${ }_{4} 47$ Thus,

$$
T_{i}\left(v^{(1)}-v^{(2)}\right)(x)=T_{i} v^{(1)}(x)+b_{i}(x)-\left(T v^{(2)}(x)+b_{i}(x)\right)=0 \text { if } T_{i} v^{(1)}(x)+b_{i}(x)>0 .
$$

$$
\begin{equation*}
v^{(1)}-v^{(2)} \in X(v, T+b) \tag{A.3}
\end{equation*}
$$

Combining A.2 and A.3), and 2.1 as $v=v^{(1)}$, we conclude that

$$
v^{(1)}-v^{(2)}=0 .
$$

458 Conversely, assume that there exists a $v \in L^{2}(D)^{n}$ such that

$$
\operatorname{Ker}\left(\left.T\right|_{S(v, T+b)}\right) \cap X(v, T+b) \neq\{0\}
$$

461 For $i \notin S(v, T+b)$, we have by $u \in X(v, T+b)$,

$$
\begin{aligned}
\operatorname{ReLU}\left(T_{i}(v-u)(x)+b_{i}(x)\right) & =\left\{\begin{array}{l}
0 \text { if } T_{i} v(x)+b_{i}(x) \leq 0 \\
T_{i} v(x)+b_{i}(x) \text { if } T_{i} v(x)+b_{i}(x)>0
\end{array}\right. \\
& =\operatorname{ReLU}\left(T_{i} v(x)+b_{i}(x)\right)
\end{aligned}
$$

$$
\operatorname{ReLU}(T(v-u)+b)=\operatorname{ReLU}(T v+b)
$$

463 where $u \neq 0$, that is, $\operatorname{ReLU} \circ(T+b)$ is not injective.

It holds for $0<\alpha<1 / 2$ that

$$
\left\|P_{V_{\alpha}^{\perp}}-P_{V_{0}^{\perp}}\right\|_{\mathrm{op}}<1 .
$$

$$
P_{V_{\alpha}^{\perp}} \circ T: L^{2}(D)^{n} \rightarrow L^{2}(D)^{m}
$$

477 is injective. Assuming that for $a, b \in L^{2}(D)^{n}$,

$$
P_{V_{\alpha}^{\perp}} \circ T(a)=P_{V_{\alpha}^{\perp}} \circ T(b),
$$

is equivalent to

$$
T(a)-T(b)=P_{V_{\alpha}}(T(a)-T(b))
$$

Denoting by $P_{V_{\alpha}}(T(a)-T(b))=\sum_{k \in \mathbb{N}, j \in[m-\ell]} c_{k, j} \varphi_{k, j}^{\alpha}$,

$$
\pi_{1}(T(a)-T(b))=\sum_{k \in \mathbb{N}, j \in[m-\ell]} c_{k, j} \xi_{(k-1)(m-\ell)+j} .
$$

From (3.1, we obtain that $c_{k j}=0$ for all k, j. By injectivity of T, we finally get $a=b$.
We define $Q_{\alpha}: L^{2}(D)^{m} \rightarrow L^{2}(D)^{m}$ by

$$
Q_{\alpha}:=\left(P_{V_{0}^{\perp}} P_{V_{\alpha}^{\perp}}+\left(I-P_{V_{0}^{\perp}}\right)\left(I-P_{V_{\alpha}^{\perp}}\right)\right)\left(I-\left(P_{V_{0}^{\perp}}-P_{V_{\alpha}^{\perp}}\right)^{2}\right)^{-1 / 2} .
$$

By the same argument as in Section I.4.6 Kato [2013], we can show that Q_{α} is injective and

$$
Q_{\alpha} P_{V_{\alpha}^{\perp}}=P_{V_{0}^{\perp}} Q_{\alpha}
$$

that is, Q_{α} maps from $\operatorname{Ran}\left(P_{V_{\alpha}^{\perp}}\right)$ to

$$
\operatorname{Ran}\left(P_{V_{0}^{\perp}}\right) \subset\{0\}^{m-\ell} \times L^{2}(D)^{\ell}
$$

It follows that

$$
\pi_{\ell} \circ Q_{\alpha} \circ P_{V_{\alpha}^{\perp}} \circ T: L^{2}(D)^{n} \rightarrow L^{2}(D)^{\ell}
$$

is injective.

B. 2 Remarks following Lemma 1

Remark 2. An example that satisfies (3.1) is the neural operator whose L-th layer operator \mathcal{L}_{L} consists of the integral operator K_{L} with continuous kernel function k_{L}, and with continuous activation function σ. Indeed, in this case, we may choose the orthogonal sequence $\left\{\xi_{k}\right\}_{k \in \mathbb{N}}$ in $L^{2}(D)$ as a discontinuous functions sequence ${ }^{1}$ so that $\operatorname{span}\left\{\xi_{k}\right\}_{k \in \mathbb{N}} \cap C(D)=\{0\}$. Then, by $\operatorname{Ran}\left(\mathcal{L}_{L}\right) \subset C(D)^{d_{L}}$, the assumption (3.1) holds.
Remark 3. In the proof of Lemma 1 a operator $B \in \mathcal{L}\left(L^{2}(D)^{m}, L^{2}(D)^{\ell}\right)$,

$$
B=\pi_{\ell} \circ Q_{\alpha} \circ P_{V_{\alpha}^{\perp}},
$$

appears, where $P_{V_{\alpha}^{\perp}}$ is the orthogonal projection onto orthogonal complement V_{α}^{\perp} of V_{α} with

$$
V_{\alpha}:=\operatorname{span}\left\{\varphi_{k, j}^{\alpha} \mid k \in \mathbb{N}, j \in[m-\ell]\right\} \subset L^{2}(D)^{m}
$$

in which $\varphi_{k, j}^{\alpha}$ is defined for $\alpha \in(0,1), k \in \mathbb{N}$ and $j \in[\ell]$,

$$
\varphi_{k, j}^{\alpha}:=(0, \ldots, 0, \underbrace{\sqrt{(1-\alpha)} \varphi_{k}}_{j-t h}, 0, \ldots, 0, \sqrt{\alpha} \xi_{(k-1)(m-\ell)+j})
$$

Here, $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$ is an orthonormal basis in $L^{2}(D)$. Futhermore, $Q_{\alpha}: L^{2}(D)^{m} \rightarrow L^{2}(D)^{m}$ is defined by

$$
Q_{\alpha}:=\left(P_{V_{0}^{\perp}} P_{V_{\alpha}^{\perp}}+\left(I-P_{V_{0}^{\perp}}\right)\left(I-P_{V_{\alpha}^{\perp}}\right)\right)\left(I-\left(P_{V_{0}^{\perp}}-P_{V_{\alpha}^{\perp}}\right)^{2}\right)^{-1 / 2}
$$

where $P_{V_{0}}$ is the orthogonal projection onto orthogonal complement V_{0}^{\perp} of V_{0} with

$$
V_{0}:=L^{2}(D)^{m-\ell} \times\{0\}^{\ell}
$$

The operator Q_{α} is well-defined for $0<\alpha<1 / 2$ because it holds that

$$
\left\|P_{V_{\alpha}^{\perp}}-P_{V_{0}^{\perp}}\right\|_{\mathrm{op}}<2 \alpha
$$

This construction is given by the combination of "Pairs of projections" discussed in Kato [2013, Section I.4.6] with the idea presented in [Puthawala et al. 2022b, Lemma 29].

[^0]where
\[

$$
\begin{aligned}
& \widetilde{K}_{\ell} \in \mathcal{L}\left(L^{2}(D)^{d_{\ell}}, L^{2}(D)^{d_{\ell+1}}\right), \widetilde{K}_{\ell}: f \mapsto \int_{D} \widetilde{k}_{\ell}(\cdot, y) f(y) d y, \\
& \widetilde{k}_{\ell} \in C\left(D \times D ; \mathbb{R}^{d_{\ell+1} \times d_{\ell}}\right), \widetilde{b}_{\ell} \in L^{2}\left(D ; \mathbb{R}^{d_{\ell+1}}\right) \\
& d_{\ell} \in \mathbb{N}, d_{0}=d_{\text {in }}, d_{L+2}=d_{\text {out }}, \ell=0, \ldots, L+2 .
\end{aligned}
$$
\]

We remark that kernel functions \widetilde{k}_{ℓ} are continuous because neural operators defined in Kovachki et al. [2021b] parameterize the integral kernel function by neural networks, thus,

$$
\begin{equation*}
\operatorname{Ran}(\widetilde{G}) \subset C(D)^{d_{o u t}} \tag{B.6}
\end{equation*}
$$

We define the neural operator $H: L^{2}(D)^{d_{i n}} \rightarrow L^{2}(D)^{d_{i n}+d_{o u t}}$ by

$$
H=K_{L+1} \circ\left(K_{L}+b_{L}\right) \circ \sigma \cdots \circ\left(K_{2}+b_{2}\right) \circ \sigma \circ\left(K_{1}+b_{1}\right) \circ\left(K_{0}+b_{0}\right),
$$ where K_{ℓ} and b_{ℓ} are defined as follows. First, we choose $K_{i n j} \in \mathcal{L}\left(L^{2}(D)^{d_{i n}}, L^{2}(D)^{d_{i n}}\right)$ as a linear injective integral operator ${ }^{2}$

(i) When $\sigma_{1} \in \mathrm{~A}_{0}^{L} \cap \mathrm{BA}$ is injective,

$$
K_{0}=\binom{K_{i n j}}{\widetilde{K}_{0}} \in \mathcal{L}\left(L^{2}(D)^{d_{i n}}, L^{2}(D)^{d_{i n}+d_{1}}\right), \quad b_{0}=\binom{O}{\widetilde{b}_{0}} \in L^{2}(D)^{d_{i n}+d_{1}}
$$

$$
\begin{gathered}
K_{\ell}=\left(\begin{array}{cc}
K_{i n j} & O \\
O & \widetilde{K}_{\ell}
\end{array}\right) \in \mathcal{L}\left(L^{2}(D)^{d_{i n}+d_{\ell}}, L^{2}(D)^{d_{i n}+d_{\ell+1}}\right), \quad b_{\ell}=\binom{O}{\widetilde{b}_{\ell}} \in L^{2}(D)^{d_{i n}+d_{\ell+1}} \\
(1 \leq \ell \leq L) \\
\vdots \\
K_{L+1}=\left(\begin{array}{cc}
K_{i n j} & O \\
O & \widetilde{K}_{L+1}
\end{array}\right) \in \mathcal{L}\left(L^{2}(D)^{d_{i n}+d_{L+1}}, L^{2}(D)^{d_{i n}+d_{o u t}}\right), \quad b_{\ell}=\binom{O}{O} \in L^{2}(D)^{d_{i n}+d_{o u t}} .
\end{gathered}
$$

(ii) When $\sigma_{1}=\operatorname{ReLU}$,

$$
K_{0}=\binom{K_{i n j}}{\widetilde{K}_{0}} \in \mathcal{L}\left(L^{2}(D)^{d_{i n}}, L^{2}(D)^{d_{i n}+d_{1}}\right), \quad b_{0}=\binom{O}{\widetilde{b}_{0}} \in L^{2}(D)^{d_{i n}+d_{1}}
$$

$$
K_{1}=\left(\begin{array}{cc}
K_{i n j} & O \\
-K_{i n j} & O \\
O & \widetilde{K}_{1}
\end{array}\right) \in \mathcal{L}\left(L^{2}(D)^{d_{i n}+d_{1}}, L^{2}(D)^{2 d_{i n}+d_{2}}\right), b_{0}=\left(\begin{array}{c}
O \\
O \\
\widetilde{b}_{1}
\end{array}\right) \in L^{2}(D)^{2 d_{i n}+d_{1}},
$$

$$
K_{\ell}=\left(\begin{array}{cc:c}
K_{i n j} & -K_{i n j} & O \\
\hdashline K_{i \underline{j} j} & K_{i n j} & \widetilde{K}_{\ell}
\end{array}\right) \in \mathcal{L}\left(L^{2}(D)^{2 d_{i n}+d_{\ell}}, L^{2}(D)^{2 d_{i n}+d_{\ell+1}}\right),
$$

$$
b_{\ell}=\left(\begin{array}{c}
O \\
O \\
\widetilde{b}_{\ell}
\end{array}\right) \in L^{2}(D)^{2 d_{i n}+d_{\ell+1}}, \quad(2 \leq \ell \leq L)
$$

$$
K_{L}=\left(\begin{array}{c:c}
K_{i n j}-K_{i n j} & O \\
\hdashline O & \widetilde{K}_{L}
\end{array}\right) \in \mathcal{L}\left(L^{2}(D)^{2 d_{i n}+d_{L}}, L^{2}(D)^{d_{i n}+d_{L+1}}\right)
$$

$$
b_{L}=\binom{O}{\widetilde{b}_{L}} \in L^{2}(D)^{d_{i n}+d_{L+1}}
$$

$$
K_{L+1}=\left(\begin{array}{cc}
K_{i n j} & O \\
O & \widetilde{K}_{L+1}
\end{array}\right) \in \mathcal{L}\left(L^{2}(D)^{d_{i n}+d_{L+1}}, L^{2}(D)^{d_{i n}+d_{o u t}}\right)
$$

$$
b_{L+1}=\binom{O}{O} \in L^{2}(D)^{d_{i n}+d_{o u t}}
$$

Then, the operator $H: L^{2}(D)^{d_{i n}} \rightarrow L^{2}(D)^{d_{i n}+d_{o u t}}$ has the form of

$$
H:=\left\{\begin{array}{cc}
\left(\begin{array}{c}
K_{i n j} \circ K_{i n j} \circ \sigma \circ K_{i n j} \circ \cdots \circ \sigma \circ K_{i n j} \circ K_{i n j} \\
\widetilde{G} \\
K_{i n j} \circ \cdots \circ K_{i n j} \\
\widetilde{G}
\end{array}\right) \quad \text { in the case of (ii). }
\end{array}\right.
$$

[^1]For the case of (ii), we have used the fact

$$
\left(\begin{array}{ll}
I & -I
\end{array}\right) \circ \operatorname{ReLU} \circ\binom{I}{-I}=I
$$

539 Thus, in both cases, H is injective.
In the case of (i), as $\sigma \in A_{0}^{L}$, we obtain the estimate

$$
\|\sigma(f)\|_{L^{2}(D)^{d_{i n}}} \leq \sqrt{2|D| d_{i n}} C_{0}+\|f\|_{L^{2}(D)^{d_{i n}}}, f \in L^{2}(D)^{d_{i n}}
$$

541 where

$$
C_{0}:=\sup _{x \in \mathbb{R}} \frac{|\sigma(x)|}{1+|x|}<\infty
$$

542 Then we evaluate for $a \in K\left(\subset B_{R}(0)\right)$,

$$
\begin{align*}
& \|H(a)\|_{L^{2}(D)^{d_{i n}+d_{o u t}}} \\
& \leq\|\widetilde{G}(a)\|_{L^{2}(D)^{d_{o u t}}}+\left\|K_{i n j} \circ K_{i n j} \circ \sigma \circ K_{i n j} \circ \cdots \circ \sigma \circ K_{i n j} \circ K_{i n j}(a)\right\|_{L^{2}(D)^{d_{i n}}} \tag{B.7}\\
& \leq 4 M+\sqrt{2|D| d_{i n}} C_{0} \sum_{\ell=1}^{L}\left\|K_{i n j}\right\|_{\mathrm{op}}^{\ell+1}+\left\|K_{i n j}\right\|_{\mathrm{op}}^{L+2} R=: C_{H} .
\end{align*}
$$

In the case of (ii), we find the estimate, for $a \in K$,

$$
\begin{equation*}
\|H(a)\|_{L^{2}(D)^{d_{i n}+d_{o u t}}} \leq 4 M+\left\|K_{i n j}\right\|_{\mathrm{op}}^{L+2} R<C_{H} \tag{B.8}
\end{equation*}
$$

544 From (B.6) (especially, $\operatorname{Ran}\left(\pi_{1} H\right) \subset C(D)$) and Remark 2 , we can choose an orthogonal sequence $545\left\{\xi_{k}\right\}_{k \in \mathbb{N}}$ in $L^{2}(D)$ such that 3.1 holds. By applying Lemma 1 , as $T=H, n=d_{i n}, m=d_{\text {in }}+d_{\text {out }}$, $546 \ell=d_{\text {out }}$, we find that

$$
G:=\underbrace{\pi_{d_{o u t}} \circ Q_{\alpha} \circ P_{V_{\alpha}^{\perp}}}_{=: B} \circ H: L^{2}(D)^{d_{i n}} \rightarrow L^{2}(D)^{d_{o u t}},
$$

547 is injective. Here, $P_{V_{\alpha}^{\perp}}$ and Q_{α} are defined as in Remark 3, we choose $0<\alpha \ll 1$ such that

$$
\left\|P_{V_{\alpha}^{\perp}}-P_{V_{0}^{\perp}}\right\|_{\mathrm{op}}<\min \left(\frac{\epsilon}{10 C_{H}}, 1\right)=: \epsilon_{0}
$$

548 where $P_{V_{0}^{\perp}}$ is the orthogonal projection onto

$$
V_{0}^{\perp}:=\{0\}^{d_{i n}} \times L^{2}(D)^{d_{o u t}}
$$

549 By the same argument as in the proof of Theorem 15 in Puthawala et al. [2022a], we can show that

$$
\left\|I-Q_{\alpha}\right\|_{\mathrm{op}} \leq 4 \epsilon_{0}
$$

Furthermore, since B is a linear operator, $B \circ K_{L+1}$ is also a linear operator with integral kernel

$$
G \in \mathrm{NO}_{L}\left(\sigma ; D, d_{i n}, d_{o u t}\right)
$$

552 We get, for $a \in K$,

$$
\begin{equation*}
\left\|G^{+}(a)-G(a)\right\|_{L^{2}(D)^{d_{o u t}}} \leq \underbrace{\left\|G^{+}(a)-\widetilde{G}(a)\right\|_{L^{2}(D)^{d_{o u t}}}}_{\widehat{\widehat{B .5}) \leq \frac{\epsilon}{2}}}+\|\widetilde{G}(a)-G(a)\|_{L^{2}(D)^{d_{o u t}}} \tag{B.9}
\end{equation*}
$$

Using (B.7) and (B.8), we then obtain

$$
\begin{align*}
& \|\widetilde{G}(a)-G(a)\|_{L^{2}(D)^{d o u t}}=\left\|\pi_{d_{o u t}} \circ H(a)-\pi_{d_{o u t}} \circ Q_{\alpha} \circ P_{V_{\alpha}^{\perp}} \circ H(a)\right\|_{L^{2}(D)^{d o u t}} \\
& \leq\left\|\pi_{d_{o u t}} \circ\left(P_{V_{0}^{\perp}}-P_{V_{\alpha}^{\perp}}+P_{V_{\alpha}^{\perp}}\right) \circ H(a)-\pi_{d_{o u t}} \circ Q_{\alpha} \circ P_{V_{\alpha}^{\perp}} \circ H(a)\right\|_{L^{2}(D)^{d} o u t} \\
& \leq\left\|\pi_{d_{o u t}} \circ\left(P_{V_{0}^{\perp}}-P_{V_{\alpha}^{\perp}}\right) \circ H(a)\right\|_{L^{2}(D)^{d_{o u t}}}+\left\|\pi_{d_{o u t}} \circ\left(I-Q_{\alpha}\right) \circ P_{V_{\alpha}^{\perp}} \circ H(a)\right\|_{L^{2}(D)^{d o u t}} \\
& \leq 5 \epsilon_{0}\|H(a)\|_{L^{2}(D)^{d_{\text {in }}+d_{o u t}}} \leq \frac{\epsilon}{2} . \tag{B.10}
\end{align*}
$$

Combining (B.9) and (B.10), we conclude that

$$
\sup _{a \in K}\left\|G^{+}(a)-G(a)\right\|_{L^{2}(D)^{d_{o u t}}} \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

B. 4 Remark following Theorem 1

Remark 4. We make the following observations using Theorem 1 .
(i) ReLU and Leaky ReLU functions belong to $\mathrm{A}_{0}^{L} \cap \mathrm{BA}$ due to the fact that $\{\sigma \in$ $C(\mathbb{R}) \mid \sigma$ is not a polynomial $\} \subseteq A_{0}$ (see Pinkus [1999]), and both the ReLU and Leaky ReLU functions belong to BA (see Lemma C. 2 in Lanthaler et al. [2022]). We note that Lemma C. 2 in Lanthaler et al. [2022] solely established the case for ReLU. However, it holds true for Leaky ReLU as well since the proof relies on the fact that the function $x \mapsto \min (\max (x, R), R)$ can be exactly represented by a two-layer ReLU neural network, and a two-layer Leaky ReLU neural network can also represent this function. Consequently, Leaky ReLU is one of example that satisfies (ii) in Theorem 11
(ii) We emphasize that our infinite-dimensional result, Theorem 1 deviates from the finitedimensional result. Puthawala et al. $2022 a$. Theorem 15] assumes that $2 d_{\text {in }}+1 \leq d_{\text {out }}$ due to the use of Whitney's theorem. In contrast, Theorem $[1$ does not assume any conditions on $d_{\text {in }}$ and $d_{\text {out }}$, that is, we are able to avoid invoking W hitney's theorem by employing Lemma 1
(iii) We provide examples that injective universality does not hold when $L^{2}(D)^{d_{\text {in }}}$ and $L^{2}(D)^{d_{o u t}}$ are replaced by $\mathbb{R}^{d_{\text {in }}}$ and $\mathbb{R}^{d_{\text {out }}}$: Consider the case where $d_{\text {in }}=d_{\text {out }}=1$ and $G^{+}: \mathbb{R} \rightarrow \mathbb{R}$ is defined as $G^{+}(x)=\sin (x)$. We can not approximate $G^{+}: \mathbb{R} \rightarrow \mathbb{R}$ by an injective function $G: \mathbb{R} \rightarrow \mathbb{R}$ in the set $K=[0,2 \pi]$ in the L^{∞}-norm. According to the topological degree theory (see Cho and Chen [2006, Theorem 1.2.6(iii)]), any continuous function $G: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies $\left\|G-G^{+}\right\|_{C([0,2 \pi])}<\varepsilon$ satisfies the equation on both intervals $I_{1}=[0, \pi], I_{2}=[\pi, 2 \pi] \operatorname{deg}\left(G, I_{j}, s\right)=\operatorname{deg}\left(G^{+}, I_{j}, s\right)=1$ for all $s \in[-1+\varepsilon, 1-\varepsilon]$, $j=1,2$. This implies that $G: I_{j} \rightarrow \mathbb{R}$ obtains the value $s \in[-1+\varepsilon, 1-\varepsilon]$ at least once . Hence, G obtains the values $s \in[-1+\varepsilon, 1-\varepsilon]$ at least two times on the interval $[0,2 \pi]$ and is it thus not injective. It is worth noting that the degree theory exhibits significant differences between the infinite-dimensional and finite-dimensional cases [Cho and Chen. 2006]).

C Details of Section 3.3

C. 1 Finite rank approximation

We consider linear integral operators K_{ℓ} with L^{2} kernels $k_{\ell}(x, y)$. Let $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$ be an orthonormal basis in $L^{2}(D)$. Since $\left\{\varphi_{k}(y) \varphi_{p}(x)\right\}_{k, p \in \mathbb{N}}$ is an orthonormal basis of $L^{2}(D \times D)$, integral kernels $k_{\ell} \in L^{2}\left(D \times D ; \mathbb{R}^{d_{\ell+1} \times d_{\ell}}\right)$ in integral operators $K_{\ell} \in \mathcal{L}\left(L^{2}(D)^{d_{\ell}}, L^{2}(D)^{d_{\ell+1}}\right)$ has the expansion

$$
k_{\ell}(x, y)=\sum_{k, p \in \mathbb{N}} C_{k, p}^{(\ell)} \varphi_{k}(y) \varphi_{p}(x)
$$

then integral operators $K_{\ell} \in \mathcal{L}\left(L^{2}(D)^{d_{\ell}}, L^{2}(D)^{d_{\ell+1}}\right)$ take the form

$$
K_{\ell} u(x)=\sum_{k, p \in \mathbb{N}} C_{k, p}^{(\ell)}\left(u, \varphi_{k}\right) \varphi_{p}(x), u \in L^{2}(D)^{d_{\ell}}
$$

where $C_{k, p}^{(\ell)} \in \mathbb{R}^{d_{\ell+1} \times d_{\ell}}$ whose (i, j)-th component $c_{k, p, i j}^{(\ell)}$ is given by

$$
c_{k, p, i j}^{(\ell)}=\left(k_{\ell, i j}, \varphi_{k} \varphi_{p}\right)_{L^{2}(D \times D)} .
$$

Here, we write $\left(u, \varphi_{k}\right) \in \mathbb{R}^{d_{\ell}}$,

$$
\left(u, \varphi_{k}\right)=\left(\left(u_{1}, \varphi_{k}\right)_{L^{2}(D)}, \ldots,\left(u_{d_{\ell}}, \varphi_{k}\right)_{L^{2}(D)}\right) .
$$

$$
\sum_{k, p \leq N} C_{k, p}\left(u, \varphi_{k}\right) \varphi_{p}=0, \Longleftrightarrow C_{N} \vec{u}_{N}=0
$$

628 is injective, where $\mathbf{V}_{0}^{\perp}=\{0\}^{N^{\prime}(m-\ell)} \times \mathbb{R}^{N^{\prime} \ell}$. Furthermore, in the proof of Theorem 15 of Puthawala et al. [2022a], denoting

$$
\mathbf{B}:=\pi_{N^{\prime} \ell} \circ \mathbf{Q} \circ P_{\mathbf{V}^{\perp}} \in \mathbb{R}^{N^{\prime} \ell \times N^{\prime} m},
$$

we are able to show that

$$
\mathbf{B} \circ \mathbf{T}: \mathbb{R}^{N n} \rightarrow \mathbb{R}^{N^{\prime} \ell}
$$

is injective. Here, $\pi_{N^{\prime} \ell}: \mathbb{R}^{N^{\prime} m} \rightarrow \mathbb{R}^{N^{\prime} \ell}$

$$
\pi_{N^{\prime} \ell}(a, b):=b, \quad(a, b) \in \mathbb{R}^{N^{\prime}(m-\ell)} \times \mathbb{R}^{N^{\prime} \ell}
$$

where $\mathbf{Q}: \mathbb{R}^{N^{\prime} m} \rightarrow \mathbb{R}^{N^{\prime} m}$ is defined by

$$
\mathbf{Q}:=\left(P_{\mathbf{V}_{0}^{\perp}} P_{\mathbf{V}^{\perp}}+\left(I-P_{\mathbf{V}_{0}^{\perp}}\right)\left(I-P_{\mathbf{V}^{\perp}}\right)\right)\left(I-\left(P_{\mathbf{V}_{0}^{\perp}}-P_{\mathbf{V}^{\perp}}\right)^{2}\right)^{-1 / 2} .
$$

We define $B: L^{2}(D)^{m} \rightarrow L^{2}(D)^{\ell}$ by

$$
B u=\sum_{k, p \leq N^{\prime}} \mathbf{B}_{k, p}\left(u, \varphi_{k}\right) \varphi_{p}
$$

where $\mathbf{B}_{k, p} \in \mathbb{R}^{\ell \times m}, \mathbf{B}=\left(\mathbf{B}_{k, p}\right)_{k, p \in\left[N^{\prime}\right]}$. Then $B: L^{2}(D)^{m} \rightarrow L^{2}(D)^{\ell}$ is a linear finite rank operator with N^{\prime} rank, and

$$
B \circ T: L^{2}(D)^{n} \rightarrow L^{2}(D)^{\ell}
$$

is injective because, by the construction, it is equivalent to

$$
\mathbf{B} \circ \mathbf{T}: \mathbb{R}^{N n} \rightarrow \mathbb{R}^{N^{\prime} \ell},
$$

and

$$
\|\widetilde{G}(a)\|_{L^{2}(D)^{d_{o u t}}} \leq 4 M, \quad \text { for } a \in L^{2}(D)^{d_{i n}}, \quad\|a\|_{L^{2}(D)^{d_{i n}}} \leq R .
$$

645
We write operator \widetilde{G} by

$$
\widetilde{G}=\widetilde{K}_{L+1} \circ\left(\widetilde{K}_{L}+\widetilde{b}_{L}\right) \circ \sigma \cdots \circ\left(\widetilde{K}_{2}+\widetilde{b}_{2}\right) \circ \sigma \circ\left(\widetilde{K}_{1}+\widetilde{b}_{1}\right) \circ\left(\widetilde{K}_{0}+\widetilde{b}_{0}\right),
$$

646
where

$$
\begin{aligned}
& \widetilde{K}_{\ell} \in \mathcal{L}\left(L^{2}(D)^{d_{\ell}}, L^{2}(D)^{d_{\ell+1}}\right), \widetilde{K}_{\ell}: f \mapsto \int_{D} \widetilde{k}_{\ell}(\cdot, y) f(y) d y, \\
& \widetilde{k}_{\ell} \in L^{2}\left(D \times D ; \mathbb{R}^{d_{\ell+1} \times d_{\ell}}\right), \widetilde{b}_{\ell} \in L^{2}\left(D ; \mathbb{R}_{\ell+1}^{d_{\ell+1}}\right) \\
& d_{\ell} \in \mathbb{N}, d_{0}=d_{\text {in }}, d_{L+2}=d_{o u t}, \ell=0, \ldots, L+2 .
\end{aligned}
$$

${ }_{647}$ We set $\widetilde{G}_{N^{\prime}} \in \mathrm{NO}_{L, N^{\prime}}\left(\sigma ; D, d_{\text {in }}, d_{\text {out }}\right)$ such that

$$
\widetilde{G}_{N^{\prime}}=\widetilde{K}_{L+1, N^{\prime}} \circ\left(\widetilde{K}_{L, N^{\prime}}+\widetilde{b}_{L, N^{\prime}}\right) \circ \sigma \cdots \circ\left(\widetilde{K}_{2, N^{\prime}}+\widetilde{b}_{2, N^{\prime}}\right) \circ \sigma \circ\left(\widetilde{K}_{1, N^{\prime}}+\widetilde{b}_{1, N^{\prime}}\right) \circ\left(\widetilde{K}_{0, N^{\prime}}+\widetilde{b}_{0, N^{\prime}}\right),
$$

${ }_{648}$ where $\widetilde{K}_{\ell, N^{\prime}}: L^{2}(D)^{d_{\ell}} \rightarrow L^{2}(D)^{d_{\ell+1}}$ is defined by

$$
\widetilde{K}_{\ell, N^{\prime}} u(x)=\sum_{k, p \leq N^{\prime}} C_{k, p}^{(\ell)}\left(u, \varphi_{k}\right) \varphi_{p}(x),
$$

where $C_{k, p}^{(\ell)} \in \mathbb{R}^{d_{\ell+1} \times d_{\ell}}$ whose (i, j)-th component $c_{k, p, i j}^{(\ell)}$ is given by

$$
c_{k, p, i j}^{(\ell)}=\left(\widetilde{k}_{\ell, i j}, \varphi_{k} \varphi_{p}\right)_{L^{2}(D \times D)} .
$$

Since

$$
\left\|\widetilde{K}_{\ell}-\widetilde{K}_{\ell, N^{\prime}}\right\|_{\mathrm{op}}^{2} \leq\left\|\widetilde{K}_{\ell}-\widetilde{K}_{\ell, N^{\prime}}\right\|_{\mathrm{HS}}^{2}=\sum_{k, p \geq N^{\prime}+1} \sum_{i, j}\left|c_{k, p, i j}^{(\ell)}\right|^{2} \rightarrow 0 \text { as } N^{\prime} \rightarrow \infty
$$

there is a large $N^{\prime} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sup _{a \in K}\left\|\widetilde{G}(a)-\widetilde{G}_{N^{\prime}}(a)\right\|_{L^{2}(D)^{d o u t}} \leq \frac{\epsilon}{3} \tag{C.7}
\end{equation*}
$$

$$
\begin{aligned}
\sup _{a \in K}\left\|\widetilde{G}_{N^{\prime}}(a)\right\|_{L^{2}(D)^{d} o u t} & \leq \sup _{a \in K}\left\|\widetilde{G}_{N^{\prime}}(a)-\widetilde{G}(a)\right\|_{L^{2}(D)^{d_{o u t}}}+\sup _{a \in K}\|\widetilde{G}(a)\|_{L^{2}(D)^{d_{o u t}}} \\
& \leq 1+4 M
\end{aligned}
$$

We define the operator $H_{N^{\prime}}: L^{2}(D)^{d_{i n}} \rightarrow L^{2}(D)^{d_{\text {in }}+d_{\text {out }}}$ by

$$
H_{N^{\prime}}(a)=\binom{H_{N^{\prime}}(a)_{1}}{H_{N^{\prime}}(a)_{2}}:=\binom{K_{i n j, N} \circ \cdots \circ K_{i n j, N}(a)}{\widetilde{G}_{N^{\prime}}(a)},
$$

where $K_{i n j, N}: L^{2}(D)^{d_{i n}} \rightarrow L^{2}(D)^{d_{i n}}$ is defined by

$$
K_{i n j, N} u=\sum_{k \leq N}\left(u, \varphi_{k}\right) \varphi_{k}
$$

As $K_{i n j, N}\left(\operatorname{span}\left\{\varphi_{k}\right\}_{k \leq N}\right)^{d_{i n}} \rightarrow L^{2}(D)^{d_{i n}}$ is injective,

$$
H_{N^{\prime}}:\left(\operatorname{span}\left\{\varphi_{k}\right\}_{k \leq N}\right)^{d_{i n}} \rightarrow\left(\operatorname{span}\left\{\varphi_{k}\right\}_{k \leq N}\right)^{d_{i n}} \times\left(\operatorname{span}\left\{\varphi_{k}\right\}_{k \leq N^{\prime}}\right)^{d_{o u t}}
$$

is injective. Furthermore, by the same argument (ii) (construction of H) in the proof of Theorem 1,

$$
H_{N^{\prime}} \in N O_{L, N^{\prime}}\left(\sigma ; D, d_{\text {in }}, d_{o u t}\right)
$$

because both of two-layer ReLU and Leaky ReLU neural networks can represent the identity map. Note that above $K_{i n j, N}$ is an orthogonal projection, so that $K_{i n j, N} \circ \cdots \circ K_{i n j, N}=K_{i n j, N}$. However, we write above $H_{N^{\prime}}(a)_{1}$ as $K_{i n j, N} \circ \cdots \circ K_{i n j, N}(a)$ so that it can be considered as combination of $(L+2)$ layers of neural networks.

We estimate that for $a \in L^{2}(D)^{d_{i n}},\|a\|_{L^{2}(D)^{d_{i n}}} \leq R$,

$$
\left\|H_{N^{\prime}}(a)\right\|_{L^{2}(D)^{d_{i n}+d_{o u t}}} \leq 1+4 M+\left\|K_{i n j}\right\|_{\mathrm{op}}^{L+2} R=: C_{H}
$$

Here, we repeat an argument similar to the one in the proof of Lemma $2: H_{N^{\prime}}: L^{2}(D)^{d_{i n}} \rightarrow$ $L^{2}(D)^{d_{\text {in }}+d_{\text {out }}}$ has the form of

$$
H_{N^{\prime}}(a)=\left(\sum_{k \leq N}\left(H_{N^{\prime}}(a)_{1}, \varphi_{k}\right) \varphi_{k}, \sum_{k \leq N^{\prime}}\left(H_{N^{\prime}}(a)_{2}, \varphi_{k}\right) \varphi_{k}\right)
$$

664 where $\left(H_{N^{\prime}}(a)_{1}, \varphi_{k}\right) \in \mathbb{R}^{d_{\text {in }}},\left(H_{N^{\prime}}(a)_{2}, \varphi_{k}\right) \in \mathbb{R}^{d_{\text {out }}}$. We define $\mathbf{H}_{N^{\prime}}: \mathbb{R}^{N d_{\text {in }}} \rightarrow \mathbb{R}^{N d_{\text {in }}+N^{\prime} d_{\text {out }}}$ 665 by

$$
\mathbf{H}_{N^{\prime}}(\mathbf{a}):=\left[\left(\left(H_{N^{\prime}}(\mathbf{a})_{1}, \varphi_{k}\right)\right)_{k \in[N]},\left(\left(H_{N^{\prime}}(\mathbf{a})_{2}, \varphi_{k}\right)\right)_{k \in\left[N^{\prime}\right]}\right] \in \mathbb{R}^{N d_{i n}+N^{\prime} d_{o u t}}, \mathbf{a} \in \mathbb{R}^{N d_{i n}}
$$

666 where $H_{N^{\prime}}(\mathbf{a})=\left(H_{N^{\prime}}(\mathbf{a})_{1}, H_{N^{\prime}}(\mathbf{a})_{2}\right) \in L^{2}(D)^{d_{\text {in }}+d_{\text {out }}}$ is defined by

$$
H_{N^{\prime}}(\mathbf{a})_{1}:=H_{N^{\prime}}\left(\sum_{k \leq N} a_{k} \varphi_{k}\right)_{1} \in L^{2}(D)^{d_{i n}}
$$

$$
H_{N^{\prime}}(\mathbf{a})_{2}:=H_{N^{\prime}}\left(\sum_{k \leq N^{\prime}} a_{k} \varphi_{k}\right)_{2} \in L^{2}(D)^{d_{o u t}}
$$

where $a_{k} \in \mathbb{R}^{d_{i n}}, \mathbf{a}=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{R}^{N d_{i n}}$. Since $H_{N^{\prime}}: L^{2}(D)^{d_{i n}} \rightarrow L^{2}(D)^{d_{i n}+d_{\text {out }}}$ is Lipschitz continuous, $\mathbf{H}_{N^{\prime}}: \mathbb{R}^{N d_{\text {in }}} \rightarrow \mathbb{R}^{N^{\prime} d_{\text {out }}}$ is also Lipschitz continuous. As

$$
N d_{\text {in }}+N^{\prime} d_{o u t}>N^{\prime} d_{o u t} \geq 2 N d_{i n}+1
$$

we can apply Lemma 29 of Puthawala et al. [2022a] with $D=N d_{\text {in }}+N^{\prime} d_{\text {out }}, m=N^{\prime} d_{\text {out }}$, $n=N d_{i n}$. According to this lemma, there exists a $N^{\prime} d_{o u t}$-dimensional linear subspace \mathbf{V}^{\perp} in $\mathbb{R}^{N d_{\text {in }}+N^{\prime} d_{\text {out }}}$ such that

$$
\left\|P_{\mathbf{V}^{\perp}}-P_{\mathbf{V}_{0}^{\perp}}\right\|_{o p}<\min \left(\frac{\epsilon}{15 C_{H_{N}}}, 1\right)=: \epsilon_{0}
$$

and

$$
P_{\mathbf{V}^{\perp} \circ} \circ \mathbf{H}_{N^{\prime}}: \mathbb{R}^{N d_{\text {in }}} \rightarrow \mathbb{R}^{N d_{\text {in }}+N^{\prime} d_{\text {out }}}
$$

is injective, where $\mathbf{V}_{0}^{\perp}=\{0\}^{N d_{i n}} \times \mathbb{R}^{N^{\prime} d_{o u t}}$. Furthermore, in the proof of Theorem 15 of Puthawala et al. [2022a], denoting by

$$
\mathbf{B}:=\pi_{N^{\prime} d_{\text {out }}} \circ \mathbf{Q} \circ P_{\mathbf{V}^{\perp}}
$$

we can show that

$$
\mathbf{B} \circ \mathbf{H}_{N^{\prime}}: \mathbb{R}^{N d_{i n}} \rightarrow \mathbb{R}^{N^{\prime} d_{\text {out }}},
$$

is injective, where $\pi_{N^{\prime} d_{\text {out }}}: \mathbb{R}^{N d_{\text {in }}+N^{\prime} d_{\text {out }}} \rightarrow \mathbb{R}^{N^{\prime} d_{\text {out }}}$

$$
\pi_{N^{\prime} d_{o u t}}(a, b):=b, \quad(a, b) \in \mathbb{R}^{N d_{\text {in }}} \times \mathbb{R}^{N^{\prime} d_{o u t}}
$$

and $\mathbf{Q}: \mathbb{R}^{N d_{\text {in }}+N^{\prime} d_{\text {out }}} \rightarrow \mathbb{R}^{N d_{\text {in }}+N^{\prime} d_{\text {out }}}$ is defined by

$$
\mathbf{Q}:=\left(P_{\mathbf{V}_{0}^{\perp}} P_{\mathbf{V}^{\perp}}+\left(I-P_{\mathbf{V}_{0}^{\perp}}\right)\left(I-P_{\mathbf{V}^{\perp}}\right)\right)\left(I-\left(P_{\mathbf{V}_{0}^{\perp}}-P_{\mathbf{V}^{\perp}}\right)^{2}\right)^{-1 / 2} .
$$

By the same argument in proof of Theorem 15 in Puthawala et al. [2022a], we can show that

$$
\|I-\mathbf{Q}\|_{\mathrm{op}} \leq 4 \epsilon_{0}
$$

We define $B: L^{2}(D)^{d_{\text {in }}+d_{o u t}} \rightarrow L^{2}(D)^{d_{o u t}}$

$$
B u=\sum_{k, p \leq N^{\prime}} \mathbf{B}_{k, p}\left(u, \varphi_{k}\right) \varphi_{p}
$$

$\mathbf{B}_{k, p} \in \mathbb{R}^{d_{\text {out }} \times\left(d_{\text {in }}+d_{\text {out }}\right)}, \mathbf{B}=\left(\mathbf{B}_{k, p}\right)_{k, p \in\left[N^{\prime}\right]}$, then $B: L^{2}(D)^{d_{\text {in }}+d_{\text {out }}} \rightarrow L^{2}(D)^{d_{\text {out }}}$ is a linear finite rank operator with N^{\prime} rank. Then,

$$
G_{N^{\prime}}:=B \circ H_{N^{\prime}}: L^{2}(D)^{d_{i n}} \rightarrow L^{2}(D)^{d_{o u t}}
$$

is injective because by the construction, it is equivalent to

$$
\mathbf{B} \circ \mathbf{H}_{N^{\prime}}: \mathbb{R}^{N d_{\text {in }}} \rightarrow \mathbb{R}^{N^{\prime} d_{\text {out }}},
$$

is injective. Furthermore, we have

$$
G_{N^{\prime}} \in N O_{L, N^{\prime}}\left(\sigma ; D, d_{\text {in }}, d_{o u t}\right)
$$

Indeed, $H_{N^{\prime}} \in N O_{L, N^{\prime}}\left(\sigma ; D, d_{i n}, d_{o u t}\right), B$ is the linear finite rank operator with N^{\prime} rank, and multiplication of two linear finite rank operators with N^{\prime} rank is also a linear finite rank operator with N^{\prime} rank.

Finally, we estimate for $a \in K$,

$$
\begin{align*}
& \left\|G^{+}(a)-G_{N^{\prime}}(a)\right\|_{L^{2}(D)^{d_{o u t}}} \\
& =\underbrace{\left\|G^{+}(a)-\widetilde{G}(a)\right\|_{L^{2}(D)^{d_{o u t}}}}_{\text {C.6 } \leq \frac{\epsilon}{3}}+\underbrace{\left\|\widetilde{G}(a)-\widetilde{G}_{N^{\prime}}(a)\right\|_{L^{2}(D)^{d_{o u t}}}}_{\text {C.7 } \leq \frac{\epsilon}{3}}+\left\|\widetilde{G}_{N^{\prime}}(a)-G_{N^{\prime}}(a)\right\|_{L^{2}(D)^{d_{o u t}}} . \tag{C.8}
\end{align*}
$$

Using notation $\left(a, \varphi_{k}\right) \in \mathbb{R}^{d_{i n}}$, and $\mathbf{a}=\left(\left(a, \varphi_{k}\right)\right)_{k \in[N]} \in \mathbb{R}^{N d_{i n}}$, we further estimate for $a \in K$,

$$
\begin{align*}
& \left\|\widetilde{G}_{N^{\prime}}(a)-G_{N^{\prime}}(a)\right\|_{L^{2}(Q)^{d_{o u t}}}=\left\|\pi_{d_{\text {out }}} H_{N^{\prime}}(a)-B \circ H_{N^{\prime}}(a)\right\|_{L^{2}(Q)^{d_{o u t}}} \\
& =\left\|\pi_{N^{\prime} d_{o u t}} \mathbf{H}_{N^{\prime}}(\mathbf{a})-\mathbf{B} \circ \mathbf{H}_{N^{\prime}}(\mathbf{a})\right\|_{2} \\
& =\left\|\pi_{N^{\prime} d_{o u t}} \circ \mathbf{H}_{N^{\prime}}(\mathbf{a})-\pi_{N^{\prime} d_{o u t}} \circ \mathbf{Q} \circ P_{\mathbf{V}^{\perp}} \circ \mathbf{H}_{N^{\prime}}(\mathbf{a})\right\|_{2} \\
& \leq\left\|\pi_{N^{\prime} d_{\text {out }}} \circ\left(P_{\mathbf{V}_{o}^{\perp}}-P_{\mathbf{V}^{\perp}}+P_{\mathbf{V}^{\perp}}\right) \circ \mathbf{H}_{N^{\prime}}(\mathbf{a})-\pi_{N^{\prime} d_{o u t}} \circ \mathbf{Q} \circ P_{\mathbf{V}^{\perp}} \circ \mathbf{H}_{N^{\prime}}(\mathbf{a})\right\|_{2} \tag{C.9}\\
& \leq\left\|\pi_{N^{\prime} d_{\text {out }}} \circ\left(P_{\mathbf{V}_{0}^{\perp}}-P_{\mathbf{V}^{\perp}}\right) \circ \mathbf{H}_{N^{\prime}}(\mathbf{a})\right\|_{2}+\left\|\pi_{N^{\prime} d_{o u t}} \circ(I-\mathbf{Q}) \circ P_{\mathbf{V}^{\perp}} \circ \mathbf{H}_{N^{\prime}}(\mathbf{a})\right\|_{2} \\
& \leq 5 \epsilon_{0} \underbrace{\left\|\mathbf{H}_{N^{\prime}}(\mathbf{a})\right\|_{2}} \leq \frac{\epsilon}{3}, \\
& \quad=\left\|H_{N^{\prime}}(a)\right\|_{L^{2}(D)^{d_{o u t}}}<C_{H}
\end{align*}
$$

where $\|\cdot\|_{2}$ is the Euclidean norm. Combining C.8) and C.9, we conclude that

$$
\sup _{a \in K}\left\|G^{+}(a)-G_{N^{\prime}}(a)\right\|_{L^{2}(D)^{d o u t}} \leq \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
$$

D Details of Section 4.1

D. 1 Proof of Proposition 3

Proof. Since W is bijective, and σ is surjective, it is enough to show that $u \mapsto W u+K(u)$ is surjective. We observe that for $z \in L^{2}(D)^{n}$,

$$
W u+K(u)=z,
$$

is equivalent to

$$
H_{z}(u):=-W^{-1} K(u)+W^{-1} z=u
$$

We will show that $H_{z}: L^{2}(D)^{n} \rightarrow L^{2}(D)^{n}$ has a fixed point for each $z \in L^{2}(D)^{n}$. By the Leray-Schauder theorem, see Gilbarg and Trudinger 2001, Theorem 11.3], $H: L^{2}(D) \rightarrow L^{2}(D)$ has a fixed point if the union $\bigcup_{0<\lambda \leq 1} V_{\lambda}$ is bounded, where the sets

$$
\begin{aligned}
V_{\lambda} & :=\left\{u \in L^{2}(D): u=\lambda H_{z}(u)\right\} \\
& =\left\{u \in L^{2}(D): \lambda^{-1} u=H_{z}(u)\right\} \\
& =\left\{u \in L^{2}(D):-\lambda^{-1} u=W^{-1} K(u)-W^{-1} z\right\}
\end{aligned}
$$

are parametrized by $0<\lambda \leq 1$.
As the map $u \mapsto \alpha u+W^{-1} K(u)$ is coercive, there is an $r>0$ such that for $\|u\|_{L^{2}(D)^{n}}>r$,

$$
\frac{\left\langle\alpha u+W^{-1} K(u), u\right\rangle_{L^{2}(D)^{n}}}{\|u\|_{L^{2}(D)^{n}}} \geq\left\|W^{-1} z\right\|_{L^{2}(D)^{n}}
$$

702
Thus, we have that for $\|u\|_{L^{2}(D)^{n}}>r$

$$
\begin{aligned}
& \frac{\left\langle W^{-1} K(u)-W^{-1} z, u\right\rangle_{L^{2}(D)^{n}}}{\|u\|_{L^{2}(D)^{n}}^{2}} \\
& \geq \frac{\left\langle\alpha u+W^{-1} K(u), u\right\rangle_{L^{2}(D)^{n}}-\left\langle\alpha u+W^{-1} z, u\right\rangle_{L^{2}(D)^{n}}}{\|u\|_{L^{2}(D)^{n}}^{2}} \\
& \geq \frac{\left\|W^{-1} z\right\|_{L^{2}(D)^{n}}}{\|u\|_{L^{2}(D)^{n}}}-\frac{\left\langle W^{-1} z, u\right\rangle_{L^{2}(D)^{n}}}{\|u\|_{L^{2}(D)^{n}}^{2}}-\alpha \geq-\alpha>-1,
\end{aligned}
$$

For example, we can consider a kernel

$$
k(x, y, t)=\sum_{j=1}^{J} c_{j}(x, y) \sigma_{s}\left(a_{j}(x, y) t+b_{j}(x, y)\right)
$$

where $\sigma_{s}: \mathbb{R} \rightarrow \mathbb{R}$ is the sigmoid function defined by

$$
\sigma_{s}(t)=\frac{1}{1+e^{-t}} .
$$

There are functions $a, b, c \in C(\bar{D} \times \bar{D})$ such that

$$
\sum_{j=1}^{J}\left\|c_{j}\right\|_{L^{\infty}(D \times D)}<\left\|W^{-1}\right\|_{\mathrm{op}}^{-1}|D|^{-1}
$$

Example 3. Again, we consider the case where $n=1$ and $D \subset \mathbb{R}^{d}$ is a bounded set. We assume that $W \in C^{1}(\bar{D})$ satisfies $0<c_{1} \leq W(x) \leq c_{2}$. For simplicity, we assume that $|D|=1$. We consider the non-linear integral operator

$$
\begin{equation*}
K(u)(x):=\int_{D} k(x, y, u(x)) u(y) d y, x \in D \tag{D.1}
\end{equation*}
$$

719 where

$$
\begin{equation*}
k(x, y, t)=\sum_{j=1}^{J} c_{j}(x, y) \sigma_{w i r e}\left(a_{j}(x, y) t+b_{j}(x, y)\right) \tag{D.2}
\end{equation*}
$$

in which $\sigma_{\text {wire }}: \mathbb{R} \rightarrow \mathbb{R}$ is the wavelet function defined by

$$
\sigma_{\text {wire }}(t)=\operatorname{Im}\left(e^{i \omega t} e^{-t^{2}}\right)
$$

and $a_{j}, b_{j}, c_{j} \in C(\bar{D} \times \bar{D})$ are such that the $a_{j}(x, y)$ are nowhere vanishing functions, that is, $a_{j}(x, y) \neq 0$ for all $x, y \in \bar{D} \times \bar{D}$.
The next lemma holds for any activation function with exponential decay, including the activation function $\sigma_{\text {wire }}$ and settles the key condition for Proposition 3 to hold.

Lemma 3. Assume that $|D|=1$ and the activation function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Assume that there exists $M_{1}, m_{0}>0$ such that

$$
|\sigma(t)| \leq M_{1} e^{-m_{0}|t|}, \quad t \in \mathbb{R}
$$

Let $a_{j}, b_{j}, c_{j} \in C(\bar{D} \times \bar{D})$ be such that $a_{j}(x, y)$ are nowhere vanishing functions. Moreover, let $K: L^{2}(D) \rightarrow L^{2}(D)$ be a non-linear integral operator given in (D.1) with a kernel satisfying (D.2), $\alpha>0$ and $0<c_{0} \leq W(x) \leq c_{1}$. Then function $F: L^{2}(D) \rightarrow L^{2}(D), F(u)=\alpha u+W^{-1} \bar{K}(u)$ is coercive.

Proof. As \bar{D} is compact, there is $a_{0}>0$ such that for all $j=1,2, \ldots, J$ we have $\left|a_{j}(x, y)\right| \geq a_{0}$ a.e. and $\left|b_{j}(x, y)\right| \leq b_{0}$ a.e. We point out that $|\sigma(t)| \leq M_{1}$. Next, let $\varepsilon>0$ be such that

$$
\begin{equation*}
\left(\sum_{j=1}^{J}\left\|W^{-1} c_{j}\right\|_{L^{\infty}(D \times D)}\right) M_{1} \varepsilon<\frac{\alpha}{4} \tag{D.3}
\end{equation*}
$$

${ }_{733} \quad \lambda>0$, and $u \in L^{2}(D)$. We define the sets

$$
\begin{aligned}
& D_{1}(\lambda)=\{x \in D:|u(x)| \geq \varepsilon \lambda\} \\
& D_{2}(\lambda)=\{x \in D:|u(x)|<\varepsilon \lambda\}
\end{aligned}
$$

734 Then, for $x \in D_{2}(\lambda)$,

$$
\begin{aligned}
& \sum_{j=1}^{J}\left\|W^{-1} c_{j}\right\|_{L^{\infty}(D \times D)}\left|\sigma\left(a_{j}(x, y) u(x)+b_{j}(x, y)\right) u(x)\right| \\
& \leq \sum_{j=1}^{J}\left\|W^{-1} c_{j}\right\|_{L^{\infty}(D \times D)} M_{1} \epsilon \lambda \underset{\sqrt{D .3}}{\leq} \frac{\alpha}{4} \lambda .
\end{aligned}
$$

735 After ε is chosen as in the above, we choose $\lambda_{0} \geq \max \left(1, b_{0} /\left(a_{0} \varepsilon\right)\right)$ to be sufficiently large so that for all $|t| \geq \varepsilon \lambda_{0}$ it holds that

$$
\left(\sum_{j=1}^{J}\left\|W^{-1} c_{j}\right\|_{L^{\infty}(D \times D)}\right) M_{1} \exp \left(-m_{0}\left|a_{0} t-b_{0}\right|\right) t<\frac{\alpha}{4} .
$$

Here, we observe that, as $\lambda_{0} \geq b_{0} /\left(a_{0} \varepsilon\right)$, we have that for all $|t| \geq \varepsilon \lambda_{0}, a_{0}|t|-b_{0}>0$. Then, when $\lambda \geq \lambda_{0}$, we have for $x \in D_{1}(\lambda)$,

$$
\left.\left(\sum_{j=1}^{J}\left\|W^{-1} c_{j}\right\|_{L^{\infty}(D \times D)}\right)\right)\left|\sigma\left(a_{j}(x, y) u(x)+b_{j}(x, y)\right) u(x)\right| \leq \frac{\alpha}{4}
$$

When $u \in L^{2}(D)$ has the norm $\|u\|_{L^{2}(D)}=\lambda \geq \lambda_{0} \geq 1$, we have

$$
\begin{aligned}
& \left|\int_{D} \int_{D} W(x)^{-1} k(x, y, u(x)) u(x) u(y) d x d y\right| \\
\leq & \int_{D}\left(\int_{D_{1}}\left(\sum_{j=1}^{J}\left\|W^{-1} c_{j}\right\|_{L^{\infty}(D \times D)}\right) M_{1} \exp \left(-m_{0}\left|a_{0}\right| u(x)\left|-b_{0}\right|\right)|u(x)| d x\right)|u(y)| d y \\
& +\int_{D}\left(\int_{D_{2}} \sum_{j=1}^{J}\left\|W^{-1} c_{j}\right\|_{L^{\infty}(D \times D)}\left|\sigma\left(a_{j}(x, y) u(x)+b_{j}(x, y)\right)\right||u(x)| d x\right)|u(y)| d y \\
\leq & \frac{\alpha}{4}\|u\|_{L^{2}(D)}+\frac{\alpha}{4} \lambda\|u\|_{L^{2}(D)} \\
\leq & \frac{\alpha}{2}\|u\|_{L^{2}(D)}^{2} .
\end{aligned}
$$

Hence,

$$
\frac{\left\langle\alpha u+W^{-1} K(u), u\right\rangle_{L^{2}(D)}}{\|u\|_{L^{2}(D)}} \geq \frac{\alpha}{2}\|u\|_{L^{2}(D)}
$$

and the function $u \rightarrow \alpha u+W^{-1} K(u)$ is coercive.

D. 3 Proof of Proposition 4

Proof. (Injectivity) Assume that

$$
\sigma\left(W u_{1}+K\left(u_{1}\right)+b\right)=\sigma\left(W u_{2}+K\left(u_{2}\right)+b\right) .
$$

where $u_{1}, u_{2} \in L^{2}(D)^{n}$. Since σ is injective and $W: L^{2}(D)^{n} \rightarrow L^{2}(D)^{n}$ is bounded linear bijective, we have

$$
u_{1}+W^{-1} K\left(u_{1}\right)=u_{2}+W^{-1} K\left(u_{2}\right)=: z
$$

Since the mapping $u \mapsto z-W^{-1} K(u)$ is contraction (because $W^{-1} K$ is contraction), by the Banach fixed-point theorem, the mapping $u \mapsto z-W^{-1} K(u)$ admit a unique fixed-point in $L^{2}(D)^{n}$, which implies that $u_{1}=u_{2}$.
(Surjectivity) Since σ is surjective, it is enough to show that $u \mapsto W u+K(u)+b$ is surjective. Let $z \in L^{2}(D)^{n}$. Since the mapping $u \mapsto W^{-1} z-W^{-1} b-W^{-1} K(u)$ is contraction, by Banach fixed-point theorem, there is $u^{*} \in L^{2}(D)^{n}$ such that

$$
u^{*}=W^{-1} z-W^{-1} b-W^{-1} K\left(u^{*}\right) \Longleftrightarrow W u^{*}+K\left(u^{*}\right)+b=z .
$$

D. 4 Examples for Proposition 4

Example 4. We consider the case of $n=1$, and $D \subset[0, \ell]^{d}$. We consider Volterra operators

$$
K(u)(x)=\int_{D} k(x, y, u(x), u(y)) u(y) d y
$$

where $x=\left(x_{1}, \ldots, x_{d}\right)$ and $y=\left(y_{1}, \ldots, y_{d}\right)$. We recall that K is a Volterra operator if

$$
\begin{equation*}
k(x, y, t, s) \neq 0 \Longrightarrow y_{j} \leq x_{j} \quad \text { for all } j=1,2, \ldots, d \tag{D.4}
\end{equation*}
$$

In particular, when $D=(a, b) \subset \mathbb{R}$ is an interval, the Volterra operators are of the form

$$
K(u)(x)=\int_{a}^{x} k(x, y, u(x), u(y)) u(y) d y
$$

and if x is considered as a time variable, the Volterra operators are causal in the sense that the value of $K(u)(x)$ at the time x depends only on $u(y)$ at the times $y \leq x$.

Assume that $k(x, y, t, s) \in C(\bar{D} \times \bar{D} \times \mathbb{R} \times \mathbb{R})$ is bounded and uniformly Lipschitz smooth in the t and s variables, that is, $k \in C\left(\bar{D} \times \bar{D} ; C^{0,1}(\mathbb{R} \times \mathbb{R})\right)$.
Next, we consider the non-linear operator $F: L^{2}(D) \rightarrow L^{2}(D)$,

$$
\begin{equation*}
F(u)=u+K(u) . \tag{D.5}
\end{equation*}
$$

Assume that $u, w \in L^{2}(D)$ are such that $u+K(u)=w+K(w)$, so that $w-u=K(u)-K(w)$. Next, we will show that then $u=w$. We denote and $D\left(z_{1}\right)=D \cap\left(\left[0, z_{1}\right] \times[0, \ell]^{d-1}\right)$ and

$$
\|k\|_{C\left(\bar{D} \times \bar{D} ; C^{0,1}(\mathbb{R} \times \mathbb{R})\right)}:=\sup _{x, y \in D}\|k(x, y, \cdot, \cdot)\|_{C^{0,1}(\mathbb{R} \times \mathbb{R})}
$$

$$
\|k\|_{L^{\infty}(D \times D \times \mathbb{R} \times \mathbb{R})}:=\sup _{x, y \in D, s, t \in \mathbb{R}}|k(x, y, s, t)|
$$

Then for $x \in D\left(z_{1}\right)$ the Volterra property of the kernel implies that

$$
\begin{aligned}
& |u(x)-w(x)| \leq \int_{D}|k(x, y, u(x), u(y)) u(y)-k(x, y, w(x), w(y)) w(y)| d y \\
& \leq \int_{D\left(z_{1}\right)}|k(x, y, u(x), u(y)) u(y)-k(x, y, w(x), u(y)) u(y)| d y \\
& \quad+\int_{D\left(z_{1}\right)}|k(x, y, w(x), u(y)) u(y)-k(x, y, w(x), w(y)) u(y)| d y \\
& \quad+\int_{D\left(z_{1}\right)}|k(x, y, w(x), w(y)) u(y)-k(x, y, w(x), w(y)) w(y)| d y \\
& \leq 2\|k\|_{C\left(\bar{D} \times \bar{D} ; C^{0,1}(\mathbb{R} \times \mathbb{R})\right)}\|u-w\|_{L^{2}\left(D\left(z_{1}\right)\right)}\|u\|_{L^{2}\left(D\left(z_{1}\right)\right)} \\
& \quad+\|k\|_{L^{\infty}(D \times D \times \mathbb{R} \times \mathbb{R})}\|u-w\|_{L^{2}\left(D\left(z_{1}\right)\right)} \sqrt{\left|D\left(z_{1}\right)\right|}
\end{aligned}
$$

Example 5. We consider derivatives of Volterra operators in the domain $D \subset[0, \ell]^{d}$. Let K : $L^{2}(D) \rightarrow L^{2}(D)$ be a non-linear operator

$$
\begin{equation*}
K(u)=\int_{D} k(x, y, u(y)) u(y) d y \tag{D.6}
\end{equation*}
$$

773 where $k(x, y, t)$ satisfies $(\overline{\mathrm{D} .4})$, is bounded, and $k \in C\left(\bar{D} \times \bar{D} ; C^{0,1}(\mathbb{R} \times \mathbb{R})\right)$. Let $F_{1}: L^{2}(D) \rightarrow$ $L^{2}(D)$ be

$$
\begin{equation*}
F_{1}(u)=u+K(u) . \tag{D.7}
\end{equation*}
$$

Then the Fréchet derivative of K at $u_{0} \in L^{2}(D)$ to the direction $w \in L^{2}(D)$ is

$$
\begin{equation*}
\left.D F_{1}\right|_{u_{0}}(w)=w(x)+\int_{D} k_{1}\left(x, y, u_{0}(y)\right) w(y) d y \tag{D.8}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{1}\left(x, y, u_{0}(y)\right)=\left.u_{0}(y) \frac{\partial}{\partial t} k(x, y, t)\right|_{t=u_{0}(x)}+k\left(x, y, u_{0}(y)\right) \tag{D.9}
\end{equation*}
$$

is a Volterra opertor satisfying

$$
\begin{equation*}
k_{1}(x, y, t) \neq 0 \Longrightarrow y_{j} \leq x_{j} \quad \text { for all } j=1,2, \ldots, d \tag{D.10}
\end{equation*}
$$

As seen in Example the operator $\left.D F_{1}\right|_{u_{0}}: L^{2}(D) \rightarrow L^{2}(D)$ is injective.

E Details of Section 4.2

In this appendix, we prove Theorem3. We recall that in that theorem, we consider the case when $n=1, D \subset \mathbb{R}$ is a bounded interval, and the operator F_{1} is of the form

$$
F_{1}(u)(x)=W(x) u(x)+\int_{D} k(x, y, u(y)) u(y) d y
$$

where $W \in C^{1}(\bar{D})$ satisfies $0<c_{1} \leq W(x) \leq c_{2}$, the function $(x, y, s) \mapsto k(x, y, s)$ is in $C^{3}(\bar{D} \times \bar{D} \times \mathbb{R})$, and that in $\bar{D} \times \bar{D} \times \mathbb{R}$ its three derivatives and the derivatives of W are all uniformly bounded by c_{0}, that is,

$$
\begin{equation*}
\|k\|_{C^{3}(\bar{D} \times \bar{D} \times \mathbb{R})} \leq c_{0}, \quad\|W\|_{C^{1}(\bar{D})} \leq c_{0} \tag{E.1}
\end{equation*}
$$

We recall that the identical embedding $H^{1}(D) \rightarrow L^{\infty}(D)$ is bounded and compact by Sobolev's embedding theorem.

As we will consider kernels $k\left(x, y, u_{0}(y)\right)$, we will consider the non-linear operator F_{1} mainly as an operator in a Sobolev space $H^{1}(D)$.
The Frechet derivative of F_{1} at u_{0} to direction w, denoted by $A_{u_{0}} w=\left.D F_{1}\right|_{u_{0}}(w)$ is given by

$$
\begin{equation*}
A_{u_{0}} w=W(x) w(x)+\int_{D} k\left(x, y, u_{0}(y)\right) w(y) d y+\int_{D} u_{0}(y) \frac{\partial k}{\partial u}\left(x, y, u_{0}(y)\right) w(y) d y \tag{E.2}
\end{equation*}
$$

The condition E.1) implies that

$$
\begin{equation*}
F_{1}: H^{1}(D) \rightarrow H^{1}(D) \tag{E.3}
\end{equation*}
$$

is a locally Lipsichitz smooth function and that the operator

$$
A_{u_{0}}: H^{1}(D) \rightarrow H^{1}(D)
$$

given in (E.2), is defined for all $u_{0} \in C(\bar{D})$ as a bounded linear operator.
When \mathcal{X} is a Banach space, we let $B_{\mathcal{X}}(0, R)=\left\{v \in \mathcal{X}:\|v\|_{\mathcal{X}}<R\right\}$ and $\bar{B}_{\mathcal{X}}(0, R)=\{v \in \mathcal{X}$: $\left.\|v\|_{\mathcal{X}} \leq R\right\}$ be the open and closed balls in \mathcal{X}, respectively.

We consider the Hölder spaces $C^{n, \alpha}(\bar{D})$ and their image in (leaky) ReLU-type functions. Let $a \geq 0$ and $\sigma_{a}(s)=\operatorname{ReLU}(s)-a \operatorname{ReLU}(-s)$. We will consider the image of the closed ball of $C^{1, \alpha}(\bar{D})$ in the map σ_{a}, that is $\sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right):=\left\{\sigma_{a} \circ g \in C(\bar{D}):\|g\|_{C^{1, \alpha}(\bar{D})} \leq R\right\}$.

We will below assume that for all $u_{0} \in C(\bar{D})$ the integral operator satisfies

$$
\begin{equation*}
A_{u_{0}}: H^{1}(D) \rightarrow H^{1}(D) \text { is an injective operator. } \tag{E.4}
\end{equation*}
$$

This condition is valid when $K(u)$ is a Volterra operator, see Examples 4 and 5. As the integral operators $A_{u_{0}}$ are Fredholm operators having index zero. This implies that the operators $\sqrt{\text { E. } 4]}$ are bijective.

The inverse operator $A_{u_{0}}^{-1}: H^{1}(D) \rightarrow H^{1}(D)$ can be written as

$$
\begin{equation*}
A_{u_{0}}^{-1} v(x)=\widetilde{W}(x) v(x)-\int_{D} \widetilde{k}_{u_{0}}(x, y) v(y) d y \tag{E.5}
\end{equation*}
$$

where $\widetilde{k}_{u_{0}}, \partial_{x} \widetilde{k}_{u_{0}} \in C(\bar{D} \times \bar{D})$ and $\widetilde{W} \in C^{1}(\bar{D})$.
We will consider the inverse function of the map F_{1} in a set $\mathcal{Y} \subset \sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right)$ that is a compact subset of the Sobolev space $H^{1}(D)$. To this end, we will cover the set \mathcal{Y} with small balls $B_{H^{1}(D)}\left(g_{j}, \varepsilon_{0}\right), j=1,2, \ldots, J$ of $H^{1}(D)$, centered at $g_{j}=F_{1}\left(v_{j}\right)$, where $v_{j} \in H^{1}(D)$. We will show that when $g \in B_{H^{1}(D)}\left(g_{j}, 2 \varepsilon_{0}\right)$, that is, g is $2 \varepsilon_{1}$-close to the function g_{j} in $H^{1}(D)$, the inverse map of F_{1} can be written as a limit $\left(F_{1}^{-1}(g), g\right)=\lim _{m \rightarrow \infty} \mathcal{H}_{j}^{\circ m}\left(v_{j}, g\right)$ in $H^{1}(D)^{2}$, where

$$
\mathcal{H}_{j}\binom{u}{g}=\binom{u-A_{v_{j}}^{-1}\left(F_{1}(u)-F_{1}\left(v_{j}\right)\right)+A_{v_{j}}^{-1}\left(g-g_{j}\right)}{g} .
$$

That is, near g_{j} we can approximate F_{1}^{-1} as a composition $\mathcal{H}_{j}^{\circ m}$ of $2 m$ layers of neural operators. To glue the local inverse maps together, we use a partition of unity in the function space \mathcal{Y} given by integral neural operators
$\Phi_{\vec{i}}(v, w)=\pi_{1} \circ \phi_{\vec{i}, 1} \circ \phi_{\vec{i}, 2} \circ \cdots \circ \phi_{\vec{i}, \ell_{0}}(v, w), \quad$ where $\quad \phi_{\vec{i}, \ell}(v, w)=\left(F_{y \ell, s(\vec{i}, \ell), \epsilon_{1}}(v, w), w\right)$,
$\pi_{1}(v, w)=v$ maps a pair (v, w) to the first function v, and \vec{i} belongs to a finite index set $\mathcal{I} \subset \mathbb{Z}^{\ell_{0}}$, $\epsilon_{1}>0$ and $y_{\ell} \in D\left(\ell=1, \ldots, \ell_{0}\right)$, where $s(\vec{i}, \ell):=i_{\ell} \epsilon_{1}$. Here, $F_{z, s, h}(v, w)$ are integral neural operators with distributional kernels

$$
F_{z, s, h}(v, w)(x)=\int_{D} k_{z, s, h}(x, y, v(x), w(y)) d y
$$

where $k_{z, s, h}(x, y, v(x), w(y))=v(x) \mathbf{1}_{\left[s-\frac{1}{2} h, s+\frac{1}{2} h\right)}(w(y)) \delta(y-z), \mathbf{1}_{A}$ is the indicator function of a set A and $y \mapsto \delta(y-z)$ is the Dirac delta distribution at the point $z \in D$. Using these, we can write the inverse of F_{1} at $g \in \mathcal{Y}$ as

$$
\begin{equation*}
F_{1}^{-1}(g)=\lim _{m \rightarrow \infty} \sum_{\vec{i} \in \mathcal{I}} \Phi_{\vec{i}} \mathcal{H}_{j(\vec{i})}^{\circ m}\binom{v_{j(\vec{i})}}{g} \tag{E.6}
\end{equation*}
$$

where $j(\vec{i}) \in\{1,2, \ldots, J\}$ are suitably chosen and the limit is taken in the norm topology of $H^{1}(D)$. This result is summarized by the following theorem, a modified version of Theorem 3 where the inverse operator F_{1}^{-1} in E.6 have refined the partition of unity $\Phi_{\vec{i}}$ so that we use indexes $\vec{i} \in \mathcal{I} \subset \mathbb{Z}^{\ell_{0}}$ instead of $j \in\{1, \ldots, J\}$.
Theorem 4. Assume that F_{1} satisfies the above assumptions (E.1) and (E.4) and that $F_{1}: H^{1}(D) \rightarrow$ $H^{1}(D)$ is a bijection. Let $\mathcal{Y} \subset \sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right)$ be a compact subset the Sobolev space $H^{1}(D)$, where $\alpha>0$ and $a \geq 0$. Then the inverse of $F_{1}: H^{1}(D) \rightarrow H^{1}(D)$ in \mathcal{Y} can written as a limit (E.6) that is, as a limit of integral neural operators.

Observe that Theorem 4 includes the case where $a=1$, in which case $\sigma_{a}=I d$ and $\mathcal{Y} \subset$ $\left.\sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right)=B_{C^{1, \alpha}(\bar{D})}(0, R)\right)$. We note that when σ_{a} is a leaky ReLU-function with parameter $a>0$, Theorem 4 can be applied to compute the inverse of $\sigma_{a} \circ F_{1}$ given by $F_{1}^{-1} \circ \sigma_{a}^{-1}$, where $\sigma_{a}^{-1}=\sigma_{1 / a}$. Note that the assumption that $\mathcal{Y} \subset \sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right)$ makes it possible to apply Theorem 4 in the case when one trains deep neural networks having layers $\sigma_{a} \circ F_{1}$ and the parameter a of the leaky ReLU-function is a free parameter which is also trained.

Proof. As the operator F_{1} can be multiplied by function $W(x)^{-1}$, it is sufficient to consider the case when $W(x)=1$.
Below, we use the fact that, because $D \subset \mathbb{R}$, Sobolev's embedding theorem yields that the embedding $H^{1}(D) \rightarrow C(\bar{D})$ is bounded and there is $C_{S}>0$ such that

$$
\begin{equation*}
\|u\|_{C(\bar{D})} \leq C_{S}\|u\|_{H^{1}(D)} \tag{E.7}
\end{equation*}
$$

$$
\begin{aligned}
\left.D^{2} F_{1}\right|_{u_{0}}\left(w_{1}, w_{2}\right) & =\int_{D} 2 \frac{\partial k}{\partial u}\left(x, y, u_{0}(y)\right) w_{1}(y) w_{2}(y) d y+\int_{D} u_{0}(y) \frac{\partial k^{2}}{\partial u^{2}}\left(x, y, u_{0}(y)\right) w_{1}(y) w_{2}(y) d y \\
& =\int_{D} p(x, y) w_{1}(y) w_{2}(y) d y
\end{aligned}
$$

where

$$
\begin{equation*}
p(x, y)=2 \frac{\partial k}{\partial u}\left(x, y, u_{0}(y)\right)+u_{0}(y) \frac{\partial k^{2}}{\partial u^{2}}\left(x, y, u_{0}(y)\right) \tag{E.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial x} p(x, y)=2 \frac{\partial^{2} k}{\partial u \partial x}\left(x, y, u_{0}(y)\right)+u_{0}(y) \frac{\partial k^{3}}{\partial u^{2} \partial x}\left(x, y, u_{0}(y)\right) \tag{E.9}
\end{equation*}
$$

841 Thus,

$$
\left\|\left.D^{2} F_{1}\right|_{u_{0}}\left(w_{1}, w_{2}\right)\right\|_{H^{1}(D)} \leq 3|D|^{1 / 2}\|k\|_{C^{3}(D \times D \times \mathbb{R})}\left(1+\left\|u_{0}\right\|_{L^{\infty}(D)}\right)\left\|w_{1}\right\|_{L^{\infty}(D)}\left\|w_{2}\right\|_{L^{\infty}(D)} .
$$

When we freeze the function u in kernel k to be u_{0}, we denote

$$
K_{u_{0}} v(x)=\int_{D} k\left(x, y, u_{0}(y)\right) v(y) d y
$$

Lemma 4. For $u_{0}, u_{1} \in C(\bar{D})$ we have

$$
\left\|K_{u_{1}}-K_{u_{0}}\right\|_{L^{2}(D) \rightarrow H^{1}(D)} \leq\|k\|_{C^{2}(D \times D \times \mathbb{R})}|D|\left\|u_{1}-u_{0}\right\|_{L^{\infty}(D)} .
$$

844 and

$$
\begin{equation*}
\left\|A_{u_{1}}-A_{u_{0}}\right\|_{L^{2}(D) \rightarrow H^{1}(D)} \leq 2\|k\|_{C^{2}(D \times D \times \mathbb{R})}|D|\left(1+\left\|u_{0}\right\|_{L^{\infty}(D)}\right)\left\|u_{1}-u_{0}\right\|_{L^{\infty}(D)} . \tag{E.11}
\end{equation*}
$$

Proof. Denote

$$
\begin{aligned}
M_{u_{0}} v(x) & =\int_{D} u_{0}(y) \frac{\partial k}{\partial u}\left(x, y, u_{0}(y)\right) v(y) d y \\
N_{u_{1}, u_{2}} v(x) & =\int_{D} u_{1}(y) \frac{\partial k}{\partial u}\left(x, y, u_{2}(y)\right) v(y) d y
\end{aligned}
$$

We have

$$
M_{u_{2}} v-M_{u_{1}} v=\left(N_{u_{2}, u_{2}} v-N_{u_{2}, u_{1}} v\right)+\left(N_{u_{2}, u_{1}} v-N_{u_{1}, u_{1}} v\right) .
$$

$$
\begin{aligned}
\left\|K_{u_{0}}\right\|_{L^{2}(D) \rightarrow L^{2}(D)} & \leq\left(\sup _{x \in D} \int_{D}\left|k\left(x, y, u_{0}(y)\right)\right| d y\right)^{1 / 2}\left(\sup _{y \in D} \int_{D}\left|k\left(x, y, u_{0}(y)\right)\right| d x\right)^{1 / 2} \\
& \leq\|k\|_{C^{0}(D \times D \times \mathbb{R})}
\end{aligned}
$$

$$
\begin{aligned}
& \left\|M_{u_{0}}\right\|_{L^{2}(D) \rightarrow L^{2}(D)} \\
\leq & \left(\sup _{x \in D} \int_{D}\left|u_{0}(y) \frac{\partial k}{\partial u}\left(x, y, u_{0}(y)\right)\right| d y\right)^{1 / 2}\left(\sup _{y \in D} \int_{D}\left|u_{0}(y) \frac{\partial k}{\partial u}\left(x, y, u_{0}(y)\right)\right| d x\right)^{1 / 2} \\
\leq & \|k\|_{C^{1}(D \times D \times \mathbb{R})}\|u\|_{C(\bar{D})},
\end{aligned}
$$

$$
\begin{aligned}
& \left\|K_{u_{2}}-K_{u_{1}}\right\|_{L^{2}(D) \rightarrow L^{2}(D)} \\
\leq & \left(\sup _{x \in D} \int_{D}\left|k\left(x, y, u_{2}(y)\right)-k\left(x, y, u_{1}(y)\right)\right| d y\right)^{1 / 2} \\
& \times\left(\sup _{y \in D} \int_{D}\left|k\left(x, y, u_{2}(y)\right)-k\left(x, y, u_{1}(y)\right)\right| d x\right)^{1 / 2} \\
\leq & \left.\left(\sup _{x \in D} \int_{D}\|k\|_{C^{1}(D \times D \times \mathbb{R})} \mid u_{2}(y)-u_{1}(y)\right) \mid d y\right)^{1 / 2} \\
& \left.\times\left(\sup _{y \in D} \int_{D}\|k\|_{C^{1}(D \times D \times \mathbb{R})} \mid u_{2}(y)-u_{1}(y)\right) \mid d x\right)^{1 / 2} \\
\leq & \left.\left.\|k\|_{C^{1}(D \times D \times \mathbb{R})}\left(\sup _{x \in D} \int_{D} \mid u_{2}(y)-u_{1}(y)\right) \mid d y\right)^{1 / 2}\left(\sup _{y \in D} \int_{D} \mid u_{2}(y)-u_{1}(y)\right) \mid d x\right)^{1 / 2} \\
\leq & \left.\|k\|_{C^{1}(D \times D \times \mathbb{R})}\left(|D|^{1 / 2}\left\|u_{2}-u_{1}\right\|_{L^{2}(D)}\right)^{1 / 2}\left(|D| \sup _{y \in D} \mid u_{2}(y)-u_{1}(y)\right) \mid\right)^{1 / 2} \\
\leq & \|k\|_{C^{1}(D \times D \times \mathbb{R})}|D|^{3 / 4}\left\|u_{2}-u_{1}\right\|_{L^{2}(D)}^{1 / 2}\left\|u_{2}-u_{1}\right\|_{L^{\infty}(D)}^{1 / 2} \\
\leq & \|k\|_{C^{1}(D \times D \times \mathbb{R})}|D|\left\|u_{2}-u_{1}\right\|_{L^{\infty}(D)}
\end{aligned}
$$

850 and

$$
\begin{aligned}
& \left\|N_{u_{2}, u_{2}}-N_{u_{2}, u_{1}}\right\|_{L^{2}(D) \rightarrow L^{2}(D)} \\
\leq & \left(\sup _{x \in D} \int_{D}\left|u_{2}(y) k\left(x, y, u_{2}(y)\right)-u_{2}(y) k\left(x, y, u_{1}(y)\right)\right| d y\right)^{1 / 2} \\
& \times\left(\sup _{y \in D} \int_{D}\left|u_{2}(y) k\left(x, y, u_{2}(y)\right)-u_{2}(y) k\left(x, y, u_{1}(y)\right)\right| d x\right)^{1 / 2} \\
& \quad\|k\|_{C^{1}(D \times D \times \mathbb{R})}|D|^{3 / 4}\left\|u_{2}\right\|_{C^{0}(D)}\left\|u_{2}-u_{1}\right\|_{L^{2}(D)}^{1 / 2}\left\|u_{2}-u_{1}\right\|_{L^{\infty}(D)}^{1 / 2} \\
\leq & \|k\|_{C^{1}(D \times D \times \mathbb{R})}|D| \cdot\left\|u_{2}\right\|_{C^{0}(D)}\left\|u_{2}-u_{1}\right\|_{L^{\infty}(D)}
\end{aligned}
$$

851 and

$$
\begin{aligned}
& \left\|N_{u_{2}, u_{1}}-N_{u_{1}, u_{1}}\right\|_{L^{2}(D) \rightarrow L^{2}(D)} \\
\leq & \left(\sup _{x \in D} \int_{D}\left|\left(u_{2}(y)-u_{1}(y)\right) k\left(x, y, u_{1}(y)\right)\right| d y\right)^{1 / 2} \\
& \times\left(\sup _{y \in D} \int_{D}\left|\left(u_{2}(y)-u_{1}(y)\right) k\left(x, y, u_{1}(y)\right)\right| d x\right)^{1 / 2} \\
\leq & \|k\|_{C^{0}(D \times D \times \mathbb{R})}|D| \cdot\left\|u_{2}-u_{1}\right\|_{L^{\infty}(D)},
\end{aligned}
$$

852 so that

$$
\begin{aligned}
& \left\|M_{u_{2}}-M_{u_{1}}\right\|_{L^{2}(D) \rightarrow L^{2}(D)} \\
\leq & \|k\|_{C^{1}(D \times D \times \mathbb{R})}|D|\left(1+\left\|u_{2}\right\|_{C^{0}(D)}\right)\left\|u_{2}-u_{1}\right\|_{L^{\infty}(D)} .
\end{aligned}
$$

853 Also, when $D_{x} v=\frac{d v}{d x}$,

$$
\begin{aligned}
& \left\|D_{x} \circ K_{u_{0}}\right\|_{L^{2}(D) \rightarrow L^{2}(D)} \\
\leq & \left(\sup _{x \in D} \int_{D}\left|D_{x} k\left(x, y, u_{0}(y)\right)\right| d y\right)^{1 / 2}\left(\sup _{y \in D} \int_{D}\left|D_{x} k\left(x, y, u_{0}(y)\right)\right| d x\right)^{1 / 2} \\
\leq & \|k\|_{C^{1}(D \times D \times \mathbb{R})}
\end{aligned}
$$

$$
\begin{aligned}
& \left\|D_{x} \circ K_{u_{1}}-D_{x} \circ K_{u_{0}}\right\|_{L^{2}(D) \rightarrow L^{2}(D)} \\
\leq & \left(\sup _{x \in D} \int_{D}\left|D_{x} k\left(x, y, u_{1}(y)\right)-D_{x} k\left(x, y, u_{0}(y)\right)\right| d y\right)^{1 / 2} \\
& \times\left(\sup _{y \in D} \int_{D}\left|D_{x} k\left(x, y, u_{1}(y)\right)-D_{x} k\left(x, y, u_{0}(y)\right)\right| d x\right)^{1 / 2} \\
\leq & \left.\left(\sup _{x \in D} \int_{D}\|k\|_{C^{2}(D \times D \times \mathbb{R})} \mid u_{1}(y)-u_{0}(y)\right) \mid d y\right)^{1 / 2} \\
& \left.\times\left(\sup _{y \in D} \int_{D}\|k\|_{C^{2}(D \times D \times \mathbb{R})} \mid u_{1}(y)-u_{0}(y)\right) \mid d x\right)^{1 / 2} \\
\leq & \left.\left.\|k\|_{C^{2}(D \times D \times \mathbb{R})}\left(\sup _{x \in D} \int_{D} \mid u_{1}(y)-u_{0}(y)\right) \mid d y\right)^{1 / 2}\left(\sup _{y \in D} \int_{D} \mid u_{1}(y)-u_{0}(y)\right) \mid d x\right)^{1 / 2} \\
\leq & \left.\|k\|_{C^{2}(D \times D \times \mathbb{R})}\left(|D|^{1 / 2}\left\|u_{1}-u_{0}\right\|_{L^{2}(D)}\right)^{1 / 2}\left(|D| \sup _{y \in D} \mid u_{1}(y)-u_{0}(y)\right) \mid\right)^{1 / 2} \\
\leq & \|k\|_{C^{2}(D \times D \times \mathbb{R})|D|^{3 / 4}\left\|u_{1}-u_{0}\right\|_{L^{2}(D)}^{1 / 2}\left\|u_{1}-u_{0}\right\|_{L^{\infty}(D)}^{1 / 2}}^{\leq}\|k\|_{C^{2}(D \times D \times \mathbb{R})|D|\left\|u_{1}-u_{0}\right\|_{L^{\infty}(D)}}
\end{aligned}
$$

855 Thus,

$$
\left\|K_{u_{0}}\right\|_{L^{2}(D) \rightarrow H^{1}(D)} \leq\|k\|_{C^{1}(D \times D \times \mathbb{R})}
$$

856 and

$$
\left\|M_{u_{0}}\right\|_{L^{2}(D) \rightarrow H^{1}(D)} \leq\left\|u_{0}\right\|_{C^{0}(D)}\|k\|_{C^{1}(D \times D \times \mathbb{R})}
$$

857 and

$$
\left\|K_{u_{1}}-K_{u_{0}}\right\|_{L^{2}(D) \rightarrow H^{1}(D)} \leq\|k\|_{C^{2}(D \times D \times \mathbb{R})}|D|\left\|u_{1}-u_{0}\right\|_{L^{\infty}(D)}
$$

858 Similarly,

$$
\left\|M_{u_{1}}-M_{u_{0}}\right\|_{L^{2}(D) \rightarrow H^{1}(D)} \leq\|k\|_{C^{2}(D \times D \times \mathbb{R})}|D|\left(1+\left\|u_{2}\right\|_{C^{0}(D)}\right)\left\|u_{1}-u_{0}\right\|_{L^{\infty}(D)}
$$

859 As $A_{u_{1}}=K_{u_{1}}+M_{u_{1}}$, the claim follows.
860 As the embedding $H^{1}(D) \rightarrow C(\bar{D})$ is bounded and has norm C_{S}, Lemma 4 implies that for all $861 \quad R>0$ there is

$$
C_{L}(R)=2\|k\|_{C^{2}(D \times D \times \mathbb{R})}|D|\left(1+C_{S} R\right),
$$

862 such that the map,

$$
\begin{equation*}
\left.u_{0} \mapsto D F_{1}\right|_{u_{0}}, \quad u_{0} \in \bar{B}_{H^{1}}(0, R) \tag{E.12}
\end{equation*}
$$

863 is a Lipschitz map $\bar{B}_{H^{1}}(0, R) \rightarrow \mathcal{L}\left(H^{1}(D), H^{1}(D)\right)$ with Lipschitz constant $C_{L}(R)$, that is,

$$
\begin{equation*}
\left\|\left.D F_{1}\right|_{u_{1}}-\left.D F_{1}\right|_{u_{2}}\right\|_{H^{1}(D) \rightarrow H^{1}(D)} \leq C_{L}(R)\left\|u_{1}-u_{2}\right\|_{H^{1}(D)} \tag{E.13}
\end{equation*}
$$

864 As $u_{0} \mapsto A_{u_{0}}=\left.D F_{1}\right|_{u_{0}}$ is continuous, the inverse $A_{u_{0}}^{-1}: H^{1}(D) \rightarrow H^{1}(D)$ exists for all $865 u_{0} \in C(\bar{D})$, and the embedding $H^{1}(D) \rightarrow C(\bar{D})$ is compact, we have that for all $R>0$ there is $866 C_{B}(R)>0$ such that

$$
\begin{equation*}
\left\|A_{u_{0}}^{-1}\right\|_{H^{1}(D) \rightarrow H^{1}(D)} \leq C_{B}(R), \quad \text { for all } u_{0} \in \bar{B}_{H^{1}}(0, R) \tag{E.14}
\end{equation*}
$$

867 Let $R_{1}, R_{2}>0$ be such that $\mathcal{Y} \subset \bar{B}_{H^{1}}\left(0, R_{1}\right)$ and $X=F_{1}^{-1}(\mathcal{Y}) \subset \bar{B}_{H^{1}}\left(0, R_{2}\right)$. Below, we denote $868 \quad C_{L}=C_{L}\left(2 R_{2}\right)$ and $C_{B}=C_{B}\left(R_{2}\right)$.
where, see (E.10),

$$
C_{0}=3|D|^{1 / 2}\|k\|_{C^{3}(D \times D \times \mathbb{R})}\left(1+2 C_{S} R_{2}\right) C_{S}^{2},
$$

883 so that for $u_{1}, u_{2} \in \bar{B}_{H^{1}}\left(0,2 R_{2}\right)$,

$$
\begin{aligned}
& u_{1}-u_{2}-A_{v_{j}}^{-1}\left(F_{1}\left(u_{1}\right)-F_{1}\left(u_{2}\right)\right) \\
= & u_{1}-u_{2}-A_{u_{2}}^{-1}\left(F_{1}\left(u_{1}\right)-F_{1}\left(u_{2}\right)\right)-\left(A_{u_{2}}^{-1}-A_{v_{j}}^{-1}\right)\left(F_{1}\left(u_{1}\right)-F_{1}\left(u_{2}\right)\right),
\end{aligned}
$$ and

$$
\begin{aligned}
& \left\|u_{1}-u_{2}-A_{u_{2}}^{-1}\left(F_{1}\left(u_{1}\right)-F_{1}\left(u_{2}\right)\right)\right\|_{H^{1}(D)} \\
= & \left\|A_{u_{2}}^{-1}\left(B_{u_{2}}\left(u_{1}-u_{2}\right)\right)\right\|_{H^{1}(D)} \\
\leq & \left\|A_{u_{2}}^{-1}\right\|_{H^{1}(D) \rightarrow H^{1}(D)}\left\|B_{u_{2}}\left(u_{1}-u_{2}\right)\right\|_{H^{1}(D)} \\
\leq & \left\|A_{u_{2}}^{-1}\right\|_{H^{1}(D) \rightarrow H^{1}(D)} C_{0}\left\|u_{1}-u_{2}\right\|_{H^{1}(D)}^{2}, \\
\leq & C_{B} C_{0}\left\|u_{1}-u_{2}\right\|_{H^{1}(D)}^{2},
\end{aligned}
$$

$$
\begin{aligned}
& \left\|\left(A_{u_{2}}^{-1}-A_{v_{j}}^{-1}\right)\left(F_{1}\left(u_{1}\right)-F_{1}\left(u_{2}\right)\right)\right\|_{H^{1}(D)} \\
\leq & \left\|A_{u_{2}}^{-1}-A_{v_{j}}^{-1}\right\|_{H^{1}(D) \rightarrow H^{1}(D)}\left\|F_{1}\left(u_{1}\right)-F_{1}\left(u_{2}\right)\right\|_{H^{1}(D)} \\
\leq & \operatorname{Lip}_{\bar{B}_{H^{1}}\left(0,2 R_{2}\right) \rightarrow H^{1}(D)}\left(A_{\cdot}^{-1}\right)\left\|u_{2}-v_{j}\right\| \operatorname{Lip}_{\bar{B}_{H^{1}}\left(0,2 R_{2}\right) \rightarrow H^{1}(D)}\left(F_{1}\right)\left\|u_{2}-u_{1}\right\|_{H^{1}(D)} \\
\leq & C_{A}\left\|u_{2}-v_{j}\right\|\left(C_{B}+4 C_{0} R_{2}\right)\left\|u_{2}-u_{1}\right\|_{H^{1}(D)},
\end{aligned}
$$

see (E.2), and hence, when $\left\|u-v_{j}\right\| \leq r \leq R_{2}$,

$$
\begin{aligned}
& \left\|H_{j}\left(u_{1}\right)-H_{j}\left(u_{2}\right)\right\|_{H^{1}(D)} \\
\leq & \left\|u_{1}-u_{2}-A_{v_{j}}^{-1}\left(F_{1}\left(u_{1}\right)-F_{1}\left(u_{2}\right)\right)\right\|_{H^{1}(D)} \\
\leq & \left\|u_{1}-u_{2}-A_{u_{2}}^{-1}\left(F_{1}\left(u_{1}\right)-F_{1}\left(u_{2}\right)\right)\right\|_{H^{1}(D)}+\left\|\left(A_{u_{2}}^{-1}-A_{v_{j}}^{-1}\right)\left(F_{1}\left(u_{1}\right)-F_{1}\left(u_{2}\right)\right)\right\|_{H^{1}(D)} \\
\leq & \left(C_{B} C_{0}\left(\left\|u_{1}-v_{j}\right\|_{H^{1}(D)}+\left\|u_{2}-v_{j}\right\|_{H^{1}(D)}\right)+C_{A}\left(C_{B}+4 C_{0} R_{2}\right)\left\|u_{2}-v_{j}\right\|\right) \cdot\left\|u_{2}-u_{1}\right\|_{H^{1}(D)} \\
\leq & C_{H} r\left\|u_{2}-u_{1}\right\|_{H^{1}(D)},
\end{aligned}
$$

We now choose

$$
r=\min \left(\frac{1}{2 C_{H}}, R_{2}\right)
$$

We consider

$$
\varepsilon_{0} \leq \frac{1}{8 C_{B}} \frac{1}{2 C_{H}}
$$

Then, we have

$$
r \geq 2 C_{B} \varepsilon_{0} /\left(1-C_{H} r\right)
$$

Then, we have that $\operatorname{Lip}_{\bar{B}_{H^{1}}\left(0,2 R_{2}\right) \rightarrow H^{1}(D)}\left(H_{j}\right) \leq a=C_{H} r<\frac{1}{2}$, and

$$
r \geq\left\|A_{v_{j}}^{-1}\right\|_{H^{1}(D) \rightarrow H^{1}(D)}\left\|g-g_{j}\right\|_{H^{1}(D)} /(1-a)
$$

892 893

$$
C_{H}=2 C_{B} C_{0}+C_{A}\left(C_{B}+4 C_{0} R_{2}\right) .
$$

Then, we have
and for all $u \in \bar{B}_{H^{1}}\left(0, R_{2}\right)$ such that $\left\|u-v_{j}\right\| \leq r$, we have $\left\|A_{v_{j}}^{-1}\left(g-g_{j}\right)\right\|_{H^{1}(D)} \leq(1-a) r$. Then,

$$
\begin{aligned}
\left\|H_{j}(u)-v_{j}\right\|_{H^{1}(D)} & \leq\left\|H_{j}(u)-H_{j}\left(v_{j}\right)\right\|_{H^{1}(D)}+\left\|H_{j}\left(v_{j}\right)-v_{j}\right\|_{H^{1}(D)} \\
& \leq a\left\|u-v_{j}\right\|_{H^{1}(D)}+\left\|v_{j}+A_{v_{j}}^{-1}\left(g-g_{j}\right)-v_{j}\right\|_{H^{1}(D)} \\
& \leq a r+\left\|A_{v_{j}}^{-1}\left(g-g_{j}\right)\right\|_{H^{1}(D)} \leq r,
\end{aligned}
$$

By the above, when we choose ε_{0} to have a value

$$
\varepsilon_{0}<\frac{1}{8 C_{B}} \frac{1}{2 C_{H}}
$$ the map F_{1} has a right inverse map \mathcal{R}_{j} in $B_{H^{1}}\left(g_{j}, 2 \varepsilon_{0}\right)$, that is,

$$
\begin{equation*}
F_{1}\left(\mathcal{R}_{j}(g)\right)=g, \quad \text { for } g \in B_{H^{1}}\left(g_{j}, 2 \varepsilon_{0}\right) \tag{E.18}
\end{equation*}
$$

and by Banach fixed point theorem it is given by the limit

$$
\begin{equation*}
\mathcal{R}_{j}(g)=\lim _{m \rightarrow \infty} w_{j, m}, \quad g \in B_{H^{1}}\left(g_{j}, 2 \varepsilon_{0}\right) \tag{E.19}
\end{equation*}
$$

in $H^{1}(D)$, where

$$
\begin{align*}
& w_{j, 0}=v_{j} \tag{E.20}\\
& w_{j, m+1}=H_{j}^{g}\left(w_{j, m}\right) \tag{E.21}
\end{align*}
$$

We can write for $g \in B_{H^{1}}\left(g_{j}, 2 \varepsilon_{0}\right)$,

$$
\binom{\mathcal{R}_{j}(g)}{g}=\lim _{m \rightarrow \infty} \mathcal{H}_{j}^{\circ m}\binom{v_{j}}{g},
$$

where the limit takes space in $H^{1}(D)^{2}$ and

$$
\begin{equation*}
\mathcal{H}_{j}^{\circ m}=\mathcal{H}_{j} \circ \mathcal{H}_{j} \circ \cdots \circ \mathcal{H}_{j}, \tag{E.22}
\end{equation*}
$$

is the composition of m operators \mathcal{H}_{j}. This implies that \mathcal{R}_{j} can be written as a limit of finite iterations of neural operators H_{j} (we will consider how the operator $A_{v_{j}}^{-1}$ can be written as a neural operator below).
As $\mathcal{Y} \subset \sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right)$, there are finite number of points $y_{\ell} \in D, \ell=1,2, \ldots, \ell_{0}$ and $\varepsilon_{1}>0$ such that the sets

$$
Z\left(i_{1}, i_{2}, \ldots, i_{\ell_{0}}\right)=\left\{g \in Y:\left(i_{\ell}-\frac{1}{2}\right) \varepsilon_{1} \leq g\left(y_{\ell}\right)<\left(i_{\ell}+\frac{1}{2}\right) \varepsilon_{1}, \text { for all } \ell\right\}
$$

where $i_{1}, i_{2}, \ldots, i_{\ell_{0}} \in \mathbb{Z}$, satisfy the condition

$$
\begin{equation*}
\text { If }\left(Z\left(i_{1}, i_{2}, \ldots, i_{\ell_{0}}\right) \cap \mathcal{Y}\right) \cap B_{H^{1}(D)}\left(g_{j}, \varepsilon_{0}\right) \neq \emptyset \text { then } Z\left(i_{1}, i_{2}, \ldots, i_{\ell_{0}}\right) \cap \mathcal{Y} \subset B_{H^{1}(D)}\left(g_{j}, 2 \varepsilon_{0}\right) \tag{E.23}
\end{equation*}
$$

To show $(\overline{\mathrm{E} .23})$, we will below use the mean value theorem for function $g=\sigma_{a} \circ v \in \mathcal{Y}$, where $v \in C^{1, \alpha}(D)$. First, let us consider the case when the parameter a of the leaky ReLU function σ_{a} is strictly positive. Without loss of generality, we can assume that $D=[0,1]$ and $y_{\ell}=h \ell$, where $h=1 / \ell_{0}$ and $\ell=0,1, \ldots, \ell_{0}$. We consider $g \in \mathcal{Y} \cap Z\left(i_{1}, i_{2}, \ldots, i_{\ell_{0}}\right) \subset \sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right)$ of the form $g=\sigma_{a} \circ v$. As a is non-zero, the inequality $\left(i_{\ell}-\frac{1}{2}\right) \varepsilon_{1} \leq g\left(y_{\ell}\right)<\left(i_{\ell}+\frac{1}{2}\right) \varepsilon_{1}$ is equivalent to $\sigma_{1 / a}\left(\left(i_{\ell}-\frac{1}{2}\right) \varepsilon_{1}\right) \leq v\left(y_{\ell}\right)<\sigma_{1 / a}\left(\left(i_{\ell}+\frac{1}{2}\right) \varepsilon_{1}\right)$, and thus

$$
\begin{equation*}
\sigma_{1 / a}\left(i_{\ell} \varepsilon_{1}\right)-A \varepsilon_{1} \leq v\left(y_{\ell}\right)<\sigma_{1 / a}\left(i_{\ell} \varepsilon_{1}\right)+A \varepsilon_{1} \tag{E.24}
\end{equation*}
$$

where $A=\max (1, a, 1 / a)$, that is, for $g=\sigma_{a}(v) \in Z\left(i_{1}, i_{2}, \ldots, i_{\ell_{0}}\right)$ the values $v\left(y_{\ell}\right)$ are known within small errors. By applying mean value theorem on the interval $\left[\left(\ell_{1}-1\right) h, \ell_{1} h\right]$ for function v we see that there is $x^{\prime} \in\left[\left(\ell_{1}-1\right) h, \ell_{1} h\right]$ such that

$$
\frac{d v}{d x}\left(x^{\prime}\right)=\frac{v\left(\ell_{1} h\right)-v\left(\left(\ell_{1}-1\right) h\right)}{h}
$$

and thus by (E.24),

$$
\begin{equation*}
\left|\frac{d v}{d x}\left(x^{\prime}\right)-d_{\ell, \vec{i}}\right| \leq 2 A \frac{\varepsilon_{1}}{h} \tag{E.25}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{\ell, \vec{i}}=\frac{1}{h}\left(\sigma_{1 / a}\left(i_{\ell} \varepsilon_{1}\right)-\sigma_{1 / a}\left(\left(i_{\ell}-1\right) \varepsilon_{1}\right)\right) \tag{E.26}
\end{equation*}
$$

Observe that these estimates are useful when ε_{1} is much smaller that h. As $g=\sigma_{a} \circ v \in \mathcal{Y} \subset$ $\sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right)$, we have $v \in \bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)$, so that $\frac{d v}{d x} \in \bar{B}_{C^{0, \alpha}(\bar{D})}(0, R)$ satisfies E.25) implies that

$$
\begin{equation*}
\left|\frac{d v}{d x}(x)-d_{\ell, \vec{i}}\right| \leq 2 A \frac{\varepsilon_{1}}{h}+R h^{\alpha}, \quad \text { for all } x \in\left[\left(\ell_{1}-1\right) h, \ell_{1} h\right] \tag{E.27}
\end{equation*}
$$

Moreover, E.24) and $v \in \bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)$ imply

$$
\begin{equation*}
\left|v(x)-\sigma_{1 / a}\left(i_{\ell} \varepsilon_{1}\right)\right|<A \varepsilon_{1}+R h \tag{E.28}
\end{equation*}
$$

for all $x \in\left[\left(\ell_{1}-1\right) h, \ell_{1} h\right]$.
Let $\varepsilon_{2}=\varepsilon_{2} / A$. When we first choose ℓ_{0} to be large enough (so that $h=1 / \ell_{0}$ is small) and then ε_{1} to be small enough, we may assume that

$$
\begin{equation*}
\max \left(2 A \frac{\varepsilon_{1}}{h}+R h^{\alpha}, A \varepsilon_{1}+R h\right)<\frac{1}{8} \varepsilon_{2} . \tag{E.29}
\end{equation*}
$$

Then for any two functions $g, g^{\prime} \in \mathcal{Y} \cap Z\left(i_{1}, i_{2}, \ldots, i_{\ell_{0}}\right) \subset \sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right)$ of the form $g=\sigma_{a} \circ v, g^{\prime}=\sigma_{a} \circ v^{\prime}$ the inequalities E.27) and E.28) imply

$$
\begin{align*}
& \left|\frac{d v}{d x}(x)-\frac{d v^{\prime}}{d x}(x)\right|<\frac{1}{4} \varepsilon_{2}, \tag{E.30}\\
& \left|v(x)-v^{\prime}(x)\right|<\frac{1}{4} \varepsilon_{2},
\end{align*}
$$

for all $x \in D$. As $v, v^{\prime} \in \bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)$, this implies

$$
\left\|v-v^{\prime}\right\|_{C^{1}(\bar{D})}<\frac{1}{2} \varepsilon_{2}
$$

As the embedding $C^{1}(\bar{D}) \rightarrow H^{1}(D)$ is continuous and has norm less than 2 on the interval $D=[0,1]$, we see that

$$
\left\|v-v^{\prime}\right\|_{H^{1}(\bar{D})}<\varepsilon_{2}
$$

and thus

$$
\left\|g-g^{\prime}\right\|_{H^{1}(\bar{D})}<A \varepsilon_{2}=\varepsilon_{0}
$$

Hence, the property (E.23) follows.
We next consider the case when the parameter a of the leaky relu function σ_{a} is zero. Again, we assume that $D=[0,1]$ and $y_{\ell}=h \ell$, where $h=1 / \ell_{0}$ and $\ell=0,1, \ldots, \ell_{0}$. We consider $g \in \mathcal{Y} \cap$ $Z\left(i_{1}, i_{2}, \ldots, i_{\ell_{0}}\right) \subset \sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right)$ of the form $g=\sigma_{a}(v)$ and an interval $\left[\ell_{1} h,\left(\ell_{1}+1\right) h\right] \subset D$, where $1 \leq \ell_{1} \leq \ell_{0}-2$. We will consider four cases. First, if g does not obtain the value zero on the interval $\left[\ell_{1} h,\left(\ell_{1}+1\right) h\right]$ the mean value theorem implies that there is $x^{\prime} \in\left[\ell_{1} h,\left(\ell_{1}+1\right) h\right]$ such that $\frac{d g}{d x}\left(x^{\prime}\right)=\frac{d v}{d x}\left(x^{\prime}\right)$ is equal to $d=\left(g\left(\ell_{1} h\right)-g\left(\left[\left(\ell_{1}-1\right) h\right)\right) / h\right.$. Second, if g does not obtain the value zero on either of the intervals $\left[\left(\ell_{1}-1\right) h, \ell_{1} h\right]$ or $\left[\left(\ell_{1}+1\right) h,\left(\ell_{1}+2\right) h\right]$, we can use the mean value theorem to estimate the derivatives of g and v at some point of these intervals similarly to the first case. Third, if g does not vanish identically on the interval $\left[\ell_{1} h,\left(\ell_{1}+1\right) h\right]$ but it obtains the value zero on the both intervals $\left[\left(\ell_{1}-1\right) h, \ell_{1} h\right]$ and $\left[\left(\ell_{1}+1\right) h,\left(\ell_{1}+2\right) h\right]$, the function v has two zeros on the interval $\left[\left(\ell_{1}-1\right) h,\left(\ell_{1}+2\right) h\right]$ and the mean value theorem implies that there is $x^{\prime} \in\left[\left(\ell_{1}-1\right) h,\left(\ell_{1}+2\right) h\right]$ such that $\frac{d v}{d x}\left(x^{\prime}\right)=0$. Fourth, if none of the above cases are valid, g vanishes identically on the interval $\left[\ell_{1} h,\left(\ell_{1}+1\right) h\right]$. In all these cases the fact that $\|v\|_{C^{1, \alpha}(\bar{D})} \leq R$ implies that the derivative of g can be estimated on the whole interval $\left[\ell_{1} h,\left(\ell_{1}+1\right) h\right]$ within a small error. Using these observations we see for any $\varepsilon_{2}, \varepsilon_{3}>0$ that if $y_{\ell} \in D=\left[d_{1}, d_{2}\right] \subset \mathbb{R}, \ell=1,2, \ldots, \ell_{0}$ are a sufficiently dense grid in D and ε_{1} to be small enough, then the derivatives of any two functions $g, g^{\prime} \in \mathcal{Y} \cap Z\left(i_{1}, i_{2}, \ldots, i_{\ell_{0}}\right) \subset \sigma_{a}\left(\bar{B}_{C^{1, \alpha}(\bar{D})}(0, R)\right)$ of the form $g=\sigma_{a}(v), g^{\prime}=\sigma_{a}\left(v^{\prime}\right)$ satisfly $\left\|g-g^{\prime}\right\|_{H^{1}\left(\left[d_{1}+\varepsilon_{3}, d_{2}-\varepsilon_{3}\right]\right)}<\varepsilon_{2}$. As the embedding $C^{1}\left(\left[d_{1}+\varepsilon_{3}, d_{2}-\varepsilon_{3}\right]\right) \rightarrow H^{1}\left(\left[d_{1}+\varepsilon_{3}, d_{2}-\varepsilon_{3}\right]\right)$ is continuous,

$$
\begin{aligned}
\left\|\sigma_{a}(v)\right\|_{H^{1}\left(\left[d_{1}, d_{1}+\varepsilon_{3}\right]\right)} \leq c_{a}\|v\|_{C^{1, \alpha}(\bar{D})} \sqrt{\varepsilon_{3}}, \\
\left\|\sigma_{a}(v)\right\|_{H^{1}\left(\left[d_{2}-\varepsilon_{3}, d_{2}\right]\right)} \leq c_{a}\|v\|_{C^{1, \alpha}(\bar{D})} \sqrt{\varepsilon_{3}},
\end{aligned}
$$

and ε_{2} and ε_{3} can be chosen to be arbitrarily small, we see that the property E .23 follows. Thus the property E.23) is shown in all cases.
with suitably chosen $j(\vec{i}) \in\{1,2, \ldots, J\}$.
Let us finally consider $A_{u_{0}}^{-1}$ where $u_{0} \in C(\bar{D})$. Let us denote

$$
\widetilde{K}_{u_{0}} w=\int_{D} u_{0}(y) \frac{\partial k}{\partial u}\left(x, y, u_{0}(y)\right) w(y) d y
$$

and $J_{u_{0}}=K_{u_{0}}+\widetilde{K}_{u_{0}}$ be the integral operator with kernel

$$
j_{u_{0}}(x, y)=k\left(x, y, u_{0}(y)\right)+u_{0}(y) \frac{\partial k}{\partial u}\left(x, y, u_{0}(y)\right) .
$$

We have

$$
\left(I+J_{u_{0}}\right)^{-1}=I-J_{u_{0}}+J_{u_{0}}\left(I+J_{u_{0}}\right)^{-1} J_{u_{0}}
$$

so that when we write the linear bounded operator

$$
A_{u_{0}}^{-1}=\left(I+J_{u_{0}}\right)^{-1}: H^{1}(D) \rightarrow H^{1}(D)
$$

as an integral operator

$$
\left(I+J_{u_{0}}\right)^{-1} v(x)=v+\int_{D} m_{u_{0}}(x, y) v(y) d y
$$

971 we have

$$
\begin{aligned}
& \left(I+J_{u_{0}}\right)^{-1} v(x) \\
= & v(x)-J_{u_{0}} v(x) \\
+ & \int_{D}\left(\int_{D}\left\{j_{u_{0}}\left(x, y^{\prime}\right) j_{u_{0}}\left(y, y^{\prime}\right)+\left(\int_{D} j_{u_{0}}\left(x, y^{\prime}\right) m_{u_{0}}\left(y^{\prime}, x^{\prime}\right) j_{u_{0}}\left(x^{\prime}, y\right) d x^{\prime}\right)\right\} d y^{\prime}\right) v(y) d y \\
= & v(x)-\int_{D} \widetilde{j}_{u_{0}}(x, y) v(y) d y
\end{aligned}
$$

972 where

$$
\widetilde{j}_{u_{0}}(x, y)=-j_{u_{0}}(x, y)+\int_{D}\left(j_{u_{0}}\left(x, y^{\prime}\right) j_{u_{0}}\left(y, y^{\prime}\right) d y^{\prime}+\int_{D} \int_{D} j_{u_{0}}\left(x, y^{\prime}\right) m_{u_{0}}\left(y^{\prime}, x^{\prime}\right) j_{u_{0}}\left(x^{\prime}, y\right) d x^{\prime} d y^{\prime}\right.
$$

973 This implies that the operator $A_{u_{0}}^{-1}=\left(I+J_{u_{0}}\right)^{-1}$ is a neural operator, too. Observe that ${ }_{974} \widetilde{j}_{u_{0}}(x, y), \partial_{x} \widetilde{j}_{u_{0}}(x, y) \in C(\bar{D} \times \bar{D})$.

975 This proves Theorem 3

[^0]: ${ }^{1}$ e.g., step functions whose supports are disjoint for each sequence.

[^1]: ${ }^{2}$ For example, if we choose the integral kernel $k_{i n j}$ as $k_{i n j}(x, y)=\sum_{k=1}^{\infty} \vec{\varphi}_{k}(x) \vec{\varphi}_{k}(y)$, then the integral operator K_{inj} with the kernel k_{inj} is injective where $\{\vec{\varphi}\}_{k}$ is the orthonormal basis in $L^{2}(D)^{d_{i n}}$.

