GAN 0.322±0.007 0.332±0.012 0.331±0.010

DistVAE(β = 0.5) 0.339±0.013 0.337±0.011 0.315±0.012

DistVAE(β = 1) 0.339±0.010 0.324±0.005 0.301±0.004

DistVAE(β = 5) 0.332±0.007 0.317±0.007 0.293±0.007

(c) loan

Number of neighbors (k)

Model 1 10 100

CTGAN 0.439±0.027 0.447±0.022 0.426±0.033

TVAE 0.611±0.153 0.602±0.152 0.596±0.157

CTAB-GAN 0.475±0.048 0.443±0.027 0.435±0.030

DistVAE(β = 0.5) 0.505±0.043 0.465±0.038 0.439±0.032

DistVAE(β = 1) 0.449±0.038 0.440±0.035 0.423±0.031

DistVAE(β = 5) 0.458±0.013 0.441±0.035 0.416±0.031

(d) adult

Number of neighbors (k)

Model 1 10 100

CTGAN 0.234±0.012 0.255±0.021 0.261±0.023

TVAE 0.318±0.081 0.318±0.080 0.307±0.080

CTAB-GAN 0.199±0.032 0.202±0.032 0.205±0.031

DistVAE(β = 0.5) 0.270±0.018 0.280±0.021 0.268±0.015

DistVAE(β = 1) 0.264±0.006 0.276±0.005 0.260±0.007

DistVAE(β = 5) 0.205±0.005 0.187±0.003 0.166±0.002

(e) cabs

Number of neighbors (k)

Model 1 10 100

CTGAN 0.238±0.009 0.246±0.006 0.231±0.010

TVAE 0.385±0.079 0.383±0.079 0.381±0.081

CTAB-GAN 0.235±0.010 0.236±0.008 0.237±0.011

DistVAE(β = 0.5) 0.251±0.010 0.241±0.007 0.225±0.005

DistVAE(β = 1) 0.246±0.010 0.240±0.006 0.227±0.008

DistVAE(β = 5) 0.238±0.010 0.220±0.009 0.199±0.005

(f) kings

Number of neighbors (k)

Model 1 10 100

CTGAN 0.200±0.009 0.257±0.032 0.269±0.036

TVAE 0.338±0.045 0.349±0.046 0.345±0.044

CTAB-GAN 0.111±0.068 0.111±0.088 0.123±0.114

DistVAE(β = 0.5) 0.293±0.019 0.310±0.041 0.301±0.050

DistVAE(β = 1) 0.281±0.016 0.306±0.039 0.290±0.041

DistVAE(β = 5) 0.215±0.010 0.221±0.036 0.205±0.038
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