Appendix for "Residual Alignment: Uncovering the Mechanisms of Residual Networks"

Anonymous Author(s)
Affiliation
Address
email

1 (RA2+3+4) Imply (RA1)

Theorem 3.1. In a pre-activation ResNet, assuming the Jacobian linearizations are exact and satisfy $(R A 2+3+4)$, then (RA1) holds for the intermediate representations.

Proof. In a pre-activation ResNet,

$$
h_{i+1}=h_{i}+\mathcal{F}\left(h_{i} ; \mathcal{W}_{i}\right)
$$

Since Jacobian linearizations are exact, we have:

$$
h_{i+1}=\left(I+J_{i}\right) h_{i} .
$$

Recall, the singular value decomposition of J_{i} is given by

$$
J_{i}=U_{i} S_{i} V_{i}^{\top}
$$

where U_{i} and V_{i} are the respective left and right singular vectors, and S_{i} is the singular value matrix. Invoking (RA2),

$$
J_{i}=U S_{i} U^{\top}
$$

and therefore

$$
h_{i+1}=\left(I+U S_{i} U^{\top}\right) h_{i} .
$$

Applying recursively the above equality leads to

$$
\begin{equation*}
h_{k}=\left(\prod_{i=1}^{k-1}\left(I+U S_{i} U^{\top}\right)\right) h_{1}=U\left(\prod_{i=1}^{k-1}\left(I+S_{i}\right)\right) U^{\top} h_{1} \tag{1}
\end{equation*}
$$

For binary classification, (RA3) implies the Jacobians are rank 1 and therefore

$$
h_{k}=U_{k, 1}\left(\prod_{i=1}^{k-1}\left(1+S_{i, 1}\right)\right) U_{k, 1}^{\top} h_{1}
$$

According to (RA4),

$$
S_{i, 1}=\frac{1}{i}
$$

and

$$
\prod_{i=1}^{k-1}\left(1+S_{i, 1}\right)=\prod_{i=1}^{k-1}(1+1 / i)=k
$$

Substituting the above into Equation (1), we obtain

$$
h_{k}=k U_{i, 1} U_{i, 1}^{\top} h_{1} .
$$

This proves that the intermediate representations of a given input are equispaced on a line embedded in high dimensional space, i.e., (RA1).

Denoting the power set of all natural numbers between 1 and L by $\mathcal{P}(L)$, the above can be expressed as follows:

$$
\sum_{s \in \mathcal{P}(L)} \operatorname{tr}\left\{\Delta_{x} w^{\top} \prod_{i \in s} J_{i}\right\}
$$

Each element in the above summation can be upper bounded through the following theorem (a generalization of Von Neumann's trace inequality [Mirsky, 1975] to the product of more than two real matrices).

[^0]Theorem 2 ([Miranda and Thompson, 1993]). Let A_{1}, \ldots, A_{m} be matrices with real entries. Take the singular values of A_{j} to be $s_{1}\left(A_{j}\right) \geq \ldots \geq s_{n}\left(A_{j}\right)$, for $j=1, \ldots, m$, and denote $S_{j}=$ $\operatorname{diag}\left(s_{1}\left(A_{j}\right), \ldots, s_{n}\left(A_{j}\right)\right)$. Then, as the matrices P_{1}, \ldots, P_{m} range over all possible rotations, i.e., the special orthogonal group $\mathrm{SO}(n)$,

$$
\begin{aligned}
& \sup _{P_{1}, \ldots, P_{m} \in \operatorname{SO}(n)} \operatorname{tr}\left(A_{1} P_{1} \ldots A_{m} P_{m}\right) \\
= & \sum_{i=1}^{n-1} \prod_{j=1}^{m} s_{i}\left(A_{j}\right)+\left[\operatorname{sign} \operatorname{det}\left(A_{1} \ldots A_{m}\right)\right] \prod_{j=1}^{m} s_{n}\left(A_{j}\right) .
\end{aligned}
$$

Moreover, assuming sign $\operatorname{det}\left(A_{1} \ldots A_{m}\right)=1$,

$$
\sup _{P_{1}, \ldots, P_{m} \in \operatorname{SO}(n)} \operatorname{tr}\left(A_{1} P_{1} \ldots A_{m} P_{m}\right)=\operatorname{tr}\left\{\prod_{i=1}^{m} S_{i}\right\}
$$

We will continue our proof using contradiction. Suppose all existing global optima of the unconstrained Jacobians problem consist of Jacobians that do not have aligning singular vectors, or do not have equal singular values, or are not rank 1 . Then take any solution $\left\{J_{i}\right\}_{i=1}^{L}$ and w. Using the singular value decomposition, we have

$$
J_{i}=U_{i} S_{i} V_{i}^{\top}, \quad \text { for } i=1, \ldots, L
$$

and

$$
\Delta_{x} w^{\top}=U_{L+1} S_{L+1} V_{L+1}^{\top}
$$

Then Theorem 2 implies

$$
\begin{aligned}
\sum_{s \in \mathcal{P}(L)} \operatorname{tr}\left\{\Delta_{x} w^{\top} \prod_{i \in s} J_{i}\right\} & \leq \sum_{s \in \mathcal{P}(L)} \operatorname{tr}\left\{S_{L+1} \prod_{i \in s} S_{i}\right\} \\
& =\operatorname{tr}\left\{S_{L+1} \prod_{i=1}^{L}\left(I+S_{i}\right)\right\}
\end{aligned}
$$

For all $s \in \mathcal{P}(L)$, the inequality becomes equality once the singular vectors of all the Jacobians align with those of $\Delta_{x} w^{\top}$ and once the vector w is chosen to be proportional to Δ_{x} (so that the matrix $\Delta_{x} w^{\top}$ is symmetric). The implication of the steps thus far is that one can increase, or at least keep constant the logit, and consequently reduce, or at least keep constant the loss by simply aligning the singular vectors of the Jacobians. In addition, since the regularization term $\left\|J_{i}\right\|_{F}^{2}=\operatorname{tr}\left\{S_{i}^{2}\right\}$, this change of Jacobians does not affect the regularization terms.
Notice that $\Delta_{x} w^{\top}$ is a rank one matrix and so S_{L+1} has a single non-zero diagonal entry. Furthermore, the matrices S_{i}, for $1 \leq i \leq L$, are all diagonal. As such, we can zero out all their other diagonal entries and leave a single non-zero entry at the location that S_{L+1} has one, which does not affect the logits but reduces the regularization terms.

Using the inequality of arithmetic and geometric means on this only non-zero entry s_{i} of every diagonal matrix S_{i} gives

$$
s_{L+1} \prod_{i=1}^{L}\left(1+s_{i}\right) \leq s_{L+1}\left(1+\frac{1}{L} \sum_{i=1}^{L} s_{i}\right)^{L}
$$

The implication of the above inequality is that, once the singular vectors of the Jacobians are aligned, one can further increase the logits and reduce the loss by averaging all the top singular values, s_{i} for $1 \leq i \leq L+1$, and forcing them to be equal. Furthermore, since $\left\|J_{i}\right\|_{F}^{2}=\operatorname{tr}\left\{S_{i}^{2}\right\}=s_{i}^{2}$ is convex, by Jensen's inequality, averaging the singular values only decreases the value of the Jacobian regularization.

All in all, we obtain higher, or at least no lower logit, and lower, or at least no higher loss when all singular vectors are aligned, all top singular values are equal and all other singular values are zero, which contradicts the statement that no global optima of the unconstrained Jacobians problem satisfies all of these conditions.

Figure 1: Fully-connected ResNet34 (Type 1 model) trained on MNIST.

Figure 2: Fully-connected ResNet34 (Type 1 model) trained on FashionMNIST.

Figure 3: Fully-connected ResNet34 (Type 1 model) trained on CIFAR10.

Figure 4: Convolutional ResNet34 (Type 2 model) trained on MNIST.

Figure 5: Convolutional ResNet34 (Type 2 model) trained on FashionMNIST.

Figure 6: Convolutional ResNet34 (Type 2 model) trained on CIFAR10.

Figure 7: Convolutional ResNet34 with downsampling (Type 3 model) trained on MNIST.

Figure 8: Convolutional ResNet34 with downsampling (Type 3 model) trained on FashionMNIST.

Figure 9: Convolutional ResNet34 with downsampling (Type 3 model) trained on CIFAR10.

Figure 10: Fully-connected ResNet34 (Type 1 model) trained on MNIST.

Figure 11: Fully-connected ResNet34 (Type 1 model) trained on FashionMNIST.

Figure 12: Fully-connected ResNet34 (Type 1 model) trained on CIFAR10.

Figure 13: Fully-connected ResNet34 (Type 1 model) trained on CIFAR100.

Figure 14: Convolutional ResNet34 (Type 2 model) trained on MNIST.

Figure 15: Convolutional ResNet34 (Type 2 model) trained on FashionMNIST.

Figure 16: Convolutional ResNet34 (Type 2 model) trained on CIFAR10.

Figure 17: Convolutional ResNet34 (Type 2 model) trained on CIFAR100.

Figure 18: Convolutional ResNet34 (Type 2 model) trained on ImageNette.

Figure 19: Convolutional ResNet34 with downsampling (Type 3 model) trained on MNIST.

Figure 20: Convolutional ResNet34 with downsampling (Type 3 model) trained on FashionMNIST.

Figure 21: Convolutional ResNet34 with downsampling (Type 3 model) trained on CIFAR10.

Figure 22: Convolutional ResNet34 with downsampling (Type 3 model) trained on CIFAR100.

Figure 23: Convolutional ResNet34 with downsampling (Type 3 model) trained on ImageNette.

Figure 24: Fully-connected ResNet34 (Type 1 model) trained on MNIST.

Figure 25: Fully-connected ResNet34 (Type 1 model) trained on FashionMNIST.

Figure 26: Fully-connected ResNet34 (Type 1 model) trained on CIFAR10.

Figure 27: Fully-connected ResNet34 (Type 1 model) trained on CIFAR100.

Figure 28: Convolutional ResNet34 (Type 2 model) trained on MNIST.

Figure 29: Convolutional ResNet34 (Type 2 model) trained on FashionMNIST.

Figure 30: Convolutional ResNet34 (Type 2 model) trained on CIFAR10.

Figure 31: Convolutional ResNet34 (Type 2 model) trained on CIFAR100.

Figure 32: Convolutional ResNet34 (Type 2 model) trained on ImageNette.

Figure 33: Convolutional ResNet34 with downsampling (Type 3 model) trained on MNIST.

Figure 34: Convolutional ResNet34 with downsampling (Type 3 model) trained on FashionMNIST.

Figure 35: Convolutional ResNet34 with downsampling (Type 3 model) trained on CIFAR10.

Figure 36: Convolutional ResNet34 with downsampling (Type 3 model) trained on CIFAR100.

Figure 37: Convolutional ResNet34 with downsampling (Type 3 model) trained on ImageNette.

Figure 38: Fully-connected ResNet34 (Type 1 model) trained on MNIST.

Figure 39: Fully-connected ResNet34 (Type 1 model) trained on FashionMNIST.

Figure 40: Fully-connected ResNet34 (Type 1 model) trained on CIFAR10.

Figure 41: Fully-connected ResNet34 (Type 1 model) trained on CIFAR100.

Figure 42: Convolutional ResNet34 (Type 2 model) trained on MNIST.

Figure 43: Convolutional ResNet34 (Type 2 model) trained on FashionMNIST.

Figure 44: Convolutional ResNet34 (Type 2 model) trained on CIFAR10.

Figure 45: Convolutional ResNet34 (Type 2 model) trained on CIFAR100.

Figure 46: Convolutional ResNet34 (Type 2 model) trained on ImageNette.

914 Broader Impacts

92 This work presents foundational research and we do not foresee any potential negative societal 93 impacts.

References

Hector Miranda and Robert C Thompson. A trace inequality with a subtracted term. Linear algebra and its applications, 185:165-172, 1993.

Leon Mirsky. A trace inequality of john von neumann. Monatshefte für mathematik, 79(4):303-306, 1975.

[^0]: ${ }^{1}$ For simplicity, we ignore the input transformation that maps the input Δ_{x} to the first representation $h_{1} \in \mathbb{R}^{D}$ by simply assuming $\Delta_{x} \in \mathbb{R}^{D}$.

