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Abstract

The remarkable growth and significant success of machine learning have expanded
its applications into programming languages and program analysis. However, a
key challenge in adopting the latest machine learning methods is the representa-
tion of programming languages, which directly impacts the ability of machine
learning methods to reason about programs. The absence of numerical awareness,
aggregate data structure information, and improper way of presenting variables
in previous representation works have limited their performances. To overcome
the limitations and challenges of current program representations, we propose
a graph-based program representation called PERFOGRAPH. PERFOGRAPH can
capture numerical information and the aggregate data structure by introducing
new nodes and edges. Furthermore, we propose an adapted embedding method
to incorporate numerical awareness. These enhancements make PERFOGRAPH
a highly flexible and scalable representation that effectively captures programs’
intricate dependencies and semantics. Consequently, it serves as a powerful tool
for various applications such as program analysis, performance optimization, and
parallelism discovery. Our experimental results demonstrate that PERFOGRAPH
outperforms existing representations and sets new state-of-the-art results by re-
ducing the error rate by 7.4% (AMD dataset) and 10% (NVIDIA dataset) in the
well-known Device Mapping challenge. It also sets new state-of-the-art results in
various performance optimization tasks like Parallelism Discovery and NUMA and
Prefetchers Configuration prediction.

1 Introduction
In recent years, the remarkable success of machine learning has led to transformative advancements
across numerous fields, including compiler optimization and program analysis. The applications
include compiler heuristics prediction, optimization decisions, parallelism detection, etc. [4, 15].
The training process generally involves feeding program data as input and transforming it into a
representation suitable for machine learning models. The selection of program representation is
crucial, as it can significantly impact the performance of the machine learning model [12]. With
the development of graph neural networks (GNNs), an increasing number of graph representations
of programs have been incorporated into GNN models for program analysis [3, 28, 10]. One of
the pioneering efforts in developing a comprehensive graph representation for programs is PRO-
GRAML [14]. PROGRAML incorporates control, data, and call dependencies as integral components
of a program’s representation. In contrast to prior sequential learning systems for code, PROGRAML
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closely resembles the intermediate representations used by compilers, and the propagation of infor-
mation through these graphs mimics the behavior of typical iterative data-flow analyses. Despite
the success that PROGRAML has achieved, there are shortcomings in this current state-of-the-art
program representation, especially for performance-oriented downstream tasks. These limitations
stem from neglecting numerical values available at compile time and the inadequate representation of
aggregate data types.

In this paper, we present PERFOGRAPH to address the limitations of the current state-of-the-art
program representation. Additionally, we propose a novel way to embed numbers in programs in
an elegant way so that our DL model will not face unknown numbers during inference time. Our
experiments demonstrate that PERFOGRAPH sets new state-of-the-art results in numerous downstream
tasks. For example, in the Device Mapping downstream task, PERFOGRAPH yield error rates as low
as 6% and 10% depending on the target hardware. Moreover, PERFOGRAPH even outperforms the
tools and models specially designed for specific tasks such as parallelism discovery.

Overall, the main contributions of this paper are:
• An enhanced compiler and language-agnostic program representation based on PROGRAML that

represents programs as graphs.
• The proposed representation supports aggregate data types and provides numerical awareness,

making it highly effective for performance optimization tasks.
• Evaluation of the proposed representation on common downstream tasks and exceeding the

performance of PROGRAML.
• Quantification of the proposed approach on a new set of downstream tasks such as parallelism

discovery and configuration of NUMA systems.
The rest of the paper is structured as follows: Section 2 presents the related works. In section 3, we
provide a motivational example, showing the limitations of PROGRAML, the state-of-the-art program
representation. This section is followed by section 4 where we present our proposed representation
PERFOGRAPH along with the novel way of embedding numerical values. In section 5, experimental
results on downstream tasks are provided, and finally, Section 6 concludes the paper and discusses
some future works.

2 Related Works
Machine learning has brought significant advancements in many fields, and program analysis and
software engineering are no exceptions. However, Machine Learning (ML) and Deep Learning (DL)
models can not directly process raw source code to reason about programs. Therefore, researchers
have explored different approaches to represent applications in a format suitable for DL models.
Generally, there are three types of commonly used program presentations: sequence of tokens,
Abstract Syntax Tree (AST), and Intermediate Representation (IR).

Sequence of tokens: The initial attempts [16, 21, 27] represented source code as a sequence of
tokens, such as identifiers, variable names, or operators. This approach intuitively treats programming
languages similarly to natural languages. It allows for the utilization of advanced natural language
process (NLP) techniques, such as large language models [19, 22, 23]. However, this token-based
representation overlooks the inherent dependency information within the program’s structure. It fails
to capture the unique relationships and dependencies between different elements of the code, which
can limit its effectiveness in tasks such as compiler optimization and code optimization.

AST: An AST represents the structure of a program by capturing its hierarchical organization. It
is constructed based on the syntactic rules of the programming language and provides a high-level
abstraction of the code. Previous works have leveraged ASTs as inputs to tree-based models for
various code analysis tasks like software defect prediction [17] and code semantic study [9].
Moreover, there have been efforts to augment ASTs into graphs that incorporate program analysis
flows such as control flow and data flow. These AST-based graph representations capture more
comprehensive code dependency information and have shown superior results compared to traditional
approaches in previous works [2, 3].

IR: IR is an intermediate step between the source code and the machine code generated by a compiler.
Previous work [39] has utilized IR to train an encoding infrastructure for representing programs
as a distributed embedding in continuous space. It augments the Symbolic encodings with the flow
of information to capture the syntax as well as the semantics of the input programs. However, it
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generates embedding at the program or function level and also requires a data-flow analysis type
for generating the embedding. In contrast, our approach derives embedding from the representation
and works at the more fine-grained instruction level. More recent works [6, 14, 8] have leveraged
IR-based graph representation to better capture essential program information, such as control flow,
data flow, and dependencies. However, despite their success, IR-based graph representations have
certain limitations. For example, these representations may not be numeric-aware or may lack the
ability to adequately represent aggregate data types. In this work, we propose PERFOGRAPH, a graph
representation based on IR, to address these limitations.

3 Motivation
As stated in the related work section, program representations based on the intermediate representation
are very effective in enabling DL models to automate the process of various optimizations. One such
representation is PROGRAML, whose performance surpasses other code representations, making
it state-of-the-art in various optimizations and downstream tasks. However, despite its potential, it
suffers from several limitations. To name a few: it is incapable of properly carrying out information
regarding read and write operations to the memory location, has no support for aggregate data types,
and discards numerical values. Listing 1 shows a code snippet where a 3-dimensional array is defined.
Figure 1 shows the PROGRAML representation of this code snippet. For illustration purposes,
instruction nodes and control flow edges are shown in blue, whereas red represents variable, constant
nodes, and data flow edges. Green edges show the call graph. As it can be seen, PROGRAML fails
to represent some critical information. For instance, code float arr[2][3][4] is converted to
LLVM IR [2 x [3 x [4 x float]]]*, which is used to construct a node in PROGRAML. It
eliminates the aggregate data structure information, like the array’s dimension. Leaving it up to the
DL model to infer the meaning behind the numbers in [2 x [3 x [4 x float]]]*. Moreover, in
this representation, only the type of numbers (e.g., int8, float) are considered, and the actual values
of the numbers are not given attention. The absence of numerical awareness limits the performance
of PROGRAML in applications where numerical values play an important role. A numerically aware
representation can help understand and optimize operations involving numeric data types, constants,
and expressions. There are also some anomalies in the way temporary variables are depicted. For
example, in 1, we see the fourth alloca node allocates memory for a variable, and two store
instructions are applied on two separate nodes representing the variable. Thus, the information about
the first store instruction is not carried out properly when the second store instruction happens. In
the following section, we will see how PERFOGRAPH effectively addresses many limitations in the
current state-of-the-art program representation. PERFOGRAPH uses PROGRAML representation as
its initial graph and reconstructs the graphs by addressing the aforementioned limitations.

1 # i n c l u d e < s t d i o . h>
2
3 i n t main ( i n t argc , char * a rgv [ ] ) {
4 i n t a r r _ s t a t e = 0 ;
5 f l o a t a r r [ 2 ] [ 3 ] [ 4 ]
6 = { { { 1 . 0 f , 1 . 0 f , 1 . 0 f , 1 . 0 f } ,
7 { 2 . 0 f , 2 . 0 f , 2 . 0 f , 2 . 0 f } ,
8 { 3 . 0 f , 3 . 0 f , 3 . 0 f , 3 . 0 f }} ,
9 { { 4 . 0 f , 4 . 0 f , 4 . 0 f , 4 . 0 f } ,

10 { 5 . 0 f , 5 . 0 f , 5 . 0 f , 5 . 0 f } ,
11 { 6 . 0 f , 6 . 0 f , 6 . 0 f , 6 . 0 f } } } ;
12 a r r _ s t a t e = 1 ;
13 re turn 0 ;
14 }

Listing 1: C++ code example.
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Figure 1: ProGraML representation of Listing 1.

4 PERFOGRAPH: A fined-grained numerical aware graph representation
PERFOGRAPH is graph representation based on LLVM IR. It is built on top of PROGRAML; however,
it does not suffer from the limitations that the PROGRAML has, helping DL models to reason over the
complex structure of the programs and enabling them to make more accurate optimization decisions,
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especially in terms of performance optimization. Figure 2 shows how various enhancements and
improvements are applied to construct a more precise representation. Consider a simple code
example of defining a variable and increasing it by one {int i = 0; i++;}. Figure 2a shows the
PROGRAML representation of this code example. It has two store nodes, as one is responsible for
storing 0 and the other one storing the incremented value of i. In the following subsection, we will
explain how PERFOGRAPH is constructed by addressing the limitations shown in Figure 2a.
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i32
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1

(a) Initial graph
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(b) Local variables
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Figure 2: PERFOGRAPH addresses the existing limitations in program representation.

4.1 Representing Local Identifiers and store instruction

Local Identifiers: Local identifiers’ names are preceded by % in LLVM Intermediate representation.
Memory allocation on the stack is done by alloca instruction. One of the limitations of the current
state-of-the-art program representation, PROGRAML, is that it is unable to carry out information
regarding the operations that happen to a memory location. For instance, in Figure 2a, the two
store nodes represent storing values of 0 and 1 to variable i. However, as shown, each store
instruction node is connected to a separate variable node, making it difficult for the graph neural
network to reason over the operations that happen to a memory location. For the embedding vector
of the second store node in 2a to represent the fact that some information regarding the variable
i has changed, one has to increase the number of GNN layers to 3 to support up to 3 hops when
propagating the messages in GNN. This can potentially limit the ability of the GNN model if there are
a greater number of hops between the two store nodes shown in Figure 2a. To address this limitation,
instead of having more than one variable node (oval-shape nodes) per identifier, PERFOGRAPH only
considers one variable node in its graph representation. Any load or store instruction will refer
to the same variable node. These changes are shown in Figure 2b. We see that the store nodes in
Figure 2b access the same memory location, thus representing the fact that those store instructions
are modifying the same memory location.

Store instruction: LLVM uses store instruction to write into memory. store instruction has
two arguments: a value to store and the address to which it will store the value. PROGRAML
differentiates between these two arguments by adding a position feature to the edges as shown in
Figure 2a. However, since the store instruction modifies the contents at the corresponding memory
address, we posit that it is better to reflect the fact the content of the identifier has changed. To present
this information, PERFOGRAPH adds an extra edge from the store node to node representing the
identifier whose value is modified by the store instruction. Figure 2c shows these changes in the
graph constructed by PERFOGRAPH.

Numbers: Numbers can be a significant factor in optimization decisions. For example, they can
show the loop bound, and different optimizations can be considered depending on the loop bound.
PERFOGRAPH, unlike PROGRAML, not only considers the type of numbers such as i32, i64, float
but also the actual values of the numbers. As illustrated in Figure 2d, numerical constant nodes have
the actual value of the number in their feature set in addition to the type of the number. Even though
numerical constant nodes have the value of the number as one of their features, there is a need to
embed the numbers in a way that unknown numbers will not be seen in the inference. Unlike other
tokens, numbers are harder to embed as an infinite amount of numbers exists, and to handle all ranges
of numbers, we need to have a very large vocabulary set.
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4.2 Numerical Awareness
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Figure 3: Overview of the digit embed-
ding.

However, with a very large vocabulary size, the DL mod-
els may still encounter numbers in the inference phase that
they have not seen in the training phase. We propose a
novel way of embedding numbers called Digit Embedding.
Figure 3 shows our approach. To embed a number, we first
break down the number to its digits; then, we consider a
position for each one of the digits. The goal is to let DL
models realize the place value of each digit. Then, each
digit and its corresponding position are embedded and
summed together. Therefore, we will have an embedding
representing the information about the digits and their po-
sitions. For instance, in Figure 3, we embed each digit and
its corresponding position with an output dimension of 3.
Since the number has four digits, the results would be a
vector/tensor of size 4 × 3. To make sure the Digit Em-
bedding of numbers has the same length across numbers
with varying sizes of digits, we apply an aggregation function over the embedding dimension. Since
the output embedding dimension is three in this example, we would have one vector of length three
representing the number after aggregation. The aggregation function can be of any type (Max, Mean,
etc.).

4.3 Aggregate Data Types

alloca

allocai32*

store [3 x [2 x [3 x i32]]]*

1

bitcast

call

i8*i1

3

i8*

1

i32

i64

2

i32

(a) No support for aggregate data types.
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1
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call

i8*

[3 x [2 x [3 x i32]]]*

i1

3

i8*

1

i32

i64

2

i32

(b) Break-down of aggregate data types.

Figure 4: PERFOGRAPH supports aggre-
gate data types.

Aggregate data types, such as arrays and vectors, are
an essential part of applications. They play an impor-
tant role in many applications, such as matrix multipli-
cations. Thus, presenting these data types helps the DL
models better understand programs. Current LLVM IR-
based program representations fail to present aggregate
data types appropriately. For example, consider a three-
dimensional integer array. In LLVM IR, this array is
shown as 3 x [2 x [3 x i32]]]*. As can be seen,
the length of the arrays and their data types are infer-
able. However, without proper representation, the DL
model’s capacities will be spent on learning these de-
terministic facts (i.e., the length of the arrays and their
type). PERFOGRAPH considers aggregate data types as
a new node type in its representations. Figure 4b shows
how aggregate data types are supported by PERFOGRAPH.
Unlike other LLVM IR-based representations, PERFO-
GRAPH supports multi-dimensional arrays and vectors.
PERFOGRAPH creates a chain of nodes to present the
different dimensions of the arrays. In Figure 4a, we
see there is a node representing the three-dimensional
array [3 x [2 x [3 x i32]]]*. PERFOGRAPH breaks
down the corresponding node into three (since it is a three-
dimensional array) white nodes as shown in Figure 4b.
Then, each node has a context representing that specific
dimension of the array. For example, the context for the
third dimension is [3 x i32], whereas for the second
dimension, the context is [2 x [3 x i32]]. For each
aggregate type node, in addition to the context of the node,
we specifically add the length of the array and its type as additional features. For aggregate data types
whose lengths are not known during compile time, we follow the LLVM conventions by considering
the length of those data types as vscale. These enhancements will help the DL models to reason
over the dimensions and types of aggregate data types. As a result, PERFOGRAPH will ultimately
enable the DL models to have more accurate predictions for applications that deal with arrays and
vectors.
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5 Experimental Results and Downstream Tasks
In this section, we evaluate PERFOGRAPH on six downstream tasks. For each downstream task, we
will explain the task itself, the dataset, and the baselines.

5.1 Experimental Setup

In our experiments, we use DGL’s [40] RGCN [37] implementation for PERFOGRAPH representation.
The graphs from PERFOGRAPH are treated as heterogeneous and managed via the HeteroGraphConv
module. We use a hardware setup of two 18-core Intel Skylake 6140 CPUs and two NVIDIA Tesla
V100-32GB GPUs. The embedding space for numbers is generated by extracting digits and positions
from a numeric token of an IR statement, then passed to a PyTorch [31] embedding layer for digit
and position embeddings. These are combined for the final numeric token embedding. Non-numeric
tokens directly go through the PyTorch embedding layer. Each PERFOGRAPH heterogeneous node
converts to a 120-dimensional vector via this embedding. We use the Adam [26] Optimizer, relu [1]
activation function, a learning rate of 0.01, and hidden_dim parameter of 60. Mean aggregation is
applied to combine different node-type results before a linear classification layer, which outputs a
probability distribution for each class. The class with the highest probability is the prediction.

5.2 Device Mapping

%
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Figure 5: Performance comparison the device
mapping task with state-of-the-art models [lower

is better].

Problem Definition: We apply PERFOGRAPH
to the challenging heterogeneous device map-
ping [13] problem. In this task, there are
a number of OpenCL kernels that we need
to predict which accelerator (CPU or GPU)
yields higher performance. We compare PER-
FOGRAPH against DeepTune [13], Inst2Vec [6],
and PROGRAML [14]. The results of the base-
lines are quoted from [14].

Dataset: For this task, we use the dataset pub-
lished in [13]. In this dataset, there are 256
OpenCL kernels available, and 680 LLVM IR
instances are extracted from them. There are
two types of GPUs: AMD and NVIDIA. For each of the GPUs, the runtimes of the kernels are
recorded in the dataset. For AMD, 276 kernels show better performance in GPU, while 395 kernels
show better performance in CPU. Whereas for NVIDIA, 385 kernels have better runtimes with
GPU, and 286 kernels have better runtimes with CPU. We consider this as a binary CPU or GPU
classification problem.

Results: As the dataset is small, we use the same 10-fold validation (with 80% training, 10%
validation, and 10% testing) like PROGRAML [14] and chose the model with the highest validation
accuracy. The hand-crafted features of [20] are also used as graph-level features in our model to
enhance the performance following the approach in [14]. Table 1 and 2 show the final precision,
call, f1-score, and accuracy for AMD and NVIDIA devices. Figure 5 compares PERFOGRAPH with
state-of-the-art models on the Device Mapping dataset. We can see that PERFOGRAPH sets new
state-of-the-art results by achieving the lowest error rate among the baselines both for AMD and
NVIDIA, indicating the effectiveness of PERFOGRAPH.

Table 1: PERFOGRAPH results for
AMD devices.

Precision Recall F1-score Accuracy

CPU 0.94 0.94 0.94 0.94GPU 0.94 0.94 0.94

Table 2: PERFOGRAPH results for
NVIDIA devices.

Precision Recall F1-score Accuracy

CPU 0.87 0.90 0.89 0.90GPU 0.92 0.89 0.90

5.3 Parallelism Discovery

Problem Definition: In this problem, given a sequential loop, we try to predict whether a loop can
be executed in parallel. We treat this problem as a binary classification problem with two classes:
Parallel and Non-Parallel.
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Dataset: The OMP_Serial dataset [11] is used for this task. It contains around 6k compilable
source C files with Parallel and Non-Parallel loops. The training dataset contains around 30k IR files.
The OMP_Serial dataset has three test subsets to compare the performance with three traditional
parallelism assistant tools: Pluto (4032 IR files), AutoPar (3356 IR files), and DiscoPoP (1226 IR
files).

Results: We evaluate PERFOGRAPH on all three subsets and compare it with traditional rule-based
tools: Pluto [7], AutoPar [33], DiscoPoP [29], and also Deep Learning based tools: Graph2Par [11],
PROGRAML. Table 3 shows the results. The results of Pluto and Graph2par are reported from
[11]. As PROGRAML does not have this downstream task in their paper, we used the PROGRAML
representation in our pipeline to generate the results. Results show that traditional rule-based tools
have the highest precision but the lowest accuracy because those tools are overly conservative while
predicting parallel loops. So, they miss out on a lot of parallelism opportunities. PERFOGRAPH
achieves considerably good precision scores across all the test subsets. In terms of accuracy, PERFO-
GRAPH surpasses the current state-of-the-art approaches by 2% in the Pluto and AutoPar subset. In
the DiscoPoP subset, it achieves an impressive 99% accuracy and surpasses PROGRAML by 9%.

Table 3: Performance comparison of PERFOGRAPH on the OMP_Serial dataset.
Subset Approach Precision Recall F1-score Accuracy

Pluto

Pluto 1 0.39 0.56 0.39
Graph2par 0.88 0.93 0.91 0.86

PROGRAML 0.88 0.88 0.87 0.89
PERFOGRAPH 0.91 0.90 0.89 0.91

autoPar

AutoPar 1 0.14 0.25 0.38
Graph2par 0.90 0.79 0.84 0.80

PROGRAML 0.92 0.69 0.67 0.84
PERFOGRAPH 0.85 0.91 0.85 0.86

DiscoPoP

DiscoPoP 1 0.54 0.70 0.63
Graph2par 0.90 0.79 0.84 0.81

PROGRAML 0.92 0.94 0.92 0.91
PERFOGRAPH 0.99 1 0.99 0.99

5.4 Parallel Pattern Detection

Problem Definition: Parallel loops often follow some specific patterns. Identifying parallel patterns
is important because it helps developers understand how to parallelize a specific program since
each parallel pattern needs to be treated differently. As a result, we apply PERFOGRAPH to identify
potential parallel patterns in sequentially written programs. Only the three most common parallel
patterns are considered: Do-all (Private), Reduction, and Stencil [34]. Given a loop, the task is to
predict the pattern.

Dataset: For this experiment, we also use the OMP_Serial dataset [11]. This dataset contains source
codes of different parallel patterns. These programs are collected from well-known benchmarks like
NAS Parallel Benchmark [24], PolyBench [32], BOTS benchmark [18], and the Starbench benchmark
[5]. Then, template programming packages like Jinja [35] are used to create synthetic programs from
the templates collected from the mentioned benchmarks. The dataset contains 200 Do-all (Private),
200 Reduction, and 300 Stencil loops.

Results: We used 80% of the dataset for training and 20% for testing. Table 4 represents our findings.
The results of Pragformer [25] and Graph2par [11] are reported from [11]. We compare with these
two approaches as they are specifically developed for solving this problem. For generating the
results with PROGRAML, we used the PROGRAML representation in our pipeline. We can see
PERFOGRAPH achieves an impressive 99% accuracy on the OMP_Serial Parallel Pattern dataset. It
surpasses the state-of-the-art PROGRAML model by 3%. This indicates the strength of PERFOGRAPH
to capture the syntactic and structural patterns embedded into source programs. From Table 4, we
can also see PERFOGRAPH has high precision for all three patterns and achieves a high precision
score for Do-all and Stencil patterns while maintaining very good accuracy.
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Table 4: Performance comparison for the parallel pattern detection task with PERFOGRAPH on the
OMP_Serial Dataset.

Approach Pattern Precision Recall F1-score Accuracy

Pragformer
Do-all 0.86 0.85 0.86

0.86Reduction 0.89 0.87 0.87
Stencil N/A N/A N/A

Graph2Par
Do-all 0.88 0.87 0.87

0.9Reduction 0.9 0.89 0.91
Stencil N/A N/A N/A

PROGRAML
Do-all 0.92 0.90 0.91

0.96Reduction 0.92 0.92 0.92
Stencil 0.98 1 0.99

PERFOGRAPH
Do-all 1 0.97 0.99

0.99Reduction 0.97 1 0.99
Stencil 1 1 1

5.5 NUMA and Prefetchers Configuration Prediction

Problem Definition: An appropriate configuration of Non-Uniform Memory Access (NUMA) and
hardware prefetchers significantly impacts program performance. In this experiment, we define the
task of NUMA and prefetcher selection as predicting the right configuration within a given tuning
parameter search space. We evaluate the performance of both PROGRAML and PERFOGRAPH
for this task by converting each program in the dataset to PROGRAML and PERFOGRAPH graphs
following the approach in [38].
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(a) Error distribution for Sandy Bridge architecture.
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(b) Error distribution for Skylake architecture.

Figure 6: Breakdown of the NUMA and prefetchers configuration prediction per fold [lower is better].

Dataset: We use the dataset in [38], which includes a diverse set of intermediate representation
files coupled with the optimal configuration [36]. The dataset incorporates various LLVM compiler
optimization flags to produce different forms of the same program. There are 57 unique kernels
(IR files) in this dataset, and around 1000 optimization flags are applied, resulting in 57000 IR files
in total. Each IR file within the dataset is accompanied by its runtime on two architectures, Sandy
Bridge and Skylake, across thirteen different NUMA and prefetcher configurations.

Results: Following the approach in the study of TehraniJamsaz et al., we partition the dataset into
ten folds for cross-validation. Figure 6a and 6b illustrate the performance results in terms of error
rates. On average, PERFOGRAPH outperforms PROGRAML by achieving 3.5% and 1.8% better error
rates on average for the Sandy Bridge and Skylake architecture, respectively. These improvements
demonstrate the effectiveness of PERFOGRAPH compared to the state-of-the-art PROGRAML.

5.6 Thread Coarsening Factor (TCF) Prediction

Problem Definition: Thread coarsening is an optimization technique for parallel programs by
fusing the operation of two or more threads together. The number of threads that can be fused
together is known as the Thread Coarsening Factor (TCF). For a given program, the task is to
predict the coarsening factor value (1, 2, 4, 8, 16, 32) that leads to the best runtime. The run-
ning time with coarsening factor 1 is used as the baseline for calculating speedups. For this
task, we compare PERFOGRAPH against DeepTune [13], Inst2Vec [6] and PROGRAML [14].
The results of the baselines are quoted from [6]. Since PROGRAML has not been evaluated
on this task in the past, we apply PROGRAML representation in our setup for comparison.
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Dataset: We use the dataset of Ben-Nun et al.
[13]. The dataset contains only 17 OpenCL ker-
nels. For each kernel, the dataset has the runtime
information on four different GPUs for the dif-
ferent thread coarsening factor values. Hence,
for each kernel, we have the runtime correspond-
ing to each thread coarsening factor value on a
specific GPU device.

Results: we design the problem as a multi-class
classification problem where, given a kernel, we
try to predict which thread coarsening factor
provides the highest performance. As the dataset is very small, we apply a 17-fold cross-validation
approach. In each fold, we train our model on 16 data points, and the model is tested on the one
unseen data point that is left out of the training set. Figure 7 shows the comparison of kernels with
the correct Thread Coarsening Factor (TCF) found by PROGRAML and PERFOGRAPH. Across
the four platforms in total PERFOGRAPH is able to correctly predict the TCF for 17 cases, whereas
PROGRAML is able to find only 9 cases. In two of the platforms (AMD Radeon HD 5900 and
NVIDIA GTX 480) where PROGRAML failed to find any kernel with the correct TCF, PERFOGRAPH
can find three kernels in both of the platforms with the correct TCF value. As shown in 5, even though
PERFOGRAPH outperforms PROGRAML on most computing platforms, it falls behind inst2vec. We
posit the reason is that inst2vec has a pretraining phase where it is trained using skip-gram. On the
other hand, 17 kernels are very small. Therefore, a DL-based model is not able to generalize enough.
However, we can see that even on a smaller dataset, PERFOGRAPH achieved comparable speedups
with respect to the current state-of-the-art models.

Table 5: Speedups achieved by coarsening threads
Computing Platform DeepTune inst2vec PROGRAML PERFOGRAPH

AMD Radeon HD 5900 1.1 1.37 1.15 1.19
AMD Tahiti 7970 1.05 1.1 1.00 1.14
NVIDIA GTX 480 1.1 1.07 0.98 1.03

NVIDIA Tesla K20c 0.99 1.06 1.03 1.01

5.7 Algorithm Classification
Problem Definition: Previous downstream tasks showed that in most of the cases, PERFOGRAPH
outperforms the baselines. Those tasks were mostly performance-oriented. We go further by applying
PERFOGRAPH on a different downstream task, which is algorithm classification. The task involves
classifying a source code into 1 of 104 classes. In this task, we compare the results of PERFOGRAPH
to those of inst2vec, PROGRAML. The results of the baselines are quoted from [14].

Dataset: We use the POJ-104 dataset [30] in a similar setup as [14] that contains around 240k IR
files for training and 10k files for testing.

Results: For this task, inst2vec has error rate of 5.17, whereas PROGRAML has error rate of
3.38. PERFOGRAPH yields an error rate of 5.00, which is better than inst2vec and slightly behind
PROGRAML. One of the reasons is that PROGRAML already has a very small error rate in this task,
leaving a very small gap for improvement; however still PERFOGRAPH’s result is very close to that
of PROGRAML. We could not reproduce the results in PROGRAML paper in our setup. When we
applied PROGRAML in our setup, the error rate of PROGRAML was 6.00. Moreover, we posit that
for algorithm classification, numbers are not a significant factor. Therefore, numerical awareness
can confuse the models a little bit. However, this experiment shows that PERFOGRAPH is very close
to PROGRAML’s performance in this task and shows the applicability of PERFOGRAPH to a wider
range of downstream tasks.
5.8 Ablation Study

We further analyzed how each one of the enhancements in PERFOGRAPH affects the end results. We
performed an ablation study on the Device Mapping task and trained our GNN models on variations
of PERFOGRAPH.
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Results without aggregate data type nodes: First, aggregate data type nodes are removed from
PERFOGRAPH representation. Please note that in this setup, the Digit Embedding is still applied.
Table 6 and 7 shows the results. It can be seen that when the representation does not support aggregate
data type, the error rate increases to 13% in AMD and 15% in the NVIDIA dataset. This clearly
indicates that having aggregate-type nodes in the representation helped the model to learn the code
features more accurately.

Results without Digit Embedding: Then Digit Embedding is removed from the pipeline for the
second experiment and the aggregate data type nodes are kept. Table 6 and 7 shows the results. We
can see that unlike having aggregate data type nodes, removing digit embedding does not hurt the
error rate that much for the task of device mapping. However, we can still see a small increase (1.1%)
in the error rate for the AMD dataset. For the NVIDIA dataset, the error rate increases from 10.0 to
10.6%.

Table 6: Summarizing PERFOGRAPH results for AMD device.
Approach Error (%)

DeepTune [13] 28.1
inst2vec [6] 19.7

PROGRAML [14] 13.4
PERFOGRAPH (without aggregate data type nodes) 13.0

PERFOGRAPH (without digit embedding) 7.1
PERFOGRAPH (aggregate data type nodes + digit embedding) 6.0

Table 7: Summarizing PERFOGRAPH results for NVIDIA device.
Approach Error (%)

DeepTune [13] 39.0
inst2vec [6] 21.5

PROGRAML [14] 20.0
PERFOGRAPH (without aggregate data type nodes) 15.0

PERFOGRAPH (without digit embedding) 10.6
PERFOGRAPH (aggregate data type nodes + digit embedding) 10.0

Finally, we can conclude that both components in our representation helped the model to learn the
code features better to some extent. However, aggregate data type nodes in the embedding helped our
model more than Digit Embedding for the task of device mapping. The reason can be that there are
not many numbers in the dataset. However, in tasks where there are many numbers, Digit Embedding
can play a significant role.

6 Conclusion and Future Work
In this paper, we presented PERFOGRAPH, an LLVM IR-based graph representation of programs
that supports aggregate data types such as arrays and vectors and is numerical aware. Moreover,
it addresses several limitations of the previous IR-based graph representations. PERFOGRAPH is
evaluated on various downstream tasks, and experimental results indicate that PERFOGRAPH is indeed
effective, outperforming state-of-the-art in most of the downstream tasks. PERFOGRAPH numerical
awareness capability is limited to the numerical values that are available at the compile time. For
future work, we intend to augment our representation by adding support for dynamic information
and checking the possibility of integrating hardware performance counters with our representation.
Moreover, we plan to develop a pre-trained embedding model using our representation. Having a
pre-trained model will help to solve the problem of limited training samples in some downstream
tasks.
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