
Adversarial Learning for
Feature Shift Detection and Correction

Míriam Barrabés 1,2,∗ Daniel Mas Montserrat 1,∗ Margarita Geleta 3

Xavier Giró-i-Nieto 4,† Alexander G. Ioannidis 1‡
1Stanford University 2Universitat Politècnica de Catalunya

3University of California, Berkeley 4Amazon

Abstract

Data shift is a phenomenon present in many real-world applications, and while there
are multiple methods attempting to detect shifts, the task of localizing and correct-
ing the features originating such shifts has not been studied in depth. Feature shifts
can occur in many datasets, including in multi-sensor data, where some sensors
are malfunctioning, or in tabular and structured data, including biomedical, finan-
cial, and survey data, where faulty standardization and data processing pipelines
can lead to erroneous features. In this work, we explore using the principles of
adversarial learning, where the information from several discriminators trained to
distinguish between two distributions is used to both detect the corrupted features
and fix them in order to remove the distribution shift between datasets. We show
that mainstream supervised classifiers, such as random forest or gradient boosting
trees, combined with simple iterative heuristics, can localize and correct feature
shifts, outperforming current statistical and neural network-based techniques. The
code is available at https://github.com/AI-sandbox/DataFix.

1 Introduction

Distribution shifts in multi-dimensional data, caused by one or more “corrupted” dimensions, are
common in various real-world applications. Data streams from multi-sensor environments in fields
like medicine, industry, finance, and defense, can experience shifts due to faulty sensors [1]. Tabular
and structured data used in domains such as economics, biology, genomics, and social sciences, can
encounter distribution shifts caused by improper standardization, erroneous data processing, data
collection procedures, or human entry errors [2, 3]. Combining databases from diverse sources is
common in many fields: various hospitals collect different phenotypic characteristics from patients,
and governmental institutions often capture different socio-economic indicators of citizens. However,
proper standardization of data is seldom applied across data sources, and merging these poses
challenges that often require data-dependent and domain-specific techniques [4]. For example,
efficient computational techniques are used to process high-dimensional genomic sequences [5],
and domain knowledge is incorporated in processing data from social sciences [6]. This process
typically involves changing, imputing, merging, and removing both features and samples, potentially
leading to complex pipelines that can originate distribution shifts between datasets. These shifts
can create erroneous scientific results if present in datasets used for medical or social studies, or
indicate infrastructure failure if present in sensory data in industrial applications. Therefore, detecting,
localizing, and correcting such shifts is an important task that remains a relatively unsolved problem.

The “localization” of feature shifts is the task of finding which features (i.e., dimensions) of the dataset
are causing the shift within multiple sets of data. This step can be critical in order to address the error
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source, by physical intervention in the multi-sensory scenario, or by data removal or fixing in tabular
data-based applications. There has been extensive work on distribution shift detection and anomaly
detection [7, 8], however, such methods focus mainly on detecting if two sets of data follow the same
distribution, or on detecting outliers, and the task of identifying the exact components generating
the shift remains partially unexplored. Recently, work combining machine learning techniques with
statistical testing provided state-of-the-art results showing that localizing corrupted features can be
done accurately [9]. In this work, we explore “feature selection” methods as a mechanism to detect
potential feature shifts. The “correction” of feature shifts consists of replacing corrupted feature
values with new ones, ensuring that the updated dataset follows a distribution that is equal to, or
more similar to, the distribution without corruptions. This can be useful in data homogenization
and quality control pipelines, enabling the elimination of shifts between multiple data sources
and their combination for downstream applications, including data discovery or machine learning
training. Feature shift correction can be framed as a supervised problem, employing regression or
classification methods to predict the new feature values; as a missing data imputation problem, by
treating corrupted features as missing values [10, 11]; or as a distribution alignment problem [12, 13],
where mappings between distributions are learned using adversarial learning, optimal transport, or
statistical divergences. Effective techniques for correcting distribution shifts, either by learning
parametric models to predict new values for corrupted features, or directly updating values without
explicit model learning, can be very useful to avoid incorrect or biased results in analysis based on
data containing feature shifts. We provide a more formal definition of the feature shift detection and
correction tasks in the following sections.

Tools for automated shift detection, data monitoring, and feature analysis and correction are becoming
more common in data quality control, data homogenization, data processing pipelines, data-centric
AI, MLOps, and deployment monitoring for ML Systems [14, 15, 16, 17]. In this work, we introduce
“DataFix”, a framework that makes use of discriminators trained to distinguish samples coming from
two different distributions, in order to estimate distribution shifts, localize which features are causing
them, and modify the samples in order to reduce or remove the shift. DataFix is composed of two
systems: “DF-Locate”, which locates the features causing the distribution shift, and “DF-Correct”,
which directly modifies the samples in order to decrease the distribution shift between two datasets.
DF-Locate consists of an iterative process where a discriminator combined with a feature importance
estimator is used to identify the most discriminative features between samples coming from two
different distributions. The detected features are removed from the dataset, a new discriminator is
trained, new feature importances are estimated, and the process is repeated until no distribution shift
is detected. DF-Correct replaces the values of the corrupted features detected by DF-Locate with
values that exhibit a minimal probability of being corrupted when processed by a discriminator.

Our contributions are as follows: (1) we motivate, define, and formalize the problem of feature shift
detection and correction and relate it to feature selection and adversarial learning frameworks; (2)
we propose an iterative algorithm that makes use of feature selection techniques from discriminators
to accurately detect manipulated features; (3) we propose an iterative algorithm that makes use of a
discriminator to guide the correction of a corrupted dataset in order to decrease its distribution shift;
(4) we provide an in-depth experimental evaluation with multiple manipulation types and datasets.

2 Related Work

Distribution Shift Detection and Localization. Distribution shift detection involves identifying if
p ̸= q, where p and q are the reference and query distributions respectively. While there is extensive
research on detecting distribution shifts in univariate distributions [18, 19, 7], exploration in the
multivariate setting is relatively limited [20]. Multivariate distributions can exhibit various types of
shifts, including covariate, label, concept, or marginal shifts, among others [21, 22, 23]. The work
in [8] applies hypothesis testing for concept drift detection. In [20], two-sample hypothesis testing
is explored for shift detection, and a comparison is made between multivariate hypothesis tests via
Maximum-Mean Discrepancy (MMD) [24], univariate hypothesis tests with marginal Kolmogorov-
Smirnov (KS) tests and the Bonferroni correction [25], and dimensionality reduction techniques,
among others. However, these works focus on detecting if a distribution shift is present but do not
localize which features are causing it. Recently, a conditional test method was able to identify the
features originating the shift [9] with model-free and model-based approaches: K-Nearest Neighbors
with KS statistic (KNN-KS), multivariate Gaussian with KS (MB-KS), multivariate Gaussian and
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Fisher-divergence test statistics (MB-SM), and deep density neural network models with Fisher-
divergence test (Deep-SM). However, performing feature shift localization remains challenging.

Feature Selection. Feature selection methods can remove redundant features affecting efficiency
or performance, and find the most relevant features, providing interpretability. Common techniques
include: filtering [26, 27], wrapper [28, 29] and embedded methods [30, 31]. Filtering methods,
including univariate Mutual Information statistics (MI) [32], ANOVA-F test [33], and Chi-square test
[34], rank features based on data statistics. Minimum Redundancy Maximum Relevance (MRMR) [35,
36] selects relevant features while minimizing redundancy with the selected ones. Fast-Conditional
Mutual Information Maximization (FAST-CMIM) [37] selects features that maximize MI, conditional
to previously selected features. Wrapper methods select feature subsets by training models on them
and adding and removing features through a search process that can be computationally intensive.
Embedded methods use the inherent scores computed by predictive models, such as logistic regression
weights [38] or the mean decrease of impurity (Gini index) in random forests [39]. Most methods
select the features with the highest importance scores or all that exceed a given threshold [40].

Missing Data Imputation. Missing data imputation methods can remove distribution shifts by
considering the shifted features as missing and re-constructing them. Imputation methods range from
simple record deletion, zero imputation, mean imputation, and deck imputation [41], to machine
learning-based methods that apply regression and classification to reconstruct missing data including
MICE [10], MissForest [11], and Matrix Completion [42, 43]. Some generative approaches include
Expectation Maximization algorithms [44] and deep learning-based methods such as the MIWAE
autoencoder [45]. Causality-based techniques such as MIRACLE have proven to be highly accurate
[46]. HyperImpute [47] provides state-of-the-art imputation by using an iterative process with ML
methods, including gradient boosting machines and neural networks trained to impute missing data.

Optimal Transport, Distribution Alignment, and Adversarial Learning. Feature shift correction
can also be performed with distribution alignment methods, optimal transport, and adversarial learning.
Distribution alignment and representation learning methods learn a mapping between distributions
and can be used to remove shifts by projecting the shifted samples into the non-shifted distribution.
Iterative Alignment Flows [12] and Deep Density Destructors [13] are neural network examples
that map samples between distributions. Optimal transport-based methods reduce the Wasserstein
distance between distributions. The work in [48] applies a Sinkhorn-based optimization process to
perform imputation. Adversarial learning has been explored in generative adversarial networks such
as GAIN [49], where the loss of a discriminator is used to improve imputation accuracies.

Data-centric AI. Data-centric AI focuses on systematically enriching data quality and quantity as
a means to boost AI and ML performance. It covers strategies that impact every phase of the data
lifecycle, from data collection [50], labeling [51, 52], augmentation [53, 54, 55], and integration [56],
to the crucial processes of data cleaning [57, 58], feature extraction [59], and transformation [60].
These include programmatic automation strategies, which rely on programs guided by heuristics and
statistics for automatic data processing [61, 62, 63], as well as learning-based automation techniques
that optimize data automation procedures, typically using machine learning [64, 65, 66]. The detection
and removal of distribution shifts are becoming essential steps of the data-centric AI toolbox [17].

3 Proposed Framework

Definition 1. [Feature Shift] We are given two sets of d-dimensional samples X = {x1, x2, ..., xN}
and Y = {y1, y2, ..., yN}, with xi, yi ∈ Rd, from distributions p and q, respectively. A feature shift
between p and q occurs when D(p, q) > ε and D(pS , qS) ≤ ε, where D is a valid divergence or
distance between distributions, S and C are the subsets of non-corrupted and corrupted features
respectively, such that |S ∪ C| = d, and pS and qS are the distributions restricted to S.

We will refer toX and Y as the “reference” and “query” datasets, and to p and q as the “reference” and
“query” distributions, respectively. We will assume that the reference contains only “non-corrupted”
features, while the query contains one or more “corrupted” dimensions that we will want to detect and
correct. Here we consider scenarios with ε = 0, D(pS , qS) = 0, D(p, q) ≫ 0, and |S| > |C| ≥ 1.
That is, there are more non-corrupted than corrupted features, the divergence becomes 0 if the
corrupted features are removed, and is large enough to be empirically detected otherwise. We will
consider multiple types of distribution shifts: marginal shifts with D(pi, qi) > ε, where pi and
qi represent the marginal distribution of the ith dimension resulting from additive and non-linear
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Figure 1: DF-Locate overview diagram.

transformations; correlation shifts where D(p, q) > ε but D(pi, qi) ≤ ε for all i; and correlation
shifts where D(pS , qS) ≤ ε and D(pC , qC) ≤ ε but D(p, q) > ε. In the latter case, correlations are
maintained locally, but a shift is present when considering all features simultaneously.

Definition 2. [Feature Shift Localization Task] The task of localizing a feature shift consists
of finding the smallest subset of features C, with C = S, that satisfies D(pC , qC) ≤ ε, that is
C = argminD(pC ,qC)≤ε |C|.

The number of corrupted features |C| will be assumed to be unknown a priori. Furthermore, because
the distributions p and q are assumed to be unknown and only their samples are accessible, the
task needs to be approximated, requiring careful consideration of trade-offs such as falsely flagging
non-corrupted features (false positives) and failing to detect corrupted ones (false negatives).

Definition 3. [Feature Shift Correction Task] The task of correcting a feature shift consists of
finding a new matrix Y ′ = {y′1, y′2, ..., y′N} such that y′i ∼ q′ and D(p, q′) ≤ ε, while keeping the
non-corrupted features unchanged, that is Y ′S = YS .

The correction of shifted features can be done through parametric models that perform sample-
wise transformations y′ = ϕ(y), prediction or imputation methods y′C = ϕ(yC), or optimization
procedures or heuristics Y ′ = Φ(X,Y ). Our proposed approach falls in the latter category.

4 Feature Shift Detection: DF-Locate

DF-Locate (Fig. 1, Algorithm 1) employs an iterative process to detect the presence of a shift and
determine the features causing it. At each iteration, a classifier is trained to detect the origin (binary
label indicating reference vs query) of each sample, the output predictions are used to estimate the
divergence between distributions, and the feature importance scores provided by the binary classifier
are used to locate the features originating the shift. At the end of each iteration, the features detected
as corrupted are removed, and the process is repeated until no divergence is detected.

Shift Detection. We detect whether a shift is present by estimating an f -divergence between the
distributions p and q by using an empirical approximation of the variational form [67, 68, 69]:

D̂θ(X,Y ) =
1

Nx

Nx∑
i=1

f ′(rθ(xi))−
1

Ny

Ny∑
j=1

f∗(f ′(rθ(yj))) (1)

where X = {x1, ..., xN} and Y = {y1, ..., yN}, with xi ∼ p, yj ∼ q, and rθ(x) is a function
approximating the likelihood ratio between p and q, obtained by training a binary classifier Dθ(x)
such that rθ(x) = Dθ(x)/1−Dθ(x). We use 5-fold train-evaluation such that 80% of the samples are
used to train a random forest binary classifier Dθ(x), and the 20% left is used to estimate the empirical
divergence with Nx and Ny testing samples of the reference and query datasets, respectively. The
resulting estimates are averaged across folds to reduce variance. The function f is the generator
function of the f -divergence, f ′ is its first order derivative, and f∗ is its Fenchel conjugate [70].
By changing f , various divergences can be obtained such as the Kullback-Leibler divergence, the
Jensen-Shannon divergence used in GANs, or the total variation distance, among others.
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The true f -divergence is recovered in expectation Df (p, q) = Ex∼p,y∼q[D̂θ(X,Y )] when rθ(x) =
r∗(x) = p(x)/q(x) is the true likelihood ratio function, defining the Bayes decision rule that optimally
separates p and q. In this work, we make use of the total variation distance 0 ≤ DTV (p, q) ≤ 1,
defined by setting f ′(u) = (f∗ ◦ f ′)(u) = 1

2 sign(u − 1). The discrete nature of f ′(u) makes the
empirical estimator robust to poorly calibrated classifiers. Furthermore, its value is proportional to the
empirical balanced accuracy on the evaluation test. Intuitively, if D̂TV (X,Y ) > 0, or equivalently,
the test balanced accuracy is larger than 0.5 (random chance), it might indicate that p ̸= q. After
detecting the presence of a shift, the next step is to localize the features originating it.

Feature Selection for Shift Localization. Our proposed method employs feature importance and
feature selection techniques in order to detect the features originating a distribution shift. These tech-
niques often involve approximating the following estimation problem, either implicitly or explicitly:

C = argmax
|C|≤k

I(zC ; t) (2)

where C is the feature subset of size up to k, which maximizes the mutual information I between
the input sample z, restricted to the features in C, and the label t. By defining z as the samples
coming from X and Y , and t as the binary label of origin, such that z|t=0 ∼ p and z|t=1 ∼ q, Fano’s
inequality [71] and LeCam’s method [72] can be used to relate the mutual information between z and
t and the total variation distance between p and q:

1−H2

(
DTV (p, q) + 1

2

)
≤ I(z; t) ≤ DTV (p, q) (3)

where H2 is the entropy with base-2 logarithm. If the number of manipulated features is
known |C| = k, and DTV (p, q) = DTV (pC , qC) = 1, then C = argmax|C|≤k I(zC ; t) =

argminDTV (pC ,qC)=0 |C|, thereby rendering the problem of feature selection and feature shift de-
tection equivalent. See Section C for further discussion. In practice, the distributions are unknown
making Eq. 2 intractable and most methods predict a score that approximates the amount of informa-
tion relative to the label present at each feature: β = F (Z, T ), where β ∈ Rd and F (·) is a function
mapping samples Z and labels T to a feature-wise importance score. Here, we use the mean decrease
of impurity from the random forest classifier Dθ as the feature importance scores.

Feature removal policy. We introduce the feature removal policy function ψ as an heuristic to
approximate Eq. 2, which utilizes the predicted feature importances β and the estimated total
variation distance D̂ = D̂TV (X,Y ) to select likely corrupted features C = ψ(β, D̂). First, β is
normalized β′ = |β|∑d−1

i=0 |βi|
and sorted β′π, such that β′π(0) ≥ β′π(1) ≥ ... ≥ β′π(d−1). Given the

cumulative sum γ(k) =
∑k
j=0 β

′
π(j), the sorted features from 0 to J are selected as corrupted, where

J is the smallest index such that γ(k) ≥ τD̂ (Eq. 4), and τ is a hyperparameter set by hyperparameter
optimization. Finally, ψ returns the features from 0 to J with scores higher than 1

d (Eq. 5):

J(τ, D̂, β) = argmin
k;γ(k)≥τD̂

γ(k) (4)
C = {π−1(j) : 0 ≤ j ≤ J, β′π(j) >

1

d
} (5)

Note that τD̂ acts as a threshold to select how many features are selected as corrupted. If the threshold
is small, ψ simply returns the feature with the highest feature importance, while a larger threshold
will make ψ return more features. By defining the threshold as the product of τ and D̂, we ensure
that when the shift is small (low D̂), a smaller number of features are flagged as corrupted.

Iterative Process. DF-Locate performs an iterative process that starts with the reference X(0) =
X and query Y (0) = Y datasets. At each iteration i, it trains a set of discriminators θ(i) =

argmaxθ D̂TV (X
(i), Y (i)) consisting of random forest binary classifiers. The classifier predictions

are used to estimate D̂(i) = D̂TV (X
(i), Y (i)) and, combined with the Gini importance from the

random forests β(i) = F (X(i), Y (i)), a set of corrupted features are localized using the feature
removal policy Ci = ψ(β(i), D̂(i)). The selected features Ci are removed from the dataset, such that
X(i+1) = X

(i)

Ci
and Y (i+1) = Y

(i)

Ci
, and the process is repeated while D̂TV (X

(i), Y (i)) > 0.02 or
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until half of the features have been removed or no features are removed at the current iteration. After

l iterations, the set of corrupted features is obtained as C ′ =
l⋃
i=1

Ci. Finally, a refinement stage (see

below and Section E.3) predicts the final set C. More details are provided in Section E.

Refinement stage. DF-Locate stores all intermediate steps, including the indexes of the predicted
corrupted feature locations and the estimated D̂ at each iteration, in order to revisit the iterative
filtering process and select the optimal stopping point. To determine the optimal iteration, the elbow
or knee is found from a processed curve depicting the empirical total variation distance as a function
of the total number of removed features (see Section E.3). This refinement stage effectively eliminates
false positives and enhances the accuracy of feature shift localization.

Algorithm 1 DF-Locate
1: Inputs:

X; ▷ Reference
Y ; ▷ Query
τ ; ▷ Feature Selection Threshold
ϵ; ▷ Divergence Threshold

2: X(0) = X
3: Y (0) = Y
4: i = 0
5: k(0) = 0
6: while D̂θ(X

(i), Y (i)) > ϵ and k(i) < |Y |
2 and k(i) −

k(i−1) > 0 do
7: θ← Train(X(i), Y (i)) ▷ Train discriminator
8: D̂ ← D̂θ(X

(i), Y (i)) ▷ Estimate divergence
9: β ← Fθ(X

(i), Y (i)) ▷ Estimate feature importance
10: Ci ← ψτ (β, D̂) ▷ Select corrupted features
11: X(i+1), Y (i+1) ← X

(i)

Ci
, Y

(i)

Ci
▷ Remove detected

features
12: k(i+1) ← k(i) + |Ci| ▷ Update detected feature counter
13: i← i+ 1
14: end while

15: C′ =
i−1⋃
j=0

Cj ▷ Combine all detected features

16: C ← Refine(C′) ▷ Refine detected features
17: return C

Algorithm 2 DF-Correct
1: Inputs:

X; ▷ Reference
Y ; ▷ Query
C; ▷ Corrupted Features
ϵ; ▷ Divergence Threshold

2: V = {Y 0, Y 1, Y 2} ← Impute(X,Y,C)

3: Y ′ ← argminY i∈V D̂θ(X,Y
i)

4: if D̂θ(X,Y
′) < ϵ then

5: return Y ′

6: end if
7: for epoch do
8: θ← Train(X,Y ′) ▷ Train discriminators
9: L← DetectIncorrect(Dθ(Y

′)) ▷ Detect samples that
require feature correction

10: B← GenerateProposals(X,Y ′, V, C)
11: for i ∈ L do
12: bi ← argmaxb∈B rθi (y

(b)
i ) ▷ Find best proposal

13: Y ′ ← update(Y ′, y
(bi)

i ) ▷ Dataset with updated
sample

14: end for
15: if D̂θ(X,Y

′) < ϵ then
16: return Y ′

17: end if
18: end for
19: return Y ′

5 Feature Shift Correction: DF-Correct

After the set C of features originating the shift has been detected by DF-Locate, DF-Correct (Figure
2, Algorithm 2) is applied to generate a new query dataset Y ′ that rectifies the distribution shift.
Ideally, the objective is to find Y ′ ∼ q′ such that:

Y ′ = argmin
Y∼q′;||YC−Y ′

C
||=0

D(p, q′) (6)

where D is a valid statistical divergence. Because p and q′ are unknown, we approximate the
optimization problem by using a discriminator Dθ to predict the empirical estimate of an f -divergence:

Y ′ = argmin
Y

max
θ
D̂θ(X,Y ) (7)

This approach parallels the adversarial minimax optimization setting adopted in GANs, where
samples are generated by a generator Y ′ = Gω(u), and a discriminator tries to accurately classify
the generated samples as "fake". This training leads to the minimization of the Jenson-Shannon
divergence, and the setting for GAN training can be generalized to any f -divergence [68]. Here,
instead of training a generator, we directly update the corrupted values of the query dataset by trying
to minimize the predicted likelihood of the updated samples coming from q, approximated with
the discriminator Dθ. While neural network-based discriminators allow for direct optimization of
the values of Y through backpropagation, these can have suboptimal performance when classifying
tabular and similar structured data, which is the focus of our work. Hence, we employ tree-based
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techniques instead. Despite not being differentiable, derivative-free optimization and search heuristics
can be used to update Y .

Two important aspects need to be taken into consideration: (a) the allowed search space for the values
of Y , and (b) the frequency of training or updating the discriminator. In GANs, the space of possible
values for generated samples is restricted by the complexity of the generator network, and, typically,
the discriminator is updated in sync with each generator update. In our setting, if we allowed the
search space to be the whole Euclidean space without updating or retraining the discriminator, we
would be effectively conducting an adversarial attack [73, 74], where the empirical divergence would
decrease while the true divergence would not. However, frequent retraining of the discriminator is
computationally infeasible for tree-based techniques due to their lack of online training capabilities,
necessitating retraining from scratch. Therefore, our discriminator is retrained only once at each
iteration within our iterative process. Furthermore, we limit the search space for the possible values
of the features in Y ′ to a set of proposal values B, generated from the reference dataset X .

Initial Imputation. DF-Correct starts by setting the features C of the query dataset, previously
detected as corrupted by DF-Locate, as missing. Initial missing data imputation is then performed
with three distinct techniques: KNN, linear regression, and random sampling from the reference
dataset XC . This yields three imputed query datasets. A set of discriminators consisting of binary
CatBoost [75] classifiers are trained for each reference and imputed query pair, and the empirical
total variation distance is estimated following the same procedure as in DF-Locate. The imputed
query dataset providing the lowest empirical divergence is selected as a starting point for the iterative
process of DF-Correct. If the initial empirical divergence is already lower than ε = 0.1, the correction
process is finalized. If not, DF-Correct applies the iterative process described below.

Iterative Process. The reference, the imputed query, and augmented samples (see Section F) are
used to train k = 2 CatBoost binary classifiers to discriminate between reference and query datasets.
k-fold splitting of the datasets is used to ensure that each classifier does not see the same sample
during training and inference. The set of samples to be corrected L is obtained by selecting |Y |/2
samples from Y with the highest probability of being corrupted (or equivalently, the lowest probability
of being from the reference distribution). Then, we generate a set of new feature value proposals
B = {b1, ..., bN}, with bj ∈ R|C|. This set comprises all the feature values within positions C from
the reference dataset X and the imputed query with linear regression, alongside random permutations
of the reference values. In other words, each b ∈ B contains |C| values obtained from X (and
imputed Y ) that can be a potential replacement for the corrupted features of each query sample y ∈ L.
Note that the size of B is proportional to the size of X . Then, for every query sample y ∈ L classified
as “corrupted” by the discriminator, we replace the shifted features by all candidate values in B, and
select the bi that provides the highest empirical likelihood of being a non-corrupted sample:

bi = argmax
b∈B

rθi(y
(b)
i ) (8)

where y(b)i is the query sample yi with the corrupted features C replaced with the values of b such
that yiC = b, and rθi is the likelihood ratio function from the classifier used to process the ith sample.
In other words, we evaluate each sample y ∈ L a total of |B| times with the discriminator and select
the b providing the highest probability that y(b) is from the reference distribution. Then, we update
the current corrected query dataset Y ′(k) by replacing the corrupted sample yi with y(bi)i , such that
Y ′(k+1) = (Y ′(k) \ yi) ∪ y

(b)
i . By replacing corrupted features with values from the Eq. 8, the

empirical divergence is decreased such that D̂θ(X,Y
′(k+1)) ≤ D̂θ(X,Y

′(k)). After updating all the
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“corrupted” features within the query dataset, the classifiers are retrained and the process is repeated
until no divergence is detected or until the empirical divergence stops decreasing. The iterative process
of replacing corrupted features, which reduces the empirical divergence, and retraining discriminators,
which allows the estimation of more accurate likelihoods and divergences, approximates the minimax
optimization process in Eq. 7. More details are in Section F.

6 Experimental Results

Real world datasets. We use multiple datasets including UCI datasets such as Gas [76], Energy [77],
and Musk2 [78], OpenML datasets including Scene [79], MNIST [80], and Dilbert [81], datasets
with DNA sequences such as Founders [82] and a private Dog DNA dataset (Canine), a subset
of phenotypes from the UK Biobank (Phenotypes) [83], Covid-19 data [84], and simple datasets
including values generated from Cosine and Polynomial functions. The datasets range from 8 to
198,473 features, and from 1,444 to 70,000 samples, including continuous and categorical datasets.
We normalize each feature to have values from 0 to 1. We randomly divide each dataset into two
equally sized subsets, corresponding to the referenceX and query Y samples. Multiple manipulations
are applied to randomly selected features of the query dataset. A detailed description of the datasets
and the pre-processing applied is available in Section B.1.

Feature Shift Manipulations. We apply 10 different manipulations to the real world datasets in
order to generate various distribution shifts. Table 1 describes each manipulation. Manipulations 1, 2,
4, 5, 6, and 7 distort the marginal distributions, with manipulation 4 leaving the mean approximately
unchanged. Manipulations 4 and 6 have different levels of strength, controlled by parameters α and
ρ, respectively. Manipulations 3 and 6 shuffle the feature values across samples, leaving the marginal
distributions unchanged (pi = qi) but changing their correlations. Manipulation 3 performs a different
random permutation at each feature, removing all correlation between features, while manipulation
6 performs the same permutation for all features, such that pC = qC , but p ̸= q. Manipulations 9
and 10, applied to continuous and categorical variables respectively, replace the features with values
predicted by k-nearest neighbor (KNN) trying to reconstruct the corrupted features. The nature
of the shifts originated by KNN will depend on the given dataset and distribution. We discuss the
nature of shifts originated by predictive and imputation models in Section D. Manipulations are
applied to continuous features, categorical features, or both. In total, we apply 10 manipulations on
continuous features and 8 manipulations on categorical features. Each manipulation is applied to
5%, 10%, and 25% of the features in the query. This produces a reference dataset with 24 and 30
query datasets for categorical and continuous data, respectively. Each query dataset corresponds to a
distinct transformation applied to a specific fraction of the features.

Table 1: Manipulation types applied to continuous and/or categorical features.

Type Mapping Description Shift Data

1 x ∼ Uniform(0, 1) Each value is substituted by a random number
between 0 and 1.

pi ̸= qi Cont.

2 1− x Each value is negated. pi ̸= qi,E[qi] = 1− E[pi] Both
3 PiXi Pi is a random permutation matrix applied to

feature i.
pi = qi, pC ̸= qC ,
qC =

∏
i∈C qi

Both

4.1-4.3 clamp0,1(x+ ασ)

σ ∼ Rademacher(0.5)
Add constant noise with a random sign. α ∈
{0.02, 0.05, 0.1} for 4.1-4.3 respectively.

pi ̸= qi,E[pi] ≈ E[qi] Cont.

5 round(x) Values are binarized. pi ̸= qi Cont.
6.1-6.3 b(1− x) + (1− b)x

b ∼ Bernoulli(ρ)
Values are negated with probability ρ ∈
{0.2, 0.4, 0.6} for 6.1-6.3 respectively.

pi ̸= qi,
E[qi] = ρ+ (1− 2ρ)E[pi]

Cat.

7 MLP(x) Forward through an MLP with min-max normal-
ization or binarization.

pi ̸= qi Both

8 PXi P is a random permutation matrix applied to all
features simultaneously.

pi = qi, pC = qC , p ̸= q Both

9 KNN(x) Predict feature with KNN (Regressor). - Cont.
10 KNN(x) Predict feature with KNN (Classifier). - Cat.

Probabilistic Simulations. We generate 15 datasets with 1000 features and 5000 samples, simulated
from probabilistic distributions including multivariate Gaussians, multivariate Bernoulli distributions,
Gaussian mixture models, and Bernoulli mixture models. By having full access to the generating
distributions, the real distribution shift and divergence between distributions can be measured. The
manipulations include marginal shifts in the mean and/or variance between distributions and shifts in
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the feature correlations. Note that here we do not apply the shifts described in Table 1, but instead
directly simulate datasets from distributions having a shift. See Section B.2 for more details.

Experimental Details. In both shift localization and correction, each method only has access to
the reference dataset X and the corrupted query dataset Y , while ground truth information, such as
actual corrupted feature locations C∗ or the original (pre-shifted) query dataset Y ∗, is not accessible.
The localization task is evaluated by comparing the localized corrupted features C and the true
locations C∗ with the F-1 score, and the correction task is evaluated by comparing the corrected
query dataset Y ′ and the reference dataset with non-parametric empirical divergence estimators. We
use the simulated datasets to perform hyperparameter search for DataFix and all competing methods,
while the real datasets are used as a hold-out testing set (see below and Section G for more details).

Feature Shift Localization. We evaluate our method and 8 competing techniques, including four
feature shift localization methods (MB-SM, MB-KS, KNN-KS, and Deep-SM) and four feature
selection methods (MI, selectKbest, MRMR, and Fast-CMIM) (Fig. 3). We evaluate MB-SM,
MB-KS, KNN-KS, and Deep-SM with both their recommended configuration, without a priory
specification of the number of corrupted features |C|, and with the hyperparameter configuration that
yielded optimal results and includes the ground truth |C| (with ∗). The rest of the methods do not have
access to the ground truth |C|. We measure the F-1 score of feature shift localization and average
it across the percentage of manipulated features and manipulation types. Figure 3 (left) shows the
median and mean F-1 scores across the real and simulated datasets, respectively. We make use of the
median because some F-1 scores are missing as some techniques can not process the larger datasets
such as “Founders” and “Canine” given the assigned time budget of 30h. DataFix outperforms all
the competing techniques, in both real and simulated datasets, even when compared with MB-SM,
MB-KS, KNN-KS, and Deep-SM that make use of the ground truth |C|.
Figure 3 (right) shows the median (left) and mean (right) F-1 scores divided by type of manipulation
and datasets. DataFix outperforms all competing methods in all types of manipulations, except for
type 10, where selectKbest provides a higher F-1 score. Techniques using univariate tests, MRMR
and Fast-CMIM provide good results for manipulations causing marginal distribution shifts, but
completely fail when facing manipulations affecting feature correlations (manipulations 3 and 8),
while conditional testing-based techniques (MB-SM, MB-KS, KNN-KS, and Deep-SM) and DataFix
are able to detect them. DataFix outperforms competing methods in most of the real datasets, with an
overall lower F-1 score for datasets with a larger number of dimensions (phenotypes, founders, and
canine).

Figure 3: (left) median and mean F-1 score of real and simulated datasets, and (right) median and
mean F-1 score across manipulation types and datasets. Higher is better.

Feature Shift Correction. We evaluate our method and 13 competing techniques, including predictive
models like KNN, linear regression (LR), and multilayer perceptron (MLP), imputation methods
including HyperImpute, ICE, MIRACLE, MissForest, and SoftImpute, optimal transport methods
such as Sinkhorn, adversarial learning methods like GAIN, and domain adaptation techniques
including deep destructors (DD) and iterative alignment flows (INB). We perform a manipulation-
agnostic evaluation, where we set the corrupted features to 0 (or missing) and treat all manipulation
types equally. Both the reference and the query are provided to each method, and non-parametric
statistical metrics computed between the reference and the updated (corrected) queries are used
to evaluate each method’s performance. Specifically, we use the Wasserstein distance (W 2

2 ) as in
[48], the empirical estimator of the Henze-Penrose divergence (Dhp) [85, 86, 87], and the empirical
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estimator of the symmetric Kullback-Leiber divergence (Dskl) [88]. We report the metrics after
subtracting the “background” divergences computed with the reference and query datasets previous
to any manipulation. Figure 4 shows the median and mean metrics for the real and simulated
datasets respectively. DataFix is able to provide a corrected query dataset Y ′ with the lowest
empirical divergences. Despite their simplicity, KNN and linear regression provide competitive
results, followed by MLP, HyperImpute, ICE, INB, and Sinkhorn. See Section J for more details.

Figure 4: W 2
2 , Dhp, and Dskl of real and simulated datasets. Lower is better.

DataFix Analysis. Figure 5 shows the iterative process of DF-Locate before and after performing
shift correction, in simulated dataset 12 with 200 corrupted features out of 1000 (see Section B.2 for
more details). Fig. 5 (left) shows the total variation distance estimated by the random forest (blue)
which lower-bounds its ground truth monte carlo estimate (black) as corrupted features are detected
and removed. The F-1 detection score increases until all features are detected and the iterative process
is stopped. Fig. 5 (right) shows the iterative process applied to the corrected query with different
methods. ICE and DD provide an updated query that leads to a lower empirical divergence, while the
other methods provide an updated query that increased the shift instead of reducing it. DF-Correct
(Purple) provides an accurately corrected query, with no empirical divergence detected by DF-Locate.

Figure 5: DF-Locate iterative process before and after shift correction.

Extended experimental results are present in the appendix, including an analysis of the method’s
computational time (Section H), the effect of the classifiers used in DataFix (Section K), experimental
results of using corrected datasets in downstream classification and regression (Section M), a detailed
division of the quantitative results (Sections I and J), and a discussion of limitations (Section O).

7 Conclusions
In this paper, we introduced a new framework “DataFix” which makes use of tree-based classifiers,
combined with iterative heuristics, to localize and correct feature shifts. The system, inspired by
adversarial learning and feature selection frameworks, is able to accurately detect and correct a wide
range of distribution shifts in many types of datasets, surpassing existing techniques.
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A Extended Related Work

The task of feature shift localization and correction is connected to various areas of statistics and ma-
chine learning, including out-of-distribution (OOD) generalization, outlier detection, and Generative
Adversarial Networks (GANs), among many others.

Out-of-distribution Generalization. Similar to feature shift localization and correction, OOD
generalization addresses the issue of divergence between datasets or data sources. It does so by
aiming to enhance the test (target) accuracy in settings where the test data significantly deviates from
the training (source) data distribution. This divergence is often a consequence of the target domain
being distinct from the source domain used for training the machine learning models. While both shift
localization/correction and OOD generalization aim to reduce distribution shifts, OOD generalization
has a primary focus on the task of domain adaptation, setting it apart from the primary objectives of
feature shift localization and correction. Extensive work on OOD generalization includes studies into
the conditions under which a classifier trained on source data can be expected to perform effectively
on target data [89], learning invariant representations for domain adaptation [90], generalizing to
unseen domains via distribution matching [91], and using neural networks to learn representations that
possess discriminative qualities for the main learning task while remaining indiscriminate concerning
the domain shift [92]. The latter goal partially aligns with the objective of feature shift localization
and correction, excluding conditional shift, where class-conditional distributions of input features
change between source and target domains.

Anomaly Detection. Anomaly detection finds observations that deviate noticeably from the data
distribution. It has widespread applications in fault detection, particularly in industrial processes,
where training samples with normal patterns are used to identify operations that deviate from those.
The field of anomaly detection has seen extensive research, including machine learning approaches
[93] and deep learning techniques [94, 95, 96], particularly auto-encoders [91, 1].

Generative Adversarial Networks. GANs have gained extensive traction in the imputation of
missing data, facilitating the creation of realistic fake data through adversarial training. Among these,
GAIN [49] stands out as one of the most renowned works, serving as the foundation for subsequent
advancements. These improvements include data augmentation, a feature enhanced by MisGAN
[97], architectural and loss modifications exemplified by GAMIN [98], SGAIN, WSGAIN-CP, and
WSGAIN-GP [99], the incorporation of implicit label information as demonstrated by PC-GAIN
[100], the ensemble of GANs by MI-GAN [101] and the capability to combine global and local
information demonstrated by GAGIN [102].
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B Datasets

B.1 Real Datasets

In this work, we use a total of 9 continuous and 3 categorical datasets, with their dimensions and
data types shown in Table 2. The Gas, Covid, and Energy datasets are the same as those used in [9],
and we apply identical preprocessing procedures. The Musk2 dataset provides information on musk
and non-musk molecules. The Scene dataset describes image characteristics. The MNIST dataset
consists of images depicting handwritten digits. The Dilbert dataset is an image recognition dataset
of pictures of objects rotated from various orientations. We additionally include 3 internal datasets
of biomedical data: Phenotypes, Canine, and Founders datasets. The Phenotypes dataset contains
a subset of categorical phenotypes from the UK Biobank, following the same pre-processing as in
[103]. The Canine and Founders datasets comprise binary-coded sequences of DNA including Single
Nucleotide Polymorphisms (SNPs), representing data for multiple dog breeds and human populations,
respectively.

The Polynomial and Cosine are two internally generated datasets consisting of values obtained from
deterministic simulations. The Polynomial dataset includes samples where each feature value is
obtained by evaluating a second-degree polynomial function f(x) = ax2 + bx+ c. The parameters
a, b, and c are fixed for each sample. The feature values are derived by evaluating the polynomial
function for the different x values within a sample. The values for x, a, b, and c are uniformly
sampled from the range [−10, 10]. The Cosine dataset consists of samples with features following a
cosine function f(x) = a · cos(bx+ c). Similar to the Polynomial dataset, a, b, and c are fixed for
each sample, and each feature value is obtained by evaluating the cosine function for the different x
values within a sample. Here, the values of b and c are uniformly sampled within the range [−π, π].

Table 2: Datasets used to evaluate DataFix.

Dataset No. of attributes No. of samples Data
Gas 8 12,815 Cont.

Covid 10 9,889 Cont.
Energy 26 19,735 Cont.
Musk2 166 6,598 Cont.
Scene 294 2,407 Cont.

MNIST 784 70,000 Cont.
Phenotypes 1,227 31,424 Cat.

Dilbert 2,000 10,000 Cont.
Founders 10,000 4,144 Cat.
Canine 198,473 1,444 Cat.
Cosine 1,000 10,000 Cont.

Polynomial 1,000 10,000 Cont.

B.2 Simulated Probabilistic Datasets

We generate 15 simulated datasets containing 1000 features and 5000 samples by sampling from pre-
defined probabilistic distributions, including multivariate Gaussians, with and without transformations,
multivariate Bernoulli distributions, Gaussian mixture models, and Bernoulli mixture models. A total
of 200 features are shifted in each dataset such that |C| = 200 and |C| = 800. Table 3 describes
the distributions used in each dataset. For every dataset, two distributions, p and q, are defined, so
that D(p, q) > 0 but D(pC , qC) = 0. In fact, for all datasets except for dataset 8, we also have
that D(pC , qC) > 0. A further discussion of the effect of shifts with D(pC , qC) > 0 and with
D(pC , qC) = 0, and its relation to the equivalence of feature shift localization and feature selection,
is provided in the following sections. Because we have access to p and q, we can compute the
real divergence between the distributions. In practice, we make use of a Monte Carlo estimate, as
shown in Figures 5 and 25, because the divergences might not have a closed-form solution or can be
computationally intractable.
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Datasets 1-3 are based on a multivariate Gaussian, with diagonal covariance used in datasets 1 and 2,
and a covariance Σ used in dataset 3. The covariance matrix Σ is defined by a Gaussian kernel such
that the ij component is Σij = exp −||i−j||

2

s , where s acts as a scale parameter, and 0 ≤ Σij ≤ 1
with Σii = 1. In practice, when constructing the covariance matrix, we perform a shuffle of the
feature order to better depict tabular data, where, in many cases, the correlation between features
does not follow any specific ordering (opposed to images or audio). We use s = 0.05 to define
Σij in dataset 3. Datasets 4 and 5 follow a lognormal distribution, defined as X = exp(V ) with
V ∼ N (µ, Σ) andX ∼ Lognormal(µ, Σ). We use s = 0.05 and s = 0.002 to define Σij in datasets
4 and 5, respectively. Datasets 6-8 follow a logit-normal distribution defined as X = σ(V ) with
V ∼ N (µ, Σ) and X ∼ P (N (µ, Σ)), where σ is the sigmoid transformation. We use s = 0.05,
s = 0.002, and s = 0.002 to define Σij in datasets 6, 7, and 8, respectively. Datasets 9-12 follow
a multivariate Bernoulli with independent features. Each feature i has a frequency of fi, where
f ∼ P (N (0, 2I)), ϵ ∼ N (0, I), and (·)0,1 = clamp0,1(·) = min(max(·, 0), 1) is the clamping
function to ensure that the frequencies are between 0 and 1. Dataset 13 follows a Gaussian Mixture
Model distribution, with 3 mixtures of equal weights, µi ∼ N (0, 0.01I), and Σi defined with
s = 0.3. Datasets 14 and 15 follow a Bernoulli Mixture Model distribution with 3 mixtures and
fi ∼ Uniformd(0, 1).

Datasets 1, 3, 4, 6, 9, 10, 11, 12, 13, and 15 apply a shift to the marginal means, such that for all
i ∈ C, E[pCi

] ̸= E[qCi
]. Such datasets include marginal shifts of a similar nature as the shifts

generated by manipulation types 1, 2, and 6 applied to real datasets. Dataset 2 performs a shift of the
marginal standard deviation while maintaining their mean such that for all i ∈ C, E[pCi

] = E[qCi
]

but pCi
̸= qCi

and Var[pCi
] ̸= Var[qCi

], leading to a marginal shift similar to the one applied by
manipulation type 4 used in the real datasets. Datasets 13 and 15 apply a shift to the mean of just one
mixture of the mixture model, leading to only 1/3 of the samples being shifted, while still ensuring
that E[pCi ] ̸= E[qCi ]. Datasets 5, 7, and 14 apply a distribution shift consisting of removing the
correlation between features, equivalently to manipulation type 3 applied in real datasets, such that
qC =

∏
i∈C qi and pC ̸= qC . Dataset 8 also applies a shift originating from modifying the correlation

between features, but in this case, Σ′ is defined as:

Σ′ij =

{
Σij if i, j ∈ C, or i, j ∈ C

0 if i ∈ C with j ∈ C, or j ∈ C with i ∈ C
(9)

where the correlation of the features within C and within C are maintained, but the cross-correlations
between the C and C are lost, which leads to a shift equivalent to manipulation type 8 applied in real
datasets, such that pC = qC , pC = qC , but p ̸= q.
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Table 3: Probabilistic datasets used to evaluate DataFix.

ID pC qC Description

1 N (0, I) N (0.5I, I) Multivariate Gaussians with diagonal co-
variance and a shifted mean.

2 N (0, I) N (0, 1.5I) Multivariate Gaussians with diagonal co-
variance and a shifted scale.

3 N (0, Σ) N (0.5I, Σ) Multivariate Gaussians with non-
diagonal covariance and a shifted mean.

4 Lognormal(0, Σ) Lognormal(0.5I, Σ) Multivariate lognormal with non-
diagonal covariance and a shifted mean.

5 Lognormal(0, Σ) Lognormal(0, I) Multivariate lognormal with non-
diagonal (pC) and diagonal (qC)
covariance.

6 P (N (0, Σ)) P (N (0.5I, Σ)) Multivariate logit-normal with non-
diagonal covariance and a shifted mean.

7 P (N (0, Σ)) P (N (0, I)) Multivariate logit-normal with non-
diagonal (pC ) and diagonal (qC ) covari-
ance.

8 P (N (0, Σ)) P (N (0, Σ′)) Multivariate logit-normal with different
non-diagonal covariances.

9 Bernoulli(f) Bernoulli((f + 0.05ϵ)0,1) Multivariate independent Bernoulli with
a shifted mean.

10 Bernoulli(f) Bernoulli((f + 0.1ϵ)0,1) Multivariate independent Bernoulli with
a shifted mean.

11 Bernoulli(f) Bernoulli((f + 0.5ϵ)0,1) Multivariate independent Bernoulli with
a shifted mean.

12 Bernoulli(f) Bernoulli((f + 1.0ϵ)0,1) Multivariate independent Bernoulli with
a shifted mean.

13 1
3

∑3
i=1 N (µi, Σi)

1
3

∑3
i=1 N (µ′

i, Σi) Gaussian Mixture Model with one mix-
ture shifted such that µ′

1 = µ1 + 10,
µ′
2 = µ2, and µ′

3 = µ3.
14 BMM([f1, f2, f3]) BMM([f ′, f ′, f ′]) Bernoulli Mixture Model with different

means f ′ = f1+f2+f3
3

.
15 BMM([f1, f2, f3]) BMM([(f1 + 0.2)0,1, f2, f3]) Bernoulli Mixture Model with one mix-

ture shifted.

C Feature Selection and Feature Shift Localization Equivalence

DF-Locate combines feature importance and feature selection techniques to localize the feature
subset originating the distribution shift. Feature selection techniques often solve, either implicitly or
explicitly, the following problem:

C = argmax
|C|≤k

I(zC ; t) (10)

where C is the feature subset of size up to k, which maximizes the mutual information I between the
input sample z, restricted to the features in C, and the label t. In practice, the distributions of z or
t are unknown, making Eq. 2 intractable. Instead, most methods predict a score that approximates
the amount of information relative to the label present at each feature: β = F (Z, T ), where β ∈ Rd
and F (·) is a function mapping samples Z and labels T to an importance score for each feature.
Informally, these scores provide an ordering such that if features i and j have |βi| > |βj |, then
I(zi; t) ⪅ I(zj ; t).

Section 4 shows that by defining z as the samples coming from X and Y , and t as the binary label
of origin, such that z|t=0 ∼ p and z|t=1 ∼ q, then Fano’s inequality [71] and LeCam’s method
[72] can be used to relate the mutual information between z and t and the total variation distance
between p and q. Namely, when the number of manipulated features is known |C| = k, and the
divergence of the corrupted features is larger than 0, such that DTV (p, q) = DTV (pC , qC) = 1, and
DTV (pC , qC) = 0, then feature selection and feature shift localization are equivalent:
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C = argmax
|C|≤k

I(zC ; t) = argmin
DTV (pC ,qC)=0

|C| (11)

Even if |C| is unknown, if only marginal shifts are present, one can perform feature shift detection by
iteratively solving Eq.2 with k = 1, and removing the detected features at each iteration from z as
long as I(zC ; t) > 0, making the iterative feature selection and feature shift localization equivalent
problems:

Ci = argmax
|C|=1

I(zC ; t) (12)

where C =
l⋃
i=1

Ci. In fact, the approach presented in section 4, DF-Locate, can be seen as an

approximation of this iterative process, where one or more features are selected at each step by the
feature removal policy function.

However, the equivalence of both tasks breaks down for distribution shifts such as the one applied
in the manipulation type 8 for real datasets, and in dataset 8 of probabilistic simulations, where
pC = qC and pC = qC , but p ̸= q. That is, when considering only the corrupted features C or
the non-corrupted features C in isolation, the shift is impossible to detect unless all features are
considered jointly. Therefore, any feature selection technique that approximates either implicitly
or explicitly equation 2, will need a subset of features G containing features from both C and C in
order to obtain I(zG; t) > 0 because I(zC ; t) = 0 and I(zC ; t) = 0. Furthermore, if |C| = |C| the
problem of feature shift detection becomes unsolvable. This is because, even if a technique was able
to properly identify a subset of features G = C, it would not be possible to know if the detected
subset G contains corrupted or non-corrupted features, that is if G = C or G = C, making the
assumption of |C| < |C| a necessary condition.

Figure 3 (right) and Figure 17 show the F-1 score for each manipulation type, indicating that DataFix
is able to correctly localize manipulated features with manipulation type 8 on real datasets, despite
breaking the equivalence between feature selection and feature shift localization approaches. In
contrast, Figure 18, which illustrates the average F-1 on the probabilistic datasets, shows that dataset
8 is the one providing the lowest F-1 scores. While the low F-1 score in dataset 8 can be partly
caused by the mismatch between feature selection and feature shift localization problems, it can also
originate from the difficulty of detecting shifts caused by mismatching correlations, as it provides
similar performance as in datasets 5 and 7, where correlation shifts (with pC ̸= qC) are applied.
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D Feature Shift from Imputation Methods

Imputation and supervised methods trained to reduce the expected mean square error (MSE) between
the predicted x̂C and real xC features of a given sample x can lead to distribution shifts. Note that
the optimal function minimizing Ex∼P [||xC − f(xC)||2] is the expected value of xC conditioned
in xC , that is f∗(xC) = E[xC |xC ]. Therefore, the method that predicts the corrupted (or missing)
features C given the non-corrupted (non-missing) features C, which provides the lowest MSE,
will generate predicted samples x̂C = f∗(xC), with a distribution where P(x̂C) = 1 for x̂C =
E[xC |xC ], and P(x̂C) = 0 everywhere else. If Var[xC |xC ] > 0, then D(P(x̂C),P(xC)) > 0
because Var[x̂C |xC ] = 0.

For example, given a dataset of samples x1, x2, ..., xN , with xiC = xjC and xiC ̸= xjC for all
i and j, in other words, Var[xC |xC ] > 0, the optimal regression model, in terms of MSE, will
predict x̂iC = E[xiC |xiC ] for all i, such that Var[x̂C |xC ] = 0. Similarly, consider a dataset
where the features C and C are independent, such that p = pCpC , and pC = N (µ, I), then
x̂C = E[xC |xC ] = E[xC ] = µ, where µ ∈ R|C| is a constant vector. The simulated probabilistic
dataset 1 follows this form, with pC = N (0, I) and qC = N (0.5I, I), where the method providing
the lowest MSE will be the one predicting x̂C = E[xC |xC ] = µ = 0 for all samples. Figure 6 shows
the histogram of the first feature values before and after performing feature correction with multiple
methods. Most techniques, especially imputation-based techniques, output the mean or values highly
close to it, which while producing minimum MSE, does not reflect the real distribution, removing or
reducing its variance and leading to a distribution shift.

Figure 6: Histograms of first feature values before and after shift correction with various techniques
for probabilistic dataset 1.
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DF-Locate (Section 4, Figures 1 and 7, and Algorithm 1) is the proposed method within DataFix that
localizes the features originating the distribution shift by performing feature selection in an iterative
way. First, starting with i = 0, and a reference X(0) = X and query Y (0) = Y datasets, a set of
discriminators are trained θ = argmaxθ D̂θ(X

(i), Y (i)). The discriminators are used to predict the
empirical total variation distance (TVD) between distributions D̂ = D̂θ(X

(i), Y (i)), and a feature
importance score for each feature β = Fθ(X

(i), Y (i)). The divergence and feature importances are
used to select potentially corrupted features with the feature removal policy function (see section 4)
Ci = ψτ (β, D̂). Then, the detected features are removed from X and Y , such that X(i+1) = X

(i)

Ci

and Y (i+1) = Y
(i)

Ci
. The process is repeated as long as the estimated divergence is smaller than a

threshold D̂θ(X
(i), Y (i)) > ϵ, less than half of the features of the dataset are removed k(i) < |Y |

2 , or
at least one feature is selected by the feature removal policy function at each step k(i) − k(i−1) > 0.
In this work we use ϵ = 0.02 as the stopping threshold. After the iterative process is stopped, a
refinement step, described below, is applied to remove features that might have been incorrectly
selected as corrupted.

E.1 Shift Detection

We detect whether a shift is present by estimating an f -divergence between the distributions p and q.
Specifically, we make use of the variational form [67, 68, 69]:

Df (p, q) ≥ Ex∼p[f ′(rθ(x))]− Ey∼q[f∗(f ′(rθ(y)))] (13)

where rθ(x) is a function approximating the likelihood ratio between p and q. The inequality becomes
an equality when rθ(x) = r∗(x) = p(x)/q(x) is the true likelihood ratio function, defining the Bayes
decision rule that optimally separates p and q. f is the generator function of the f -divergence, f ′ is
its first order derivative and f∗ is its Fenchel conjugate [70].

In practice, estimating Df (p, q) is intractable, as we do not have direct access to p and q. Hence, we
use an empirical estimator of the divergence by training a binary classifier Dθ(x) to discriminate
the samples coming from X = {x1, ..., xN} and Y = {y1, ..., yN}, with xi ∼ p and yj ∼ q. The
likelihood ratio can be easily estimated as rθ(x) = Dθ(x)/1−Dθ(x) = expσ−1(Dθ(x)), where σ−1
is the inverse sigmoid. We use k-fold train-evaluation split, where the dataset is divided into k = 5
subsets. At each iteration, 80% of the samples are used to train a random forest classifier Dθ(x), and
the 20% left is used to estimate the empirical divergence:
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D̂θ(X,Y ) =
1

Nx

Nx∑
i=1

f ′(rθ(xi))−
1

Ny

Ny∑
j=1

f∗(f ′(rθ(yj))) (14)

where Nx and Ny are the number of testing samples of the reference and query datasets respectively,
and Df (p, q) ≥ Ex∼p,y∼q[D̂θ(X,Y )]. By training the random forest, we are approximately finding
the discriminator that provides a maximal divergence θ∗ = argmaxθ D̂θ(X,Y ) within the random
forest hypothesis space.

E.2 Feature Removal Policy Function

The feature removal policy function ψ, introduced in section 4, makes use of the predicted feature
importances β = Fθ(Z, T ) and the estimated total variation distance D̂ = D̂TV (X,Y ) to select
the corrupted features C = ψ(β, D̂). This function utilizes the sorted normalized absolute value
of the importance scores β′π = |β|π∑d−1

i=0 |βi|
with β′π(0) ≥ ... ≥ β′π(d−1). At each iteration, the first J

features are selected as corrupted, where J is dynamically selected at each iteration (equation 4) as
the smallest index k such that γ(k) =

∑k
j=0 β

′
π(j) ≥ τD̂ (Eq. 4), with τ selected by cross-validation.

The features selected as corrupted C include the features from 0 to J with scores higher than 1
d (Eq.

5).

The product τD̂ specifies a threshold that defines how many features are selected as corrupted at each
iteration. When τD̂ is small, ψ returns the feature with the highest feature importance, while a larger
τD̂ leads to more features flagged as corrupted. The value of τ is selected through hyperparameter
optimization using the simulated datasets and maintained fixed afterward, and D̂ is computed at each
iteration with values that are, in expectation, non-increasing. When the empirical shift is low, the
product τD̂ is small, leading to a smaller number of features being flagged as corrupted. Figure 8
presents a comparative analysis of the sorted normalized feature importance scores β′π in the first,
middle, and last iterations of the DF-Locate iterative process at the first, second, and third figure
column respectively. Different thresholds τ (0.05, 0.1, 0.2, and 0.3) are used to localize and filter
the corrupted features at each iteration, with each row representing a specific threshold value. The
features flagged as corrupted (as part of C) by the feature removal policy function ψ are indicated
in red color. As the number of iterations increases, D̂ decreases and fewer features are flagged as
corrupted, with the last iteration containing only a small number of remaining corrupted features and
most features exhibiting similar low importance scores. Larger thresholds τ lead to more features
selected at each iteration. However, for thresholds higher than 0.1, some of the selected features can
be falsely classified as corrupted, indicating the need for lower threshold values.

Figure 9 shows the number of removed features at each iteration with different threshold values τ .
Across all threshold values, the number of removed features decreases as the number of iterations
increases, and in turn, the empirical divergence decreases. Note that higher threshold values lead to
more features removed at each iteration, resulting in a smaller total number of iterations and faster
computational times. However, higher thresholds also lead to an increased number of false positives,
where many non-corrupted features are incorrectly selected as corrupted, leading to low F-1 scores.
Therefore, the τ threshold provides a trade-off mechanism between feature shift localization speed
and accuracy.

E.3 Refinement Stage

In order to perform the refinement step, we store all intermediate steps so that we can revisit the
iterative filtering process and select the optimal stopping point. At each iteration, we store the indexes
of the features selected as corrupted, their corresponding estimated D̂, and the number of removed
features. While the ideal stopping iteration would be the iteration providing the highest F-1 score,
this requires access to the ground truth, which is unavailable in practice. However, there exists a
point at which the cost of removing additional features, some potentially non-corrupted, outweighs
the decrease in the empirical divergence. To determine the optimal iteration, we locate the elbow
or knee from a processed curve depicting the empirical total variation distance (TVD) as a function
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Figure 8: Sorted and normalized feature importance scores of the discriminators in the first, middle,
and last iterations of DF-Locate applied to the Dilbert dataset with manipulation type 8. Each row
represents a different threshold used to localize and filter the corrupted features at each iteration.

Figure 9: Number of features removed at each iteration for different threshold τ values in DF-Locate
applied to the Dilbert dataset with manipulation type 8.

of the total number of removed features (Figure 10). Once such optimal iteration is determined, all
selected features up to that iteration are flagged as corrupted. The curve of the true divergence would
always exhibit a convex non-increasing shape but due to the intrinsic randomness in the training and
evaluation process of the discriminator, this ideal shape is not always achieved, making the task of
locating the knee challenging. In order to make the curve smooth and non-increasing, we make use
of the Savitzky-Golay filter [104] due to its ability to remove noise without distorting the underlying
signal. Additionally, we apply an opening operation to eliminate any local maxima in the curve,
ensuring that each point is equal to or smaller than its left neighbor. Furthermore, we process the
initial iterations of the curve to enforce a strict decreasing behavior. After processing the empirical
divergence curve, we employ the knee locator method introduced by [105] to identify the optimal
stopping criterion.
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The Savitzky-Golay filter relies on two main parameters: the length of the filter window and the
polyorder used for fitting the samples. We define the window length as max(5, 2⌊ζδ/2⌋+ 1), where
ζ is chosen from the set {1, 2, 3, 5, 7} through cross-validation, and δ represents the average number
of removed features at each iteration. We explore different polyorders from the set {3, 4}. Based
on experiments with simulated datasets, we select ζ = 2, and the best polyorder as 4. The knee
locator involves two primary parameters: sensitivity (S) and online mode. The sensitivity parameter
determines the number of "flat" points we anticipate encountering in the original data curve before
identifying a knee, while the online mode enables the correction of previous knee values. We explore
different values for S from the set {1, 3, 5, 7}. Our experimentation reveals that the optimal values
are S = 5 and using the offline mode.

Figure 10 shows an example of the knee location, used to refine the selection of features. The F-1
score can serve as a way to evaluate the selected stopping point, showing the trade-off between
reduced TVD and the number of removed features.

Figure 10: Knee location based on distribution shift. Number of removed Features, TVD, and F-1
score in shift localization task.

26



F DF-Correct

Set of corrupted
features

Imputation with KNN
+ linear regression

Initial candidates

Select 

Yes

CatBoost classifiers
Train 

Update    

Generate proposals 
Update

Reference

Query

No

proposals
⋮

Figure 11: DF-Correct diagram.

DF-Correct (Section 5, Figures 2 and 11, and Algorithm 2) is the proposed method within DataFix
that corrects the feature shifts by changing the values of the features in Y originating the distribution
shift through an iterative approach. Given the set of corrupted features C, DF-Correct tries to
generate a new query dataset Y ′, such that YC = Y ′

C
, while D(X,Y ′) < D(X,Y ). DF-Correct

starts by obtaining an initial candidate of Y ′ by setting the values within the subset C of Y as
missing and performing imputation with linear regression and KNN. Furthermore, a naive initial
candidate is generated by replacing the corrupted values of Y with randomly selected values of
X (restricted to the features subset C). Note that this naive initialization already fixes distribution
shifts where features are completely independent of each other. The set of the 3 initial candidates,
V = {Y 0, Y 1, Y 2}, is evaluated by computing the empirical total variation distance with a classifier,
and the one providing the lowest empirical divergence is selected as the initial corrected query
Y ′ = argminY i∈V D̂θ(X,Y

i). If D̂θ(X,Y
′) < ϵ, the correction process is finished and Y ′ is

returned. Otherwise, if D̂θ(X,Y
′) > ϵ, an iterative process where some samples of Y ′ are modified

is performed.

The iterative process tries to find new values of Y ′ = {y′1, y′2, ..., y′Ny
} that reduce the empirical total

variation distance:

D̂TV
θ (X,Y ′) =

1

Nx

Nx∑
i=1

g(rθ(xi))−
1

Ny

Ny∑
j=1

g(rθ(y
′
j)) (15)

with g(u) = 1
2 sign(u− 1). Because the values of X are left untouched, this becomes equivalent to

solving:
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Y ′ = argmin
Y

max
θ

Ny∑
j=1

−g(rθ(y′j)) = argmax
Y

max
θ

Ny∑
j=1

g(rθ(y
′
j)) (16)

In order to perform such an optimization process, a set of classifiers are trained using X , Y ′, and
data augmentation consisting of performing random permutations within the features of the reference
X dataset, in order to generate extra samples of "corrupted" sequences. After training the classifiers,
the next step is to find which samples need to be corrected. Note that when p = q, we have
E[D̂TV

θ (X,Y )] = 0, and:

E[
∑
j∈Ny

g(rθ(yj))] = E[
∑

m∈N+

g(rθ(ym))]− E[
∑
n∈N−

g(rθ(yn))] = 0 (17)

where N+ = {i : rθ(yi) > 1} are the indices of samples classified as positive by the discriminator,
and N− = {i : rθ(yi) < 1} are the indices of samples classified as negative. Furthermore, both sets
have, in expectation, the same size E[|N+|] = E[|N−|] = E[ |Ny|

2 ] when p = q. This indicates that
when both distributions are equal, a discriminator will approximately classify half of the samples as
positive and half as negative. Therefore we only correct the set of samples L, including up to |Ny|

2
samples with the highest probability of being corrupted:

L = {i : rθi(yi) < rθi+1
(yi+1) < 1} (18)

with |L| ≤ |Ny|
2 . Next, we construct a set of feature value proposals B that will replace the corrupted

features. This proposal set is constructed by including within B all the feature values of the reference
X , of the initial imputed candidates V , of the current corrected query Y ′, and random permutations
of X . Then, for every sample i ∈ L, each of the proposals b ∈ B is placed as an alternative to
the corrupted features, generating a sample y(b)i , where y(b)i C = b, and y(b)i C = yiC . The proposal
providing the highest probability of being "non-corrupted" is selected:

bi = argmax
b∈B

rθi(y
(b)
i ) (19)

Finally, the updated sample y(b)i is placed inside the corrected query Y ′. After updating all samples
in L, the divergence is computed again, and if D̂θ(X,Y

′) > ϵ, the process is repeated for a number
of epochs. Typically, the number of epochs is set to 1 or 2, as the correction process can become
computationally intensive for large datasets (see following sections).

F.1 MNIST Example Proposals

In Figure 12, we provide a visual comparison of proposals generated from a single iteration of
DF-Correct using two image samples from the MNIST dataset, categorized from worst to best based
on their likelihood of being corrupted. The comparison is made against their manipulated counterparts
with manipulation type 2. The findings reveal that the top proposals generated by DF-Correct excel at
correcting the distorted values. The outcomes closely resemble unaltered MNIST images, eliminating
any distortions effectively.

F.2 Relationship between DF-Correct and KNN Imputation

We can provide more insight into how DF-Correct is able to reduce the divergence between datasets
by comparing it with KNN imputation. A KNN imputer fills the missing feature values with a
combination of the top-k closest samples with respect to L2 distance on non-missing features. Instead,
our correction system replaces the corrupted feature values with the top-1 candidate with respect to
the probability estimated by the discriminator. In a sense, the KNN training samples are replaced
by our feature proposals, and the KNN L2 distance is replaced by the prediction of a discriminator,
making the correction task similar to a divergence-reducing imputation problem.
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Figure 12: Comparison of worst, intermediate, and best proposals from a single iteration of DF-
Correct on two samples of the MNIST dataset against their corrupted version with manipulation type
2.

G Experimental Details

G.1 Hyperparameter Search

In this section, we present the experimental details of our hyperparameter optimization process for
DataFix, along with the benchmarking methods used for feature shift localization and correction. The
hyperparameter optimization involves conducting a grid search on the simulated datasets, with the
provision that experiments exceeding a 30-hour runtime are excluded. For parameters left unspecified,
we initialize them with their default values.

Table 4 outlines the search space for each parameter tuned in each detection benchmarking method,
as well as their respective optimal value. Similarly, Table 5 provides insight into the search space for
each parameter tuned in each correction benchmarking method, as well as the values that yielded
optimal results.

DF-Locate and DF-Correct both undergo optimization with respect to the choice of classifier employed
as a discriminator, as detailed in Section K. Additionally, we conduct a hyperparameter search for
DF-Locate, focusing on variables such as window length and polyorder, which is further elaborated
upon Section E.3.

Table 4: Search space and optimal values for tuned parameters in detection benchmarking methods.

Method Tuned Parameter Search Space Optimal
MI threshold [0.008, 0.01, 0.02, 0.05, 0.1] 0.02

selectKbest significance_level [0.008, 0.01, 0.02, 0.05, 0.1] 0.01

MB-SM, MB-KS n_expectation [30, 100, 500, 10000] 30
KNN-KS, Deep-SM n_bootstrap_runs [1, 5, 10, 25, 50, 250] 250

G.2 Evaluation Setting

In both shift localization and correction, each method only has access to the reference dataset X
and the corrupted query dataset Y as input for the iterative process of training discriminators and
computing heuristics. Note that the ground truth information, including the actual corrupted feature
locations C∗ and the original (pre-shifted) query dataset Y ∗, are not used by DataFix at any step
when predicting the localization of corrupted features or when correcting the query dataset.
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Table 5: Search space and optimal values for tuned parameters in correction benchmarking methods.

Method Tuned Parameter Search Space Optimal
KNN k [10, 25, 50, 100] 10

DD n [10, 50, 100, 200] 100

INB n [50, 100, 200, 500] 200
ndim [30, 60, 90] 90

MLP activation [’relu’, ’tanh’] ’relu’
hidden_layer_sizes [100, 1000] 100
alpha [0.0001, 0.001] 0.0001
batch_size [’auto’, 64] ’auto’
learning_rate_init [0.0001, 0.001] 0.001

GAIN batch_size [16, 64, 256] 16
n_epochs [1000, 50000] 50000
hint_rate [0.8, 0.9] 0.9

HyperImpute baseline_imputer [0, 1, 2] 1
optimize_thresh [1000, 5000] 5000
n_inner_iter [40, 80] 40

ICE max_iter [1000, 2000] 1000
initial_strategy [0, 1, 2] 1

MIRACLE lr [0.0001, 0.001] 0.0001
batch_size [1024, 512] 1024
n_hidden [16, 32, 64] 16
reg_lambda [0.1, 1, 10] 10
reg_beta [1, 3] 3
window [10, 20] 20

MissForest n_estimators [10, 20, 50] 10
max_iter [100, 500, 1000] 100

Sinkhorn lr [0.001, 0.01] 0.01
n_epochs [500, 1000] 1000
batch_size [256, 512] 512
noise [0.001, 0.01] 0.001
scaling [0.9] 0.9

SoftImpute maxit [1000, 2000] 1000
convergence_threshold [0.00001, 0.0001] 0.0001
max_rank [2, 3] 3
shrink_lambda [0.5, 0] 0
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H Computational Time

Large and high-dimensional datasets are becoming the norm, therefore, methods that detect and
correct feature shifts should be able to properly scale with respect to the number of samples and
features.

Figure 13 presents the average computational time of feature shift localization benchmarking methods
as a function of the product between the number of samples and features for each dataset. MI and
selectKbest stand out as the fastest methods (using the Chi-square test for categorical datasets and
ANOVA-F test for continuous datasets). MRMR and FAST-CMIM, although performing adequately
in terms of speed for small datasets, encounter challenges in scaling with larger dataset sizes.
Consequently, they fail to produce results within the 30-hour time limit for Founders and Canine
datasets. Furthermore, the feature-shift detection techniques KNN-KS and, particularly MB-KS,
demonstrate significantly slower performance, rendering them incapable of delivering results within
the given time constraint for Founders, Canine, Dilbert, and Phenotypes datasets. DF-Locate proves
to be a reasonably efficient method, exhibiting good scalability as the dataset size increases, while
providing the best localization performance.

Figure 13: Computational time for shift localization methods based on real dataset size.

In Figure 14, we conduct a comparative analysis of the computational time for shift correction methods.
Although DF-Correct is not faster than simpler techniques like median or linear regression, its speed
surpasses several competing methods, such as MIRACLE and HyperImpute. Furthermore, DF-
Correct exhibits reasonable runtime even for the largest high-dimensional Canine dataset, successfully
correcting the distribution shift within the 30-hour time limit. Many of the competing methods were
unable to provide results for the Canine dataset due to their excessive time complexity and/or memory
requirements. Therefore, DF-Correct provides the best correction in terms of distribution shifts, while
still providing competitive or faster speeds than competing methods.

All experiments were done with an Intel Xeon Gold with 12 CPU cores.
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Figure 14: Computational time for shift correction methods based on real dataset size.

I Extended Feature Shift Localization Results

We evaluate the performance of DF-Locate across different fractions of manipulated features: 5%,
10%, and 25%. The F-1 scores, depicted in Figure 15, were computed by averaging across manipula-
tion types and taking the median across real datasets for each feature shift localization method. Our
findings show that DF-Locate obtains consistently higher performance, irrespective of the fraction
of manipulated features involved. However, it is important to note that this is not the case for other
methods, such as MRMR and FAST-CMIM, which exhibit limitations in their localization capabilities,
particularly when there are only a few corrupted features. Note that when a small percentage of ma-
nipulated features is present, a smaller amount of features need to be localized as corrupted. However,
this could also lead, in some cases, to lower distribution shifts, making the detection of such shifts
more challenging. On the other hand, the presence of a larger percentage of manipulated features
can make the localization task more challenging, while the empirical detection of the presence of the
shift can be, in some cases, easier.

Figure 16 shows the mean F-1 score of DF-Locate and various shift localization methods applied to
the real datasets. The symbol ’x’ denotes experiments that are missing due to exceeding the time
limit of 30 hours. Note that most methods fail to process high-dimensional datasets such as Founders
and Canine, whereas DF-Locate is able to provide accurate results while scaling to large datasets.
DF-Locate consistently exhibits superior performance compared to all benchmarking methods across
most datasets. The only exception observed is with the Phenotypes dataset, where selectKBest
slightly outperforms DF-Locate in locating the corrupted features. Nevertheless, for the remaining
datasets, DF-Locate surpasses all competing approaches and is only slightly surpassed or equaled
in performance on a few occasions by Deep-SM (*) or KNN-KS (*), both of which use the ground
truth |C|. Additionally, it is worth noting that MI always outperforms selectKbest on datasets with
continuous features, while the opposite holds true for datasets with categorical features.
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Figure 15: Median F-1 scores of shift localization methods by fraction of manipulated features on
real datasets.

Figure 16: Mean F-1 scores of shift localization methods by real datasets. ’x’ indicates missing
experiment. Higher is better.

Figure 17 shows the median F-1 scores of DF-Locate and other competing methods, categorized
by the feature manipulation type applied to the real datasets. The average F-1 score is computed
across fractions of manipulated features, followed by the computation of the median F-1 score
across different datasets. The symbol ’x’ is used to indicate missing experiments for MB-KS and
manipulation types 6.1-6.3 and 10. These manipulations are applied to categorical datasets only
(Phenotypes, Founders, Canine), and the MB-KS method did not yield results for any of these three
datasets within the specified time constraint of 30 hours. Manipulations involving shifts caused
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by the correlation between features (manipulations 3 and 8) are not detected by methods such as
MI, selectKbest, MRMR and Fast-CMIM, while being accurately detected by MB-SM, KNN-KS,
Deep-SM, and our proposed method. Note that while manipulation type 8 breaks the theoretical
equivalence between feature selection and feature shift localization problem (see previous sections),
it is still accurately localized by DataFix. Manipulation 10, consisting of replacing feature values
with the ones predicted with a KNN, is the most challenging to detect by DataFix. Note that such
manipulation can lead, in some scenarios, to small or undetectable distribution shifts, as KNN
provides perfect predictions when its training dataset size goes to infinity.

Figure 17: Median F-1 scores of shift localization methods by feature manipulation type on real
datasets. ’x’ indicates missing experiment. Higher is better.

Figure 18 displays the mean F-1 scores of shift localization methods across the simulated datasets. As
observed in the results presented for real datasets in Figure 16, DF-Locate consistently outperforms
or matches all competing methods, except for datasets 7 and 8, where MB-SM and Deep-SM obtain
a higher F-1 localization score when using |C| as extra ground truth information. Note that in a fair
comparison where |C| is not used, MB-SM and Deep-SM perform poorly (see Figure 3). DF-Locate
obtains lower F-1 scores in simulated datasets 5, 7, and 8 compared to the other datasets, which
involve shifts originated by a mismatching correlation between distributions.
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Figure 18: Mean F-1 scores of shift localization methods on simulated datasets. Higher is better.
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J Extended Feature Shift Correction Results

Figures 19 and 20 provide a comprehensive evaluation of the performance of DF-Correct and
competing shift correction methods across real datasets, by using the Wasserstein distance (W 2

2 )
as in [48], the empirical estimator of the Henze-Penrose divergence (Dhp) [85, 86, 87], and the
empirical estimator of the symmetric Kullback-Leiber divergence (Dskl) [88]. W 2

2 , Dhp, and Dskl

are non-parametric estimators of distances between the underlying distributions p and q that make use
of the reference X and query Y datasets. By computing statistics based on distances between samples
within and between datasets, these metrics estimate the distance between distributions. The reported
metrics provide empirical estimates of the divergences between the corrected query datasets and the
reference datasets. Note that first, the background empirical divergences between the reference and
query dataset (prior to any manipulation) are computed and subtracted from the reported metrics. For
simulated datasets where there are no query datasets prior to manipulation, a second reference dataset
is used to obtain background empirical divergences.

As shown in Figures 19 and 20, DataFix outperforms all other methods by a significant margin
for most datasets, demonstrating its high effectiveness in providing corrected query datasets that
are close to the reference distribution. Following DataFix, simpler methods like KNN and linear
regression demonstrate competitive performance for most datasets, while techniques such as ICE,
HyperImpute, INB, Sinkhorn, and MLP yield favorable results for specific datasets. Furthermore,
DataFix consistently achieves the lowest W 2

2 values across most datasets, with exceptions being
MNIST and Phenotypes. Specifically, for the MNIST dataset, KNN, MLP, GAIN, HyperImpute, and
ICE surpass DataFix achieving the best W 2

2 value of 0. Note that for high-dimensional datasets such
as Dilbert, Phenotypes, Founders, and Canine, the W 2

2 metric saturates to 0 for multiple methods,
making the other metrics a better alternative to compare the quality between methods.

Figure 19: W 2
2 , Dhp, and Dskl of shift correction methods on real datasets. Lower is better. (Part 1)
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Figure 20: W 2
2 , Dhp, and Dskl of shift correction methods on real datasets. Lower is better. (Part 2)
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K Classifier Analysis for Localization and Correction

Figure 21 provides the F-1 score results for DF-Locate when using different classifiers as discrimina-
tors within the iterative process on both real and simulated datasets. Tree-based methods including
Random Forest (RF), CatBoost, ExtraTree, and LightGBM (LGBM) provide highly similar results,
with high F-1 scores, surpassing linear models such as logistic regression (LogReg) and a support
vector classifier (SVC). We selected RF as our discriminator as it provided much faster training times
while being highly competitive in localization accuracy.

Figure 21: Mean F-1 scores by DF-Locate using different classifiers on simulated (left) and real
(right) datasets. Higher is better.

Figure 22 provides the feature shift correction metrics for DF-Correct when using different classifiers
as discriminators within the iterative process on both real and simulated datasets. Similar to DF-
Locate, tree-based methods provide similar results, surpassing the linear methods in most metrics.
We use Dhp as a metric to select our method because it provides an estimate that tightly bounds the
total variation distance. Namely, we select CatBoost as our discriminator as it provides competitive
performance with the other tree-based methods in the simulated datasets, and clearly outperforms the
others in the real datasets.

Figure 22: Mean W 2
2 , Dhp, and Dskl by DF-Correct using different classifiers on simulated (top)

and real (bottom) datasets. Lower is better.
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L Variability Analysis for Location and Correction

Conducting the whole evaluation benchmark for both localization and correction multiple times is
infeasible and expensive. However, to provide insight into the variation among runs for each method,
we present plots showcasing the variability of detection and correction methods with multiple random
seeds for a given dataset, namely the Energy dataset.

In Figure 23, we present the variability of detection methods, conveyed by the mean and standard
deviation of the F-1 score across five different seeds on the Energy dataset. This evaluation covers
scenarios involving 25% corrupted features and all manipulation types. Similarly, Figure 24 provides
insights on the variability of correction methods, conveyed by the mean and standard deviation of
W 2

2 , Dhp, and Dskl computed across five different seeds on the Energy dataset. All detection and
correction methods, particularly DF-Locate and DF-Correct, exhibit a low variability across different
seeds.

Figure 23: Variability of detection methods on the Energy dataset. Mean and standard deviation of
F-1 score across five different seeds, for 25% corrupted features and all manipulation types. Higher is
better.

Figure 24: Variability of correction methods on the Energy dataset. Mean and standard deviation of
W 2

2 , Dhp, and Dskl across five different seeds. Lower is better.
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M Evaluation of Downstream Classification and Regression Tasks after
Correction

In this section, we include an evaluation of downstream classification and regression tasks for the
Musk2 and Energy datasets, which include categorical and continuous labels, respectively.

We train the downstream models with the corrected query datasets and evaluate their performance
on the reference dataset. We perform the experiment using each query dataset version, which
includes the original pre-corrupted dataset, and the correct datasets with each correction method.
The evaluation of the classifier/regressor is carried out under three different scenarios: when all
features are used (100%), when only 50% of the non-corrupted features are included, and when
0% of non-corrupted features are included (only the corrected features are used). The classification
results are reported in Table 6, and the regression results are reported in Table 7, using balanced
accuracy for classification and root mean square error (RMSE) for regression. Methods are sorted
by their performance without non-corrupted features (0%). Notably, the classification/regression
downstream performance when using DataFix surpasses the competing methods in most settings, in
some cases even surpassing the performance of directly using the original query dataset (ground truth
pre-corruption). This observation demonstrates that the class-conditional divergence between the
reference and the corrected query with DataFix is small.

Table 6: Downstream classification task with Musk2 dataset, with all corrected features and all non-
corrupted features (100%), with half of the non-corrupted features (50%), and without non-corrupted
features (0%).

Method Balanced Acc. (0%) Balanced Acc. (50%) Balanced Acc. (100%)
Original Query 0.951 0.960 0.964
DataFix 0.902 0.953 0.957
LR 0.871 0.932 0.938
HyperImpute 0.863 0.932 0.945
ICE 0.848 0.937 0.937
MIRACLE 0.828 0.920 0.937
Sinkhorn 0.818 0.924 0.936
MLP 0.817 0.907 0.911
KNN 0.815 0.925 0.934
INB 0.812 0.950 0.954
MissForest 0.779 0.908 0.944
DD 0.576 0.950 0.956
GAIN 0.574 0.910 0.939
Mean 0.500 0.952 0.961
SoftImpute 0.493 0.620 0.836
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Table 7: Downstream regression task with Energy dataset, with all corrected features and all non-
corrupted features (100%), with half of the non-corrupted features (50%), and without non-corrupted
features (0%).

Method RMSE (0%) RMSE (50%) RMSE (100%)
DataFix 0.089 0.082 0.080
Original Query 0.093 0.084 0.082
KNN 0.105 0.094 0.091
Sinkhorn 0.107 0.090 0.085
INB 0.114 0.094 0.092
Mean 0.122 0.088 0.083
GAIN 0.127 0.200 0.279
HyperImpute 0.129 0.124 0.123
DD 0.137 0.120 0.116
MissForest 0.147 0.155 0.156
MLP 0.175 0.187 0.200
SoftImpute 0.180 0.182 0.252
LR 0.191 0.189 0.205
ICE 0.217 0.225 0.234
MIRACLE 0.311 0.335 0.343

N End-to-end DataFix Analysis

Figure 25 provides five additional examples that illustrate the iterative process of DF-Locate before
and after shift correction, in simulated datasets 1, 2, 3, 6, and 10. In each dataset, there are 200
corrupted features out of 1000. Similar to Figure 5, the left column in Figure 25 displays the TVD
estimated by the random forest (blue), which provides a lower bound for its ground truth Monte Carlo
estimate (black), as the iterative process detects and removes corrupted features. The F-1 detection
score progressively increases until all corrupted features are identified, leading to the termination of
the iterative process. The right column in Figure 25 showcases the iterative process applied to the
corrected query using different methods.

In simulated datasets 1 and 2, the methods DD, INB, MIRACLE and MLP all yield an updated
query that results in a lower empirical divergence. Notably, DD stands out by providing a corrected
query with no empirical divergence detected by DF-Locate. However, DD produces queries with
considerably higher empirical divergence in the case of the other simulated datasets when compared
to DF-Correct, and is not able to lower the empirical divergence for simulated dataset 10. Moving to
simulated dataset 6, INB and DD yield an updated query that reduces the empirical divergence, with
both techniques achieving an empirical divergence that is almost negligible. The other shift correction
benchmarking methods generate an updated query that increases the shift instead of reducing it.
In simulated dataset 10, none of the benchmarking methods are able to generate an updated query
that leads to a lower empirical divergence. Remarkably, DF-Correct (Purple) provides a precisely
corrected query with no empirical divergence detected by DF-Locate for all datasets.

O DataFix Limitations

DataFix is specifically tailored for tabular datasets and will not work optimally when applied to other
data types such as images, videos, audio, speech, or textual data. DataFix also exhibits limitations
due to its computational cost, preventing scalability for online or streaming scenarios, and potentially
resulting in reduced speed with very large datasets, although it generally outperforms competing
methods in terms of computational efficiency.
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Figure 25: DF-Locate iterative process before (left) and after (right) shift correction. Each row
corresponds to a different simulated dataset.
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