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1 Background

1.1 Background of 3-Dimentional Look-up Table

A three-Dimensional Look-up Table (3D LUT) is often used to transform one set of colors into
another. Given a source color {Iri,j,k, I

g
i,j,k, I

b
i,j,k}, where i, j, k = 0, 1, · · · , nb − 1 ∈ INb−1

0 , we
want to find a destination tuned color {Or

i,j,k,O
g
i,j,k,O

b
i,j,k}. The precision of this transformation is

determined by the number of elements Nb, where Nb is the number of bins in each color channel and
is typically set to 33 in practice. Since 3D LUT is a discrete function and color is continuous, it is
typically necessary to interpolate between the nearest neighbors to calculate the output color. Assume
that the 3D LUT is of size Nb ×Nb ×Nb. We can calculate the indices {ir, ig, ib} into the 3D LUT
as follows:

ir =
Iri,j,k
△

, ig =
Igi,j,k
△

, ib =
Ibi,j,k
△

(1)

where △ = Cmax/(Nb − 1), Cmax is the maximum color value.

Notice that we have yet to round these to integers. Instead, we get the integer and fractional parts of
these indices separately:

îr = ⌊ir⌋, îg = ⌊ig⌋, îb = ⌊ib⌋ (2)

dr = ir − îr, dg = ig − îg, db = ib − îb (3)

where ⌊·⌋ is a floor function that rounds a number down to the nearest integer, the integer parts are
indexed directly into the 3D LUT, and the fractional parts are used for interpolation.

After the location of the input RGB color is computed, its nearest eight surrounding elements can
be used to interpolate the out RGB color via trilinear interpolation. The transformed output color
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{Or
i,j,k,O

g
i,j,k,O

b
i,j,k} can be derived by the trilinear interpolation as follows:

Oc
i,j,k = (1− dr)(1− dg)(1− dg)Ici,j,k + dr(1− dg)(1− db)Ici+1,j,k

+ (1− dr)dg(1− db)Ici,j+1,k + (1− dr)(1− dg)dbIci,j,k+1

+ drdg(1− db)Ici+1,j+1,k + (1− dr)dgdbIci,j+1,k+1

+ dr(1− dg)dbIci+1,j,k+1 + drdgdbIci+1,j+1,k+1

(4)

where c ∈ {r, g, b}. The transformation process using a 3D LUT is highly conducive to parallel com-
puting architectures, such as the Graphics Processing Unit (GPU), primarily due to the independence
of individual pixel computations from one another.

1.2 Background of Local Laplacian Filter

The Local Laplacian Filter is an image processing filter that combines the advantages of the Laplacian
pyramid and bilateral filter for edge-preserving image smoothing and detail enhancement. It was first
introduced by [9].

The basis of the filter is the Laplacian pyramid, a linear, multi-scale representation for images
introduced by [2]. The Laplacian pyramid is formed by successively smoothing the original image
with a Gaussian filter and subtracting adjacent levels of the smoothed image to form a set of band-pass
images.

The Laplacian pyramid provides a way to represent the details at different scales in an image. However,
it does not inherently provide a way to modify the details content-awarely. It is where the idea of
the Local Laplacian Filter comes in. The filter combines the Laplacian pyramid with the concept
of the bilateral filter [10], an edge-preserving smoothing filter. However, instead of applying the
bilateral filter directly, which can lead to undesirable artifacts, it computes a set of modified Laplacian
pyramids that emphasize or deemphasize details at different scales. The procedure of applying a
Local Laplacian Filter can be summarized as follows:

Laplacian Pyramid Construction. Given an input image I, we apply a Gaussian filter G at level ℓ
of the pyramid, resulting in a smoothed image Iℓ. The subsequent pyramid level is then produced
by subsampling Iℓ by a factor of two. This operation is iteratively performed to yield a sequence of
reduced-size images, {I0, I1, I2, ..., IN}, where I0 is the original image and N is the total number
of levels in the Gaussian pyramid. The Laplacian pyramid is obtained by taking the difference
between consecutive Gaussian pyramid levels. Given two consecutive levels, Iℓ and Iℓ+1, the
Laplacian component Lℓ is computed by expanding Iℓ+1 to the same size as Iℓ (using upsampling
and interpolation) and then subtracting it from Iℓ. Mathematically, this process is represented by the
following equation:

Lℓ = Iℓ − expand(Iℓ+1) (5)
where expand(·) represents the operation that includes upsampling the image to twice its size,
followed by Gaussian filtering. This operation is carried out for all levels of the Gaussian pyramid,
resulting in the Laplacian pyramid. The top level of the Laplacian pyramid is identical to the top level
of the Gaussian pyramid.

Remapping Function Application. The remapping function is applied to the input image per pixel,
producing a new image. This function aims to adjust the pixel intensities in a way that amplifies
or diminishes certain details while preserving the overall structure of the image. Since the user
provides a parameter σr, intensity variations smaller than σr should be considered fine-scale details
and more significant variations are edges. As a center point for this function, we use g0 = I0(x0, y0),
representing the image intensity at the location and scale where we compute the output pyramid
coefficient. Intuitively, pixels closer than σr to g0 should be processed as details, and those farther
than σr away should be processed as edges. Combing Equation 3 in the main paper, the output
coefficient (ℓ, x, y) can be obtained as follows:

r(i) =

{
g0 + sign(i− g0)σr(|i− g0|/σr)

α if i ≤ σr

g0 + sign(i− g0)(β(|i− g0| − σr) + σr) if i > σr
, (6)

Reconstruct the remapped components. The final step involves reconstructing the Laplacian
pyramid from the remapped components. The final output image O is obtained by collapsing the
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Figure 1: (a) shows the performance of the two fusion strategies on low-frequency images with
different resolutions. (b) illustrates the difference in running speed of the two fusion strategies on
low-frequency images with different resolutions. (c) presents the effect of models with different
parametric quantities on the enhancement performance.

reconstructed Laplacian pyramid. This process involves expanding each pyramid level, adding it to
the next higher level, and repeating this until the original resolution is achieved.

The Local Laplacian Filter effectively performs edge-preserving smoothing and detail enhancement
in a content-aware manner, taking into account the local intensity structure of the image. It has
applications in high dynamic range (HDR) compression, tone mapping, detail enhancement, and
stylization.

1.3 Motivation of Using Local Laplacian Filter

As the limitation point out by [12], the 3D LUT remains uniform across different local regions in the
image, which can result in suboptimal results in regions requiring local enhancement. This necessitates
the incorporation of local enhancement techniques in order to achieve superior enhancement results.

Motivated by the work of [5], Zeng et al. [12] attempted to initially enhance the localization of
the image by using a learnable guided filter, followed by a 3D LUT for global tone manipulation.
Although this approach yields commendable results, it is still hampered by certain limitations. First,
the combined approach requires two stages in the training process, precluding the possibility of end-
to-end learning. Second, the learnable guided filter performs parameter learning on low-resolution
images, thereby neglecting to take advantage of the high-frequency detail information inherent in the
images.

To address these issues, we draw inspiration from the local Laplacian filter [9, 1] to amalgamate
the effects of a local enhancement method with a 3D LUT through pyramid decomposition and
reconstruction. This involves learning the filter parameters via a compact network at each layer and
enhancing the Laplacian layer through a remapping function. This approach presents a potential
solution to the previously described limitations, paving the way for more robust image enhancement
methodologies.

2 Discussion

2.1 Discussion on basis 3D LUTs fusion strategy

Image-adaptive 3D LUT [12] presents an efficient approach to executing complex color transforma-
tions on digital media, including hue, saturation, and brightness adjustments. They propose to fuse
the multiple basis 3D LUTs into an image content adaptive one using a soft-weighting strategy. Such
a design improves the speed of processing high-resolution images. However, as described in Sec. 2.2
of the main paper, this strategy exhibits a drawback in accommodating complex pixel mapping
relationships, thereby hindering its effectiveness in accurately representing such pixel transformations.
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(a)

(b)

(c)

Figure 2: Example reference images of the MIT-Adobe FiveK dataset. (a) present the overexposure
problems of retouched reference images; (b) the underexposure issues of retouched reference images;
(c) the issue of inconsistent retouching style.

In order to rectify this inherent shortcoming, we propose an effective strategy for the fusion of basis
3D LUTs.

Although our proposed strategy enhances the capability of 3D LUT to handle complex pixel mapping
relationships, it consequently leads to an increase in computational load due to the incorporation of
pixel-level weight maps. As illustrated in Fig. 1, we compare the performance and running speed
between our proposed strategy and the previous method. Specifically, at a resolution of 64 × 64
for the low-frequency image, our strategy demonstrates an improvement of 1.35 dB in performance
while running merely 2 ms slower than the previous approach. Compared to a low-frequency
image resolution of 64× 64, the enhancement performance observed at a resolution of 256× 256
pixels is relatively marginal, exhibiting an improvement of merely 0.18 dB. However, this minor
performance gain is offset by a twofold increase in running time. When contrasting the results with a
low-frequency image resolution of 16× 16, we observe a performance enhancement of 0.35 dB at a
resolution of 64× 64. Interestingly, this improvement does not correspond with any notable increase
in operation speed, suggesting a considerable boost in performance without sacrificing computational
efficiency. Therefore, considering running speed and performance, we determine to execute global
tone manipulation at the low-frequency image resolution of 64× 64.

2.2 Discussion on Transformer Backbone

In this subsection, we have extended our analysis to examine the influence of the transformer backbone
on the framework’s performance. As presented in Fig. 1, a substitution of the GRL [7] model with the
tiny ViT [4] model (ViT-T) yields a performance enhancement that decreases by a magnitude of 0.48
dB, concurrently, the quantity of model parameters is reduced by 160K. In the event that the GRL
model is employed with a greater volume of parameters, there is a correlating increase in performance
enhancement following the escalation in parameter quantity. However, this marginal performance
improvement becomes relatively insignificant when compared to the large increase in the number of
parameters. After critically evaluating the trade-off between the number of model parameters and
the enhancement performance, we chose to utilize the tiny GRL model as the transformer weight
predictor for our framework.

2.3 Discussion on MIT-Adobe FiveK Dataset

In Sec. 3.2, we briefly analyzed the reasons for the lack of substantial improvement of all methods on
the MIT-Adobe FiveK citebychkovsky2011learning dataset. In this subsection, we will elaborate on
this topic, providing a more comprehensive overview of the relevant details.

Fig. 2 illustrates certain issues inherent in the MIT-Adobe FiveK dataset. As demonstrated in the first
row, many reference images suffer from problems related to overexposure after being retouched by
Expert C. In contrast, the second row reveals an underexposure issue in the reference image. The
third row presents an inconsistent retouching style, even within the tone of reference images that the
same expert adjusts. These complications contribute to the inability of learning-based approaches
to achieve satisfactory convergence and thus to improve enhancement performance effectively. The
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Methods #Params MACs Runtime

UPE 999K 1.146G 8.42ms
CSRNet 37K 52.843G 48.28ms
DeepLPF 1.72M 454.422G 386.62ms

LUT 592K 0.676G 2.67ms
sLUT 4.52M 20.316G 9.63ms
CLUT 952K 9.391G 8.35ms
UTMO 4.45M 1410.048G 162.23ms

Ours 731K 2.923G 20.51ms
Table 1: Running time (in millisecond) comparison between our approach and state-of-the-art methods
on resolution 3840× 2160× 3. All methods are tested on NVIDIA V100 GPU.

prevalence of these problems may additionally be attributed to the historical context of the dataset,
which was collected in 2011. At this juncture in time, learning-based methodologies were still in their
infancy of development. Thus the dataset was not explicitly curated to train deep learning models.
This lack of specificity in data collection could potentially contribute to the challenges encountered in
model performance and convergence. Given this, we expect more research to focus on capturing more
robust and diverse datasets for training deep learning models. It will help facilitate better performance
in future learning-based tone mapping studies.

2.4 Runtime Analyse

To better characterize our model’s computational complexity and efficiency, we provide a more
diverse set of metrics, including the number of parameters, the multiply-accumulate operations
(MACs), and the runtime. The results are shown in Table. 1.

All presented results are obtained using a 32GB NVIDIA V100 GPU. Runtime values are averaged
over 1000 images, each with dimensions of 3840 × 2160 × 3. Similarly, Multiply-Accumulate
Operations (MACs) are computed based on the input dimensions 3840× 2160× 3.

The results show that the extensive computational demands of CSRNet, DeepLPF, and UTMO [11]
lead to slow processing. These results can be attributed to the fact that they are pixel-level methods,
rendering them more reliant on hardware capabilities, especially when processing large-resolution
images. Conversely, our approach makes a trade-off between computational complexity and perfor-
mance.

2.5 More Comparison Results on Various Evaluation Metrics

To better demonstrate the superiority of our methods, we also provide the quantitative comparison
results of all methods on TMQI, Fidelity, and Naturalness metrics in the Table. 2.

All these results are evaluated on the HDR+ 480p dataset. The Table. 2 shows that TMQI produces
similar results for HLD [8], UTMO [11], and our approach. However, as shown in Fig. 3, visual
results show substantial differences, emphasizing the need for a comprehensive assessment combining
all metrics to express performance differences.

3 More Quanlitative Results

3.1 Visual Comparisons on 480p resolution

In this subsection, we have chosen to utilize the 480p HDR+ [6] and MIT-Adobe FiveK [3] datasets
as released by [12], with no modifications implemented. More visual comparisons are provided in
Fig. 4 and Fig. 5. Each figure presents the results derived from five methods, accompanied by their
corresponding error maps, thereby providing a detailed comparison of the performances of each
method.
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Methods PSNR SSIM LPIPS △ E TMQI Fidelity Naturalness

UPE 23.33 0.852 0.150 7.68 0.8789 0.8951 0.4213
HDRNet 24.15 0.845 0.110 7.15 0.8768 0.8968 0.4212
CSRNet 23.72 0.864 0.104 6.67 0.8880 0.8908 0.4529
DeepLPF 25.73 0.902 0.073 6.05 0.8752 0.8820 0.4419

LUT 23.29 0.855 0.117 7.16 0.8818 0.9018 0.4119
sLUT 26.13 0.901 0.069 5.34 0.8854 0.9017 0.4486
CLUT 26.05 0.892 0.088 5.57 0.8863 0.9020 0.4705
HLD 18.52 0.799 0.168 12.20 0.8862 0.8975 0.5092

UTMO 16.21 0.709 0.215 17.60 0.8893 0.9061 0.4723

Ours 26.62 0.907 0.063 5.31 0.8977 0.9089 0.5134
Table 2: More quantitative comparison results of all methods on TMQI, Fidelity, and Naturalness
metrics. All these results are evaluated on the HDR+ 480p dataset.

(a) HLD [8] (b) UTMO [11] (c) Ours

Figure 3: Visual comparison with method HLD [8] and UTMO [11] on test images from the HDR+
480p dataset. Best viewed in color and by zooming in.
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3.2 Visual Comparisons on 4K resolution

The proposed method, along with other state-of-the-art methods, has been trained and evaluated on
the full-resolution (4K) HDR+ [6] and MIT-Adobe FiveK [3] datasets. A more exhaustive set of
visual comparisons, serving to highlight the relative performances of each method, is available for
scrutiny in Fig. 6 and Fig. 7.

4 Broader Impact

Tone Mapping is a fundamental task in the camera imaging pipeline. It has been studied for decades
and is widely applied to cinematic color grading, computer graphics, and image processing. High
dynamic range (HDR) imaging technology is gradually becoming ubiquitous as advancements
are made in shooting equipment, rendering methods, and display devices. Hence, tone mapping
techniques tackling this issue are worth investigating. The proposed framework addresses the lack of
local edge detail prevalent in learning-based tone mapping methods.

The learning-based tone mapping methods mimic the retouching style of human photographers
based on learned statistics of the training datasets. Consequently, these approaches may reflect any
biases in the datasets, including those with negative social implications. The proposed framework
presents this negative foreseeable societal consequence, either. Moreover, the subjective nature of
tone mapping tasks means color transformations may not universally satisfy all users. A plausible
mitigation strategy is to customize fine-tuning to various user preferences.

5 Limitation

Although our model demonstrates commendable efficacy concerning memory utilization and en-
hancement performance, it exhibits slower running time relative to the baseline method 3D LUT
due to the constraints of the local Laplacian filter. However, this is a common limitation in local
tone mapping operators. Fundamentally, this is because local operators are inherently more complex
than global operators, and their effects vary on a pixel-by-pixel basis, depending on the local image
characteristics. Nevertheless, since human visual perception is primarily sensitive to local contrast,
local operators can provide superior performance. Due to its high degree of data parallelism, the
local Laplacian filter [9, 1] can efficiently leverage multi-core architectures. Using OpenMP, we
have achieved substantial GPU acceleration, thereby reducing runtime to the point where 4K image
processing can be accommodated. This represents a significant advancement in addressing the
running speed as mentioned above constraints and improving the overall performance of the model.

6 Future Work

The future works include: (i) Generalizing the framework to other computer vision applications, e.g.,
low-light image enhancement, and style transfer. (ii) Modifying the architecture of the transformer
backbone. (iii) Designing a customized fine-tuned strategy to satisfy various user preferences. (iv)
Collecting a large-scale dataset for tone mapping benchmarking and researching.

Specifically, for future work (i), we generalize our proposed framework to other tasks since the
conventional local Laplacian filter [9, 1] can be employed to many computer vision tasks. For future
work (ii), the transformer backbone is directly borrowed from existing methods and is not optimized
for the tone mapping tasks, which will be considered subsequently to improve the backbone structure.
For future work (iii), we consider collecting mini-datasets with different user preferences, then
feeding the cumulative histogram statistics of the datasets into the network as prior information, and
fine-tuning the pre-trained model to achieve different retouching styles. This idea sounds reasonable
and interesting. However, confirmation of its effectiveness by rigorous experiments is yet to be
performed. Therefore, we set this task as a future research direction. We hope the present study will
further stimulate scholars to explore this under-explored area of tone mapping.
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Figure 5: Visual comparisons on 480p resolution MIT-Adobe FiveK dataset, and corresponding error
maps. Best viewed in color and by zooming in.
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