
Supplementary Materials
PERFOGRAPH: A Numerical Aware Program Graph

Representation for Performance Optimization and
Program Analysis

Anonymous Author(s)
Affiliation
Address
email

1 Insights of Digit Embedding1

We investigated the effectiveness of Digit Embedding. Figure 1 shows the 2-d embeddings of integer2

numbers in the range [10, 60] and [100090-100140]. We take two ranges of numbers to better3

illustrate the results. We can see that the numbers in the (100090-100140) range are clustered together.4

The numbers with less difference, like (100133, 100134), (100127, 100128), and (100136, 100137),5

are close to each other. Also, the numbers with greater differences, like (100126, 100135) and6

(100196, 100133), are far from each other in the embedding space. A similar analysis is also true for7

the (10, 60) range. We can see that the numbers 21, 22, 28, and 29 are close to each other as they have8

small differences but numbers 11 and 59 are far from each other as they have greater differences.9

39

37

61

20

48

20

16

34

31

17
19

11

28

55

30

21

53

24

29

36

57

51

42

59

20

55

3131

40

33

37

57

22

46

22

39

40

52

43

55
59

42

5726

56

3535

42

19

100099

100134

100129

100101

100130

100111

100129

100136

100140
100114

100120100099100099

100134

100100

100128

100133

100139
100131

100136

100091

100124

100135

100121

100137

100135

100127

100122

100119
100112

100109

100096

100090

100115

100107

100109 100111

100092

100116

100126

100134

100123

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Figure 1: Embedding of integer numbers in the range [10-60] and [100090-100140]

Supplementary Materials for PERFOGRAPH: A Numerical Aware Program Graph Representation for Perfor-
mance Optimization and Program Analysis

We investigated with more ranges. Figure 2 shows the 2-d embedding of integer numbers in the range10

[1, 50] and [50000-500090]. Here we can also see that numbers with smaller differences like (50034,11

50035, 50038, 50039), (13, 17), and (19, 21) are also closer to each other in the embedding space.12

Whereas numbers like (50011, 50028), (50017, 50029), and (2, 17) are far from each other in the13

embedding space as their differences are also greater.14

10

23 732

1

30
41

50

2935

26

39

20

32

27 2

3

30
24

9

5

21 19

2

47
5

2935

27

17
42

3

45

47 46

13

38

4

8

28

26

30
11 41

36

22

26

41

27

23

50031 50046

50014

50028

50046

50010
50042

50036

50048

50039

5002850034
50035

50002
50018

50036
50026

50037

50017

50038

50034
5002750012

50048

50046
50049

50011
50006

50010 50029

50007

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2: Embedding of integer numbers in the range [1-50] and [50000-500090]

Figure 3 shows the 2-d embedding of decimal numbers in the range [1.0, 10.0] and [20.0-31.0]. We15

can see that our embedding works similarly as the numbers with smaller differences like (2.236,16

4.529), (1.647, 5.339), (23.0129, 23.3484, 24.5235, 25.8604) are close to each other in the embedding17

space. And the numbers with larger differences like (1.6478, 30.7010), (5.339, 30.5113) are far from18

each other in the embedding space.19

5.339718009

8.49665008

2.130711118

4.529307433

8.528725963

8.360587996

5.043729681

2.236234794

6.686630701

2.101669877

5.657819802

1.372289009

6.350697529

5.4358885658.231824338

7.172329163

1.647846652

5.247150716

9.72319781

27.12962884

30.70106066
23.34842784

25.86049666

25.04396585

22.59457717

29.0795941

29.86852334

22.96897113

23.01290071

28.6339464424.30990178

22.27039909

30.06718904

21.11505339

21.73053816

24.52358636

26.96887425

30.52680069

30.51132845

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Figure 3: Embedding of decimal numbers in the range [1.0, 10.0] and [20.0-31.0]

2

So, the above examples clearly demonstrate the effectiveness of Digit Embedding for generating the20

embedding of both integer and decimal numbers.21

2 Model’s architecture22

Table 1: PERFOGRAPH model architecture

Parameter Detail

Convolution Type RGCN
Conv Layers 2

Aggregation Function Sum
Activation Function Relu
Max Token Lenght 40
Embedding Dim 120

Padding True
Hidden Dim 64

Output Layer Size num_class
Optimizer Adam

Learning rate 0.01 (default)

Table 1 shows the architecture and the hyper-23

parameters of our PERFOGRAPH model. For24

each one of the downstream tasks, we have two25

or more classes. While training the PERFO-26

GRAPH model, the class with the higher proba-27

bility score is chosen as the predicted class and28

is compared against the actual class.29

Figure 4 shows the error rate (loss value) of30

PERFOGRAPH model per epoch for the device31

mapping task. As shown, the model can learn32

from our PERFOGRAPH graph as it is able to33

decrease the error rate per epoch.34

The source code of PERFOGRAPH for35

this task is available at the following link:36

https://anonymous.4open.science/r/37

perfograph_devmap-532F/38

Figure 4: Error rate per epoch for AMD (left) and NVIDIA (right) datasets

3 Ablation Study39

We further analyzed how each one of the enhancements in PERFOGRAPH affects the results. To this40

end, we performed an ablation study on the Device Mapping task, and training our GNN models on41

variations of PERFOGRAPH.42

3.1 Results without Composite data type nodes43

First, we remove the representation of composite data types in our PERFOGRAPH representation.44

Please note that in this setup, the Digit Embedding is still applied. Table 2 and 3 shows the results. We45

can see that when the representation does not support composite data types, the error rate increases to46

13% in AMD and 15% in NVIDIA dataset. This clearly indicates that having composite-type nodes47

in the representation helped the model to learn the code features more accurately.48

3

https://anonymous.4open.science/r/perfograph_devmap-532F/
https://anonymous.4open.science/r/perfograph_devmap-532F/
https://anonymous.4open.science/r/perfograph_devmap-532F/

3.2 Results without Digit Embedding49

We remove Digit Embedding from our pipeline for the second experiment and keep the composite50

nodes. Table 2 and 3 shows the results. We can see that unlike having composite-type nodes, removing51

digit embedding does not hurt the error rate that much for the task of device mapping. However, we52

can still see a small increase (1.1%) in the error rate for AMD dataset. For the NVIDIA dataset, the53

error rate increases from 10.0 to 10.6%.54

Table 2: Summarizing PERFOGRAPH results for AMD device.
Approach Error (%)

DeepTune Cummins et al. [2017] 28.1
inst2vec Ben-Nun et al. [2018] 19.7

PROGRAML Cummins et al. [2020] 13.4
PERFOGRAPH (without composite data type nodes) 13.0

PERFOGRAPH (without digit embedding) 7.1
PERFOGRAPH (composite data type nodes + digit embedding) 6.0

Table 3: Summarizing PERFOGRAPH results for NVIDIA device.
Approach Error (%)

DeepTune Cummins et al. [2017] 39.0
inst2vec Ben-Nun et al. [2018] 21.5

PROGRAML Cummins et al. [2020] 20.0
PERFOGRAPH (without composite data type nodes) 15.0

PERFOGRAPH (without digit embedding) 10.6
PERFOGRAPH (composite data type nodes + digit embedding) 10.0

Finally, we can conclude that both components in our representation helped the model learn the code55

features better to some extent. However, composite data type nodes in the embedding helped our56

model more than Digit Embedding for the task of device mapping. The reason can be that there are57

not many numbers in the dataset. However, in tasks where there are many numbers, Digit Embedding58

can play an important role.59

4 Details of Datasets:60

4.1 Device Mapping61

For this task, we used the Device Mapping Dataset. It contains around 256 OpenCL kernels. Around62

671 IR files are extracted from these kernels. There are two types of devices: AMD and NVIDIA. For63

each of the devices, we have two classes: CPU and GPU indicating whether the kernel performs well64

in CPU or GPU. For AMD, we have 276 kernels for GPU and 395 kernels for CPU. For NVIDIA, we65

have 385 kernels for GPU and 286 kernels for CPU. We use 80% of the IR files for training, 10% for66

validation, and 10% for testing. For the AMD experiment, we used 36 IR files from CPU and 31 IR67

files from GPU for testing. For the NVIDIA experiment, we used 30 IR files from CPU and 37 IR68

files from GPU for testing.69

4.2 Parallelism Discovery70

For Parallelism Discovery, the OMP_Serial Dataset is used. The dataset contains 5731 compilable71

source c files. We compile these source files using Clang to create IR files. Also, 58 transformation72

flags from LLVM are applied to increase the dataset. The list of flags is provided in table 4 There73

are around 30k files in the training set. There are two classes: Parallel and Non-Parallel. The loops74

with the OpenMP pragma "#pragma omp parallel for" are considered as Parallel loops and the loops75

without this pragma are considered as Non-Parallel loops. To ensure the correctness of data labels,76

three existing parallelism suggestion tools: Pluto, autoPar, and DiscoPoP, are used to create three77

4

Table 4: List of the transformation flags
-adce
-always-inline
-argpromotion
-bb-vectorize
-block-placement
-break-crit-edges
-dce
-deadargelim
-deadtypeelim
-die

-dse
-aggressive-instcombine
-lcssa
-licm
-loop-deletion
-loop-extract
-loop-extract-single
-loop-reduce
-loop-rotate
-loop-simplify

-loop-unroll
-loop-unroll-and-jam
-loop-unswitch
-lower-global-dtors
-loweratomic
-lowerinvoke
-lowerswitch
-adce -always-inline
-argpromotion -always-inline
-bb-vectorize -argpromotion

-block-placement -break-crit-edges
-break-crit-edges -argpromotion
-break-crit-edges -dce
-dce -deadargelim
-deadargelim -deadtypeelim
-deadtypeelim -die
-die -dse
-aggressive-instcombine -lcssa
-lcssa -licm
-licm -loop-deletion

-loop-deletion -loop-extract
-loop-extract -loop-extract-single
-loop-extract-single -loop-reduce
-loop-reduce -loop-rotate
-loop-rotate -loop-simplify
-loop-simplify -loop-unroll
-loop-unroll -loop-unroll-and-jam
-loop-unroll-and-jam -loop-unswitch
-loop-unswitch -lower-global-dtors
-lower-global-dtors -loweratomic

-loweratomic -lowerinvoke
-lowerinvoke -lowerswitch
-lowerswitch -dse
-die -dse
-break-crit-edges -dce
-break-crit-edges -lower-global-dtors
-dce -lowerinvoke
-deadargelim -loweratomic

testing subsets. So, all of the testing data are checked by at least one of the tools. The performance of78

PerfoGraph is reported for each of the testing subsets.79

4.3 Parallel Pattern Detection80

The OMP_Serial Dataset also contains source codes of three different patterns: Do-all (Private) (20081

files), Reduction (200 files), and Stencil (300 files). The do-all and Reduction patterns are detected82

using DiscoPoP. For both Do-all and Reduction patterns 20 templates are extracted and then 1083

different variations are applied to those templates. We consider simple variations like renaming84

variables/functions and changing operators to preserve the pattern of the original source code. There85

are currently no tools available for detecting Stencil patterns. So, they are labeled manually. There86

are three types of Stencils: 1-d, 2-d, and 3-d. For each type, we extracted 10 templates and applied87

10 variations on each of those templates to generate the 300 Stencil loops. For generating the source88

codes from templates Jinja and SymPy are used. Some examples of templates and generated codes89

are shown in Listing 1, 2, 3, and 4. For more details regarding the dataset, it is encouraged to look90

into the paper by Chen et al. Chen et al. [2023].91

5

f o r ({ { c n t }} = 0 ; {{ c n t }} <
{{ l i m i t } } ; {{ c n t }} = {{ c n t }} +
{{ c o n s t a n t } })
{

/ / do− a l l o p e r a t i o n
{{ ope rand }} = {{ ope rand }}
{{ o p e r a t o r }} {{ ope rand } } ;

}

Listing 1: A sample do-all template

92

f o r ({ { c n t }} = 0 ; {{ c n t }} <
{{ l i m i t } } ; {{ c n t }} = {{ c n t }} +
{{ c o n s t a n t } })
{

/ * r e d u c t i o n o p e r a t i o n * /
{{ r e d u c t i o n _ v a r }} = {{ r e d u c t i o n _ v a r }}
{{ r e d u c t i o n _ o p e r a t o r }} ({ { te rm } }) ;

}

Listing 2: A sample reduction template

93

d s t [0 , 0] @= s r c [0 , 0] + s r c [1 , 0] +
s r c [−1 , 0] + s r c [0 , 1] +
s r c [0 , −1]

Listing 3: A sample Stencil template for Sympy input

94

f o r (i n t c t r _ 0 = 1 ; c t r _ 0 < 9 9 ;
c t r _ 0 += 1) {

double * RESTRICT _ d a t a _ d s t _ 0 0 =
_ d a t a _ d s t + 100* c t r _ 0 ;
double * RESTRICT _ d a t a _ s r c _ 0 0 =
_ d a t a _ s r c + 100* c t r _ 0 ;
double * RESTRICT _ d a t a _ s r c _ 0 1 =
_ d a t a _ s r c + 100* c t r _ 0 + 100 ;
double * RESTRICT _da ta_s rc_0m1 =
_ d a t a _ s r c + 100* c t r _ 0 − 100 ;
f o r (i n t 6 4 _ t c t r _ 1 = 1 ; c t r _ 1 < 9 9 ;

c t r _ 1 += 1) {
_ d a t a _ d s t _ 0 0 [c t r _ 1] =
_ d a t a _ s r c _ 0 0 [c t r _ 1 + 1]
+ _ d a t a _ s r c _ 0 0 [c t r _ 1 − 1]
+ _ d a t a _ s r c _ 0 0 [c t r _ 1]
+ _ d a t a _ s r c _ 0 1 [c t r _ 1]
+ _da ta_s rc_0m1 [c t r _ 1] ;

}
}

Listing 4: Generated stencil loop using Sympy

95

4.4 Numa and Prefetchers Configuration Prediction96

The dataset we used for the Numa and Prefetchers Configuration Prediction is from a prior study by97

TehraniJamsaz et al. TehraniJamsaz et al. [2022]. It contains 57000 IR files generated by various98

LLVM compiler optimization flags. Each IR file within the dataset is accompanied by its runtime99

on two architectures, Sandy Bridge and Skylake, across thirteen different NUMA and prefetcher100

configurations.101

6

References102

T. Ben-Nun, A. S. Jakobovits, and T. Hoefler. Neural code comprehension: A learnable representation103

of code semantics. Advances in Neural Information Processing Systems, 31, 2018.104

L. Chen, Q. I. Mahmud, H. Phan, N. K. Ahmed, and A. Jannesari. Learning to parallelize with105

openmp by augmented heterogeneous ast representation. arXiv preprint arXiv:2305.05779, 2023.106

C. Cummins, P. Petoumenos, Z. Wang, and H. Leather. End-to-end deep learning of optimization107

heuristics. In 2017 26th International Conference on Parallel Architectures and Compilation108

Techniques (PACT), pages 219–232. IEEE, 2017.109

C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, and H. Leather. Programl: Graph-based deep110

learning for program optimization and analysis. arXiv preprint arXiv:2003.10536, 2020.111

A. TehraniJamsaz, M. Popov, A. Dutta, E. Saillard, and A. Jannesari. Learning intermediate rep-112

resentations using graph neural networks for numa and prefetchers optimization. In 2022 IEEE113

International Parallel and Distributed Processing Symposium (IPDPS), pages 1206–1216. IEEE,114

2022.115

7

	Insights of Digit Embedding
	Model's architecture
	Ablation Study
	Results without Composite data type nodes
	Results without Digit Embedding

	Details of Datasets:
	Device Mapping
	Parallelism Discovery
	Parallel Pattern Detection
	Numa and Prefetchers Configuration Prediction

