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Abstract

Deeper Vision Transformers (ViTs) are more challenging to train. We expose a
degradation problem in deeper layers of ViT when using masked image modeling
(MIM) for pre-training. To ease the training of deeper ViTs, we introduce a self-
supervised learning framework called Masked Image Residual Learning (MIRL),
which significantly alleviates the degradation problem, making scaling ViT along
depth a promising direction for performance upgrade. We reformulate the pre-
training objective for deeper layers of ViT as learning to recover the residual of the
masked image. We provide extensive empirical evidence showing that deeper ViTs
can be effectively optimized using MIRL and easily gain accuracy from increased
depth. With the same level of computational complexity as ViT-Base and ViT-Large,
we instantiate 4.5× and 2× deeper ViTs, dubbed ViT-S-54 and ViT-B-48. The
deeper ViT-S-54, costing 3× less than ViT-Large, achieves performance on par with
ViT-Large. ViT-B-48 achieves 86.2% top-1 accuracy on ImageNet. On one hand,
deeper ViTs pre-trained with MIRL exhibit excellent generalization capabilities
on downstream tasks, such as object detection and semantic segmentation. On the
other hand, MIRL demonstrates high pre-training efficiency. With less pre-training
time, MIRL yields competitive performance compared to other approaches. Code
and pretrained models are available at: https://github.com/russellllaputa/MIRL.

1 Introduction

Transformer architecture [46] has become the de-facto standard in natural language processing (NLP).
A major driving force behind the success of Transformers in NLP is the self-supervised learning
method called masked language modeling (MLM) [10]. MLM significantly expends the generalization
capabilities of Transformers, with the underlying principle being very intuitive - removing portions
of a sentence and learning to predict the removed content. Recent advancements in computer vision
have been profoundly inspired by the scaling successes of Transformers in conjunction with MLM
in NLP, successively introducing the Vision Transformer (ViT) [13] and masked image modeling
(MIM) for training generalizable vision models. The concept of MIM is as straightforward as MLM;
its pre-training objective is to predict masked image patches based on the unmasked image patches,
thereby capturing rich contextual information.

This paper first reveals that MIM can induce negative optimization in deeper layers of ViT, which
not only constrains the generalization performance of ViT but also hinders its scaling along the
depth dimension. Previous work [55, 37] suggests that deeper layers of ViT are more properly
pre-trained by using MIM, the conclusions of which contradict our observation. Another branch of
work [6, 50, 4, 25, 37] tentatively suggests that, due to the lack of semantic information in MIM, the
shallower layers of ViTs are more effectively pre-trained than the deeper layers. In our preliminary
experiments in Sec. 2.2, we demonstrate that replacing the deeper Transformer blocks pre-trained
by using MIM with randomly initialized blocks does not degrade performance, which supports our

†Corresponding author. Work done when H. Fu was an intern at Baidu.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/russellllaputa/MIRL


(a) MAE (b) truncated MAE (c) MIRL

shallow deep

Encoder D
ec

od
er

Decoder

Lossdeepshallow

Encoder

Decoder

Loss

D
ec

od
er

shallow deep

Encoder

Loss

Figure 1: Three MIM pre-training schemes. For simplicity, the diagram omits the random masking
process. A complete ViT consists of shallow and deep parts. The dashed box indicates the part of the
model that is not involved in the pre-training process.
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Figure 2: Truncated MAE vs. MAE. The x-axis
represents the number of blocks replaced with
randomly initialized blocks from the encoder’s
end after pre-training. ViT-S is used as the en-
coder to better observe the differences.
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Figure 3: Comparison of MIRL, truncated MAE,
and MAE. To maintain the same decoding com-
putational cost, each decoder in the MIRL model
contains 2 blocks, while other models have 4 de-
coder blocks.

statement. We hypothesize the negative pre-training effect enforced on the deeper layers is due to
depth restriction, which can be regarded as a degradation problem occurring in deeper ViTs.

We address the pre-training degradation problem in deeper layers of ViT by introducing a Masked
Image Residual Learning (MIRL) framework. We establish a multi-decoding process by segmenting
the encoding blocks according to their depth levels. Instead of letting the entire autoencoder learn to
reconstruct the masked content, MIRL encourages the deep layers to learn latent features that are
beneficial for recovering the image residual, distinct from the main image component. The diagram
of the MIRL with 2 segments is illustrated in Figure 1c, where we divide the encoder into shallow
and deep segments, and append a separate decoder to each. The shallow segment learns to reconstruct
the main component of the masked content, while the deep segment is explicitly reformulated as
learning the image residual. The MIRL framework is essentially equivalent to shifting the pre-training
objective of deeper layers of ViT from image reconstruction to image residual reconstruction. This
simple yet effective concept of image residual reconstruction significantly alleviates the degradation
problem in deeper layers of ViT, making scaling ViTs along depth a promising direction for improving
performance. By extending the MIRL framework and dividing the encoder into more segments, as
illustrated in Figure 4, we can train deeper ViTs and readily achieve accuracy gains from substantially
increased depth. Consequently, we instantiate deeper encoders: ViT-B-24, ViT-B-48, and ViT-S-54,
comprising 24, 48, and 54 Transformer blocks, respectively. Notably, with similar computational
complexity, our deeper ViT variants deliver considerably better generalization performance than
the wider ViT encoders (e.g. ViT-S-54 vs. ViT-B, ViT-B-48 vs. ViT-L), thanks to the increased
depth. Meanwhile, our experiments in Sec. 4.2 demonstrate that employing additional feature-
level objectives [12, 6] or VGG loss [26, 11] can further improve performance, suggesting that the
improvement directions of feature-level loss and MIRL are orthogonal and can complement each
other.
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Figure 4: Example of the MIRL framework. The Transformer blocks in the ViT encoder are split
into four segments, Φ1,Φ2,Φ3, and Φ4. The output of each segment is then sent to its corresponding
decoder. Shortcut connections are established between the shallower decoders H1, H2 and deeper
decoders H4, H3, enabling deeper decoders to predict the masked image residual.

2 Preliminaries

2.1 Revisit masked image modeling

Following the paradigm of Masked AutoEncoder(MAE) [21], the input image is split into a set of
non-overlapping patches x = {xi}Ni=1, where xi ∈ RP 2C denotes the image patch in the i-th position
with P 2 resolution and C channels. The image patches are further tokenized into visual tokens via
a linear projection, denoted by z0 = {zi0}Ni=1

2. Subsequently, a random sampling strategy divides
the indexes of patches into two subsets, V and M, where V ∩ M = ∅. The image patches (xV )
and visual tokens (zV0 ) with indexes in V are considered to be visible to the encoder. Thereafter, the
encoder with L blocks only takes as input visible tokens zV0 , and maps them to embedding features
zVL . The objective of MIM is to predict the unseen content from xM by employing a decoder. A
learnable mask token e[M] is introduced after the encoder, which is placed in M masked positions.
Then the full set of encoded patches and mask tokens is processed by a small decoder to reconstruct
the original image in pixels. The architecture of MAE can be described as:

zVℓ = Fℓ(z
V
ℓ−1), ℓ = 1...L (1)

u = zVL ∪ {e[M] : i ∈ M}Ni=1, (2)

x̂ = H(u), (3)

where Fℓ(·) refers to the ℓ-th Transformer block in the encoder, H(·) denotes a shallow decoder. The
objective loss of MIM is given by

Lpixel =
1

|M|
∑
i∈M

1

P 2C

∥∥x̂i − xi
∥∥2
2
, (4)

where the reconstruction loss is only calculated in the masked positions.

2.2 A deep dive into autoencoders for MIM

We present three distinct autoencoder architectures in Figure 1 to clarify our motivation. Figure 1a
shows the MAE framework [21]. Figure 1b depicts a truncated MAE with only the shallow ViT blocks
in the encoder. Figure 1c presents a simplified MIRL with two decoders connected to the shallow and
deep encoder segments. Models are pre-trained for 300 epochs with the same hyperparameters. Full
setup details are in Appendix A of the supplementary materials.

2We still perform the position embedding addition and class token concatenation processes as in ViT, but
these steps are omitted for notational simplicity.
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Observation I: MIM pre-training can induce negative optimization in deeper layers of ViT. However,
due to the overwhelmingly positive pre-training effect that MIM bestows upon the earlier blocks,
its adverse influence on the latter blocks remains undiscovered. Given a ViT encoder pre-trained
with MIM (Figure 1a), we substitute the pre-trained weights in the latter blocks of the encoder with
the random parameters and subsequently fine-tune the encoder on ImageNet-1K. The curve plot of
vanilla MAE, depicted in Figure 2, illustrates that applying random re-initialization to deeper blocks
from the end of the encoder can improve performance. The initial point in Figure 2 indicates the
result of an MAE model that has been pre-trained and subsequently fine-tuned without any random
initialization. As more shallow blocks are randomly re-initialized, accuracy declines. Intriguingly,
random initialization generalizes better than MIM pre-training in deeper layers of ViT, defying
intuition.

Observation II: Performing MIM pre-training on fewer layers can lead to better efficiency and
effectiveness. A truncated MAE illustrated in Figure 1b requires less pre-training time than the
vanilla MAE while still achieving better or comparable performance. For fine-tuning, we initialize a
complete ViT model with pre-trained weights from the truncated MAE. Regarding the blocks that
are not included in the truncated MAE, we apply random initialization. As shown in Figure 2, when
truncating 3 blocks from the end of the encoder, the fine-tuned model has better accuracy than the
rest ones. By using the truncated MAE, we only pre-train 4 blocks and achieve similar fine-tuning
accuracy as the vanilla MAE, reducing pre-training cost by 66%.

Observation III: Learning to recover image residual is a more productive pre-training objective.
A simplified version of MIRL, shown in Figure 1c, formulates the pre-training objective for deeper
layers as learning image residual, promoting more vivid image detail recovery and imposing a positive
pre-training effect on deeper layers. Figure 3 demonstrates that MIRL achieves the highest fine-tuning
accuracy among the three MIM pre-training schemes.

In summary, Observations I and II expose a pre-training degradation problem in ViT’s deeper
layers, leading to sub-optimal solutions. The same issue is also observed in the BEiT [1] paradigm,
potentially attributed to depth limitations in MIM. In Observation III, we introduce MIRL to alleviate
the degradation problem in deeper layers. The rest of the paper demonstrates how we employ MIRL
to tackle the challenges of training deeper Vision Transformers.

3 Method

3.1 Masked Image Residual Learning (MIRL)

Upon observing that deeper layers pre-trained by MIM underperform against those with random
initialization, we infer that the weight parameters of these deeper layers have indeed been updated
during MIM pre-training, but in an unfavorable direction. In contrast, the shallower layers demonstrate
improved performance after MIM pre-training. This leads us to speculate that the depth of the layers
could be the root cause of the degradation problem.

To alleviate degradation in deeper ViTs during pre-training, we propose letting the deeper Transformer
blocks learn to predict the residual of the masked image, rather than directly predicting the masked
image itself. An overview of the MIRL framework is illustrated in Figure 4. Specifically, the
encoder is partitioned into multiple segments, with each segment being followed by a separate
small decoder. Subsequently, we establish shortcut connections between the shallower and deeper
decoders. We underscore that these shortcut connections constitute the core of our method. This
configuration fosters a seamless collaboration between very shallow and deep Transformer blocks in
corrupted image reconstruction: the shallower segment learns to reconstruct the main component
of the masked image, while the deeper segment learns the image residual. During pre-training, the
established shortcut connections enable back-propagation to affect both the deeper and shallower
layers simultaneously. This intertwined relationship between the deeper and shallower layers implies
that the pre-training should either guide both towards a beneficial direction or lead both astray. With
the introduction of the MIRL framework, our experimental results indicate that the shallower layers
have, in essence, steered the deeper layers towards a more favorable direction.

Formally, we reformulate the encoder in Eq. (1) by evenly grouping the encoding Transformer blocks
into G segments:

zVg = Φg(z
V
g−1), g = 1...G, (5)
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where Φg denotes a stack of encoding blocks in the g-th segment. In the output of each encoding
segment zVg , the masked positions are filled with a shared masked token e[M], denoted as ug =

zVg ∪ {e[M] : i ∈ M}Ni=1. Subsequently, for the g-th segment and the (G−g+1)-th segment selected
from bottom-up and top-down directions, two separate decoders Hg and HG−g+1 are appended
for feature decoding. Let us consider that the g-th shallower segment learns a mapping function
x̂g = Hg(ug) producing the main component of the reconstructed image x̂g. Thereafter, we let
ξ̂g = HG−g+1(uG−g+1) from the (G−g+1)-th deeper segment asymptotically approximate the
residual ξg = x− x̂g . The objective loss Lg for the g-th segment is defined as:

Lg =
1

|M|
∑
i∈M

1

P 2C
∥ξig − ξ̂ig∥22 =

1

|M|
∑
i∈M

1

P 2C
∥xi − x̂i

g − ξ̂ig∥22. (6)

Different from the residual learning in [23], our image residual learning would not fit an identity
mapping, considering that the inputs to the two segments are different. See Appendix B.2 for further
discussions on an alternative form of Lg. The final loss function is formed by accumulating all 2

G
reconstruction loss terms:

Ltotal =
∑G

2
g=1 λgLg, (7)

where λg is the scaling coefficient, which is set to 2
G by default. Additional pre-training objective

losses, such as the feature-level loss used in [6, 54] and the VGG loss [26], can be employed to
enhance performance. We provide the definitions of other loss terms in Appendix B.1. However,
as indicated in the ablation study in Sec.4.2, incorporating additional loss terms introduces non-
negligible overhead during pre-training. By default, we solely utilize the per-pixel loss defined in
Eq.(6).

Densely Interconnected Decoding (DID). We design a densely interconnected decoding (DID)
module, inserted into the decoders across different segments, enabling access to the features produced
by previous segments. DID allows subsequent segments to avoid relearning features already acquired
in earlier segments, thereby enhancing representation diversity. Immediately following the self-
attention module in the first Transformer block in decoder Hg, we insert a DID module, which is
ingeniously implemented using the Multi-Head Attention mechanism, MHA(Q,K, V ):

DID(ug, z
V
g−1, ..., z

V
0 ) = MHA(ug, [z

V
g−1, ..., z

V
0 ], [z

V
g−1, ..., z

V
0 ]), (8)

where the query Q is ug , while the key and value K,V are [zVg−1, ..., z
V
0 ]. The dense interconnection

property of the DID module is rendered by the concatenation form in MHA’s key K and value
V where we concatenate the output from previous encoding segments, thereby enabling feature
integration at different depth levels.

3.2 Scaling to deeper ViT

Without modifying the Transformer block design, we instantiate deeper ViT variants by simply
stacking more blocks. We consider the embedding hidden sizes in the Transformer block of 384 and
768. The details of the deeper ViTs are provided in Table 1. Choosing an appropriate hidden size
is non-trivial for scaling up Vision Transformers, considering that a larger hidden size (e.g., 1024
adopted in ViT-Large and 1280 adopted in ViT-Huge) can cause instability due to very large values in
attention logits, leading to (almost one-hot) attention weights with near-zero entropy. The instability
of very wide ViTs is also reported in [21, 9].

Table 1: Details of Vision Transformer scaling along the depth dimension.

Model Depth Hidden size MLP size Heads

ViT-S-54 54 384 1536 12
ViT-B-24 24 768 3072 12
ViT-B-48 48 768 3072 12

By utilizing MIRL, we demonstrate that deeper ViTs exhibit stronger or comparative generalization
capabilities when compared to their shallower and wider counterparts. With similar computational
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cay learning rate scheduler.

complexity, ViT-S-54 generalizes better than ViT-B. With only 31% of the computational cost of
ViT-L, ViT-S-54 delivers performance on par with ViT-L. Notably, ViT-B-48 not only that it achieves
higher performance but also provides a more stable training than ViT-L. This suggests that deepening
ViTs could be a promising direction for enhancing vision model performance. Furthermore, MIRL
helps to alleviate the training difficulties typically encountered in deeper ViTs, unlocking their
potential and making them more effective for a variety of downstream tasks.

4 Experiment

The proposed MIRL method is evaluated on image classification, object detection and semantic
segmentation tasks. All models are pre-trained on ImageNet-1K and then fine-tuned in downstream
tasks. The input size is 224× 224, which is split into 196 patches with a size of 16× 16.

Pre-training setup. We pre-train all models on the training set of ImageNet-1K with 32 GPUs. By
default, ViT-B-24 is divided into 4 segments, while ViT-S-54 and ViT-B-48 are split into 6 segments,
and others into 2. Each appended decoder has 2 Transformer blocks with an injected DID module.
We follow the setup in [21], masking 75% of visual tokens and applying basic data augmentation,
including random horizontal flipping and random resized cropping. Full implementation details are
in Appendix A.

4.1 Instantiations of deeper ViT

We compare the performance of the deeper ViTs detailed in Sec.3.2 with the ViT instantiations
presented in [13]. As illustrated in Figure 5, we can easily gain accuracy from increased depth by
leveraging MIRL for pre-training. In particular, ViT-S-54, which has the same level of computational
complexity as ViT-B but is 4× deeper than ViT-B, significantly outperforms ViT-B and even achieves
performance on par with ViT-L pre-trained with MAE. Likewise, ViT-B-48 surpasses ViT-L while
maintaining the same level of computational cost. Furthermore, the encoder pre-trained with MIRL
consistently delivers higher performance than the one pre-trained with MAE.

4.2 Ablation studies

Various objective functions. Our approach is a general masking modeling architecture, seamlessly
complementing prior methods that propose various objective functions. We study the compatibility
of the recent feature-level loss and perceptual loss (i.e. VGG loss) with our method. The results listed
in Table 2a show that incorporating these objective functions can further improve the model, which
demonstrates the generality of MIRL. Nonetheless, the additional loss terms will introduce heavy
computational overhead. To accelerate our experiments, we have not used them by default.

Number of segments. The purpose of dividing an encoder into more segments is to construct
auxiliary reconstruction losses to facilitate the training of the intermediate layers. We observe that
these auxiliary reconstruction branches can amplify the gradient magnitude, potentially improving
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Table 2: MIRL ablation experiments on ImageNet-1K: We report the fine-tuning (ft) accuracy(%)
for all models, which are pre-trained for 300 epochs. Unless specified otherwise, the encoder is
ViT-B-24.

(a) Various objective functions. The en-
coder is ViT-B.

objectives MIRL ft time

pixel ✓ 83.5 1.0×
pixel+feature ✗ 83.2 1.6×
pixel+feature ✓ 83.6 1.8×
pixel+vgg [26] ✓ 83.8 2.5×

(b) Numbers of segments (seg.) in
the autoencoder of MIRL.

#seg. blocks per seg. ft

1 24 83.5
2 12 84.3
4 6 84.7
6 4 84.6

(c) Effect of Densely Intercon-
nected Decoding.

model DID ft

ViT-B-24 ✗ 84.5
ViT-B-24 ✓ 84.7
ViT-B-48 ✗ 85.0
ViT-B-48 ✓ 85.3

(d) MIRL vs. simple multi-decoders. Column △ reports
the performance gap between MIRL and multi-decoders.

model depth MIRL △ multi-decoders

ViT-B 12 83.5 0.3 83.2
ViT-B-24 24 84.7 0.6 84.1
ViT-B-48 48 85.3 0.8 84.5

(e) MIRL vs. coarse and fine separation.

method ViT-B ViT-B-24

MIRL 83.5 84.7
coarse-to-fine 83.1 84.2
fine-to-coarse 82.9 84.2

Table 3: Image classification results on ImageNet-1K. All models are pre-trained and fine-tuned
with 224×224 input resolution. “IN” refer to ImageNet, while “FT” is the fine-tuning accuracy.
“Epochs” refer to the number of pre-training epochs. The models pre-trained with extra data or very
long schedules are marked in gray. We report the best result in bold and the second best result(s)
underlined.

Encoder #params FLOPs Method Training Data Epochs FT (%)

ViT-B 86M 16.8G

Supervised IN1K - 82.3
MoCov3 [5] IN1K 300 83.2
BEiT [1] DALLE250M+IN1K 800 83.2
SimMIM [56] IN1K 800 83.8
CIM [16] DALLE250M+IN1K 300 83.3
LocalMIM [49] IN1K 1600 84.0
MAE [21] IN1K 300/800 82.6/83.1
MAE [21] IN1K 1600 83.6
MIRL IN1K 300/800 83.5/84.1

ViT-S-54 96M 18.8G MIRL IN1K 300/800 84.4/84.8
ViT-B-24 171M 33.5G MIRL IN1K 300 84.7

ViT-L 307M 59.7G

Supervised IN1K - 82.6
MaskFeat [52] IN1K 1600 85.7
ConMIM [57] IN1K 1600 85.5
HPM [48] IN1K 800 85.8
MAE [21] IN1K 1600 85.9
MAE [21] IN1K 300/800 84.5/85.4

ViT-B-48 341M 67.0G MIRL IN1K 300/800 85.3/86.2

the optimization of deeper Transformer blocks. Table 2b reports the performance of MIRL with
respect to various numbers segments. For ViT-B-24, the configuration with 2 segments shows lower
accuracy than the one with 4 segments. However, further splitting the encoder into more segments
brings no more performance gain.

Effect of densely interconnected decoding. Considering that the auxiliary reconstruction branches
from different segments adopt the same objective metric, the proposed DID establishes a feature reuse
mechanism, preventing layers at various depth levels from learning similar feature representations.
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Table 2c demonstrates that the MIRL models embodying the DID module yield higher fine-tuning
accuracy than those without the DID. Deeper models gain more advantages from DID.

MIRL vs. simple multi-decoders. In order to demonstrate that image residual learning, powered
by the shortcut connections, is the key to effective training deeper ViTs, we construct a segmented
autoencoder with multiple decoders. Unlike MIRL, each decoder in the multi-decoder model
independently learns to reconstruct the masked content. As shown in Table 2d, MIRL achieves
substantially higher accuracy than the simple multi-decoder approach. Notably, the performance
gap between MIRL and the multi-decoders widens as more Transformer blocks are stacked. When
pre-training with multi-decoders, the deeper ViT seems to gain accuracy from increased depth.
However, this does not imply that the multi-decoder approach addresses the degradation problem.
Since replacing the weights of its deeper layers with random weights does not lead to a performance
drop, the trivial improvement is attributed to the increased number of shallower layers.

MIRL vs. coarse and fine separation. As the reconstructed image residual shows some fine-grained
details images, it is intriguing to know what pre-training results can be produced by replacing the
reconstruction targets with the coarse and fine image components separated by using a Laplacian
of Gaussian operator. We construct a segmented autoencoder with multiple decoders, referred to as
“coarse-to-fine”, in which the reconstruction targets of the shallower and deeper segments correspond
to the coarse and fine image components, respectively. “fine-to-coarse” denotes the reversed targets
compared to the "coarse-to-fine" configuration. Table 2e indicates that the segmented autoencoder
with fine and coarse reconstruction targets achieves lower accuracy than MIRL, demonstrating that
the main and residual components are not equivalent to the fine and coarse components.

Training schedules. So far, we have only trained our models using a relatively short pre-training
schedule of 300 epochs. Note that deeper ViTs gain more advantages from longer pre-training
schedules, compared to shallower ViTs. We extend pre-training to 1000 epochs and record fine-tuning
performance for various pre-training lengths. To resume pre-training from previous checkpoints, we
use a step decay learning rate scheduler, decaying the learning rate by a factor of 10 at 90% and 95%
of the specified pre-training length. Figure 6 shows that ViT-B tends to plateau after 800 pre-training
epochs, while ViT-S-54 keeps improving even after 1000 epochs. This implies that deeper ViTs’
potential can be further unleashed by adopting a very long pre-training schedule, such as 1600 epochs.

4.3 Image classification on ImageNet-1K

We compare our models with previous results on ImageNet-1K. Hyperparameters are provided
in Appendix A. For ViT-B, MIRL pre-trained for 300 epochs achieves 83.5% top-1 fine-tuning
accuracy, comparable to MAE (83.6%) pre-trained for 1600 epochs. Our pre-training is 5.3×
shorter, demonstrating the high efficiency of MIRL. MIRL alleviates degradation in deeper ViTs,
showing impressive generalization. In an 800-epoch pre-training scheme, the deeper encoder ViT-
S-54 produces 84.8% accuracy, which is 1.7% higher than ViT-B (83.1%) pre-trained with MAE
and only 0.6% lower than ViT-L (85.4%). ViT-B-48, with computational complexity similar to
ViT-L but 2× deeper, achieves 85.3% and 86.2% accuracy with 300 and 800-epoch pre-training
schemes, outperforming the ViT-L models pre-trained by other listed methods. Furthermore, the
deeper encoders can further benefit from very long pre-training schedules, as discussed in Sec. 4.2.

4.4 Object detection and segmentation on COCO

To evaluate the generalization capabilities of our approach, we transfer our pre-trained models
to the object detection task. The experiment is conducted on MS COCO [30] on account of its
wide use. Following [21], we choose Mask R-CNN [22] as the detection framework and trained
with the 1× schedule. For fair comparisons, we adopt the identical training configurations from
mmdetection [3], and Average Precision (AP) is used as the evaluation metric. As summarized in
Table 4, MIRL outperforms all the listed methods.

4.5 Semantic segmentation on ADE20K

We compare our method with previous results on the ADE20K [61] dataset, utilizing the UperNet
framework for our experiments, based on the implementation provided by [1] (see Appendix A for
training details). The evaluation metric is the mean Intersection over Union (mIoU) averaged across
all semantic categories. We employ pre-trained ViT-B-48 as the backbone, which has a computational
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Table 4: Object detection results with Mask R-CNN on MS-COCO. The models pre-trained with
extra data or very long schedules are marked in gray.

Method Backbone Pre-training Data Epochs Detection AP b Segmentation APm

DeiT [45] ViT-B - - 46.9 41.5
BEiT [1] ViT-B IN1K+DALLE 800 46.3 41.1
MAE [21] ViT-B IN1K 800 46.8 41.9
MAE [21] ViT-B IN1K 1600 48.4 42.6
MIRL ViT-B IN1K 800 49.3 43.7

MAE [21] ViT-L IN1K 1600 53.3 47.2
MIRL ViT-B-48 IN1K 800 53.4 46.5

Table 5: Semantic segmentation results on ADE20K. The models pre-trained with extra data or very
long schedules are marked in gray.

Method Pre-training Data Backbone Epochs mIoU

MoCo v3 [5] IN1K ViT-L 300 49.1
BEiT [1] IN1K+DALLE ViT-L 800 53.3
MAE [21] IN1K ViT-L 1600 53.6
MIRL IN1K ViT-B-48 800 53.2

cost similar to ViT-L. The results are summarized in Table 5. The segmentation model using ViT-B-48
achieves competitive results compared to ViT-L pre-trained with BEiT [1] and MAE [21]. This
indicates that the instantiated deeper ViTs exhibit strong transferability to downstream vision tasks.

4.6 Limitation and discussion

While MIRL significantly alleviates training challenges for deeper ViTs, a comprehensive theoretical
explanation for the effectiveness of image residual reconstruction in training deeper ViTs remains
elusive. We provide some insights into why MIRL might work well for deeper ViTs: 1) By reformu-
lating the pre-training objective to recover the masked image’s residual, MIRL implicitly encourages
the model to focus on learning high-level contextual information and fine-grained details that are
otherwise difficult to capture. 2) MIRL could stabilize gradient flow and enhance learning dynamics
for deeper layers in ViTs, as evidenced by a larger gradient norm of the encoder in MIRL compared
to vanilla MIM (see gradient visualization in Appendix C). Despite these insights, further theoretical
analysis and investigation are required to fully understand MIRL’s effectiveness in training deeper
ViTs. The deepest ViT presented in this research comprises only 54 blocks. We anticipate that a
depth of 54 is far from the upper limit for scaling ViT along the depth dimension. These areas are left
for future work.

5 Related Work

Self-supervised learning. After the triumph of BERT [10] and GPT [35] models in NLP, self-
supervised learning (SSL) has undergone a paradigm shift, replacing the conventional supervised
learning approach [23, 43], and has made remarkable advancements in numerous domains [32, 60, 27].
Larger datasets, new training methods and scalable architectures [31, 13, 34, 59] have accelerated
this growth. In computer vision, inspired by the success of BEiT [1], recent research [15, 29, 18,
24, 19, 20, 58, 2, 37, 33, 49] has explored adapting the transformer architecture to the task of image
self-supervised domain. After that, the emergence of MAE [21] has further led to a resurgence
of interest in reconstruction-based masked image methods, such as [21, 14, 51, 56, 11]. We are
particularly intrigued by these masked methods, as they have shown state-of-the-art performance on
numerous transfer tasks and are computationally efficient. This has motivated us to introduce MIRL,
a novel approach that builds on these methods.

Relation to scaling models. Scaling deeper ConvNets [23, 43, 39, 42, 40, 41] is an effective way
to attain improved performance, but the same cannot be easily achieved with ViTs [38]. While the
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Figure 7: Visualization of MIRL. Example images are generated from the validation set on ImageNet.

Transformer architecture has succeeded in building large-scale language models [7, 53, 36, 44, 8, 17],
the implementation of scalable Transformers for visual models still significantly lags behind. Recent
work [62, 28, 47, 9, 59] has endeavored to explore deep Transformer-like models. These studies
introduce necessary modifications to the original Transformer architecture, such as parallel layers,
altered layer norm positions, composite attention mechanisms, larger embedding dimensions, unique
optimization strategies, and exhaustive hyperparameter searches. Although they have demonstrated
commendable performance, they lack a guiding principle about how to deepen or enlarge the
Transformer-like models. Contrary to previous methods, our approach is rooted in an in-depth
analysis, dissecting the standard ViT architecture. This allows us to identify the challenges in fully
realizing the potential deeper ViTs and develop effective solutions accordingly. Building upon the
principles we proposed, we efficiently construct deep-scale ViT models.

6 Conclusion

In this paper, we first reveal a performance degradation problem in Vison Transformers (ViTs)
when pre-training with masked image modeling (MIM). Through an in-depth experimental analysis,
we determine that the degradation is caused by the negative optimization effect of MIM enforced
on deeper layers of ViT. We then introduce a novel concept of masked image residual learning
(MIRL) to establish a self-supervised learning framework, aimed at alleviating the performance
degradation problem. Leveraging MIRL, we unleash the potential of deeper ViTs and instantiate
deeper encoders, including ViT-S-54, ViT-B-24 and ViT-B-48. These deeper ViTs variants exhibit
superior generalization performance on downstream tasks.

Broader impacts. The proposed approach, which predicts content from training data statistics, may
reflect biases with adverse societal impacts and generate non-existent content, underlining the need
for further research in this area.
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