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Abstract

Tone mapping aims to convert high dynamic range (HDR) images to low dynamic
range (LDR) representations, a critical task in the camera imaging pipeline. In
recent years, 3-Dimensional Look-Up Table (3D LUT) based methods have gained
attention due to their ability to strike a favorable balance between enhancement
performance and computational efficiency. However, these methods often fail to
deliver satisfactory results in local areas since the look-up table is a global operator
for tone mapping, which works based on pixel values and fails to incorporate crucial
local information. To this end, this paper aims to address this issue by exploring a
novel strategy that integrates global and local operators by utilizing closed-form
Laplacian pyramid decomposition and reconstruction. Specifically, we employ
image-adaptive 3D LUTs to manipulate the tone in the low-frequency image by
leveraging the specific characteristics of the frequency information. Furthermore,
we utilize local Laplacian filters to refine the edge details in the high-frequency
components in an adaptive manner. Local Laplacian filters are widely used to
preserve edge details in photographs, but their conventional usage involves manual
tuning and fixed implementation within camera imaging pipelines or photo editing
tools. We propose to learn parameter value maps progressively for local Laplacian
filters from annotated data using a lightweight network. Our model achieves
simultaneous global tone manipulation and local edge detail preservation in an
end-to-end manner. Extensive experimental results on two benchmark datasets
demonstrate that the proposed method performs favorably against state-of-the-art
methods.

1 Introduction

Modern cameras, despite their advanced and sophisticated sensors, are limited in their ability to
capture the same level of detail as the human eye in a given scene. In order to capture more detail,
high dynamic range (HDR) imaging techniques [25, 2] have been developed to convey a wider
range of contrasts and luminance values than conventional low dynamic range (LDR) imaging.
However, most modern graphics display devices have a limited dynamic range that is inadequate
to reproduce the full range of light intensities present in natural scenes. To tackle this issue, tone
mapping techniques [28, 34, 9] have been proposed to render high-contrast scene radiance to the
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displayable range while preserving the image details and color appearance important to appreciate
the original scene content.

Traditional tone mapping operators can be classified according to their processing as global or local.
Global operators [11, 34, 7, 33, 21] map each pixel according to its global characteristics, irrespective
of its spatial localization. This approach entails calculating a single matching luminance value for the
entire image. As a result, the processing time is considerably reduced, but the resulting image may
exhibit fewer details. In contrast, local operators [6, 8, 10, 24, 29] consider the spatial localization
of each pixel within the image and process them accordingly. In essence, this method calculates
the luminance adaptation for each pixel based on its specific position. Consequently, the resulting
image becomes more visually accessible to the human eye and exhibits enhanced details, albeit at the
expense of longer processing times. However, these traditional operators often require manual tuning
by experienced engineers, which can be cumbersome since evaluating results necessitates testing
across various scenes. Although system contributions have aimed to simplify the implementation
of high-performance executables [32, 15, 27], they still necessitate programming expertise, incur
runtime costs that escalate with pipeline complexity, and are only applicable when the source code
for the filters is available. Therefore, seeking an automatic strategy for HDR image tone mapping is
of great interest.

In recent years, there have been notable advancements in learning-based automatic enhancement
methods [37, 12, 5, 30, 16, 35, 19], thanks to the rapid development of deep learning techniques [22].
Many of these methods focus on learning a dense pixel-to-pixel mapping between input high dynamic
range (HDR) and output low dynamic range (LDR) image pairs. Alternatively, they predict pixel-wise
transformations to map the input HDR image. However, most previous studies involve a substantial
computational burden that exhibits a linear growth pattern in tandem with the dimensions of the input
image.

To simultaneously improve the quality and efficiency of learning-based methods, hybrid methods [17,
41, 38, 36, 39] have emerged that combine the utilization of image priors from traditional operators
with the integration of multi-level features within deep learning-based frameworks, leading to state-
of-the-art performance. Among these methods, Zeng et al. [38] proposes a novel image-adaptive
3-Dimensional Look-Up Table (3D LUT) based approach, which exhibits favorable characteristics
such as superior image quality, efficient computational processing, and minimal memory utilization.
However, as indicated by the authors, utilizing the global (spatially uniform) tone mapping operators,
such as the 3D look-up tables, may produce less satisfactory results in local areas. Additionally, this
method necessitates an initial downsampling step to reduce network computations. In the case of
high-resolution (4K) images, this downsampling process entails a substantial reduction factor of up to
16 times (typically downsampled to 256× 256 resolution). Consequently, this results in a significant
loss of image details and subsequent degradation in enhancement performance.

To alleviate the above problems, this work focuses on integrating global and local operators to
facilitate comprehensive tone mapping. Drawing inspiration from the reversible Laplacian pyramid
decomposition [3] and the classical local tone mapping operators, the local Laplacian filter [29, 1], we
propose an effective end-to-end framework for the HDR image tone mapping task performing global
tone manipulation while preserving local edge details. Specifically, we build a lightweight transformer
weight predictor on the bottom of the Laplacian pyramid to predict the pixel-level content-dependent
weight maps. The input HDR image is trilinear interpolated using the basis 3D LUTs and then
multiplied with weighted maps to generate a coarse LDR image. To preserve local edge details
and reconstruct the image from the Laplacian pyramid faithfully, we propose an image-adaptive
learnable local Laplacian filter (LLF) to refine the high-frequency components while minimizing
the use of computationally expensive convolution in the high-resolution components for efficiency.
Consequently, we progressively construct a compact network to learn the parameter value maps at
each level of the Laplacian pyramid and apply them to the remapping function of the local Laplacian
filter. Moreover, a fast local Laplacian filter [1] is employed to replace the conventional local
Laplacian filter [29] for computational efficiency. Extensive experimental results on two benchmark
datasets demonstrate that the proposed method performs favorably against state-of-the-art methods.

In conclusion, the highlights of this work can be summarized into three points:

(1) We introduce an effective end-to-end framework for HDR image tone mapping. The network
performs both global tone manipulation and local edge details preservation within the same model.
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Figure 1: Overview of the framework. Our method first decomposes the input image I into a Laplacian
pyramid. The low-frequency image Ilow is fed into a lightweight transformer weight predictor and
Basis 3D LUTs fusion block to transform into a low-resolution enhanced image Îlow. To adaptively
refine the high-frequency components, we progressively learn an image-adaptive local Laplacian filter
(LLF) based on both high- and low-frequency images. Then, we perform the remapping function
of the local Laplcian filter to refine the high-frequency components while preserving the pyramid
reconstruction capability. For the level N − 1, we concatenate the component with the edge map of
Îlow to mitigate potential halo artifacts.

(2) We propose an image-adaptive learnable local Laplacian filter for efficient local edge details
preservation, demonstrating remarkable effectiveness when integrated with image-adaptive 3D LUT.

(3) We conduct extensively experiments on two publically available benchmark datasets. Both
qualitative and quantitative results demonstrate that the proposed method performs favorably against
state-of-the-art methods.

2 Proposed Method

2.1 Framework Overview

We propose an end-to-end framework to manipulate tone while preserving local edge detail in HDR
image tone mapping tasks. The pipeline of our proposed method is illustrated in Fig. 1. Given an
input 16-bit HDR image I ∈ Rh×w×3, we initially decompose it into an adaptive Laplacian pyramid,
resulting in a collection of high-frequency components represented by L = [l0, l1, · · · , lN−1], as well
as a low-frequency image denoted as Ilow. Here, N represents the number of decomposition levels
in the Laplacian pyramid. The adaptive Laplacian pyramid employs a dynamic adjustment of the
decomposition levels to match the resolution of the input image. This adaptive process ensures that the
low-frequency image Ilow achieves a proximity of approximately 64× 64 resolution. The described
decomposition process possesses invertibility, allowing the original image to be reconstructed by
incremental operations. According to Burt and Adelson [3], each pixel in the low-frequency image
Ilow is averaged over adjacent pixels by means of an octave Gaussian filter, which reflects the global
characteristics of the input HDR image, including color and illumination attributes. Meanwhile, other
high-frequency components contain edge-detailed textures of the image.

Motivated by the characteristics mentioned above of the Laplacian pyramid, we propose to manipu-
late tone on Ilow while refining the high-frequency components L progressively to preserve local
edge details. In addition, we progressively refine the higher-resolution component conditioned on
the lower-resolution one. The proposed framework consists of three parts. Firstly, we introduce a
lightweight transformer block to process Ilow and generate content-dependent weight maps. These
predicted weight maps are employed to fuse the basis of 3D LUTs. Subsequently, this adapted
representation is used to transform Ilow into Îlow, resulting in the desired tone manipulation. Sec-
ondly, we construct parameter value maps by leveraging a learned model on the concatenation of
[lN−1, up(Ilow), up(edge(Îlow))], where up(· · ·) represents a bilinear up-sampling operation and
edge(· · ·) denotes for the canny edge detector. These parameter value maps are then employed to
perform a fast local Laplacian filter [1] on the Laplacian layer of level N − 1. This step effectively

3



Figure 2: Illustration of the basis 3D LUTs fusion strategy. (a) present the multiple pixel mapping
relationships of an image pair; (b) is the conventional basis 3D LUTs fusion strategy; (c) is the
pixel-level basis 3D LUTs fusion strategy.

refines the high-frequency components while considering the local edge detail information. Lastly,
we propose an efficient and progressive upsampling strategy to further enhance the refinement of
the remaining Laplacian layers with higher resolutions. Starting from level l = N − 2 down to
l = 0, we sequentially upsample the refined components from the previous level and concatenate
them with the corresponding Laplacian layer. Subsequently, we employ a lightweight convolution
block to perform another fast local Laplacian filter. This iterative process iterates across multiple
levels, effectively refining the high-resolution components. We introduce these modules in detail in
the following sections.

2.2 Pixel-level Basis 3D LUTs Fusion

According to the inherent properties of the Laplacian pyramid, the low-frequency image contains
properties such as color and illumination of the images. Therefore, we employ 3D LUTs to perform
tone manipulation on low-frequency images Ilow. In RGB color space, a 3D LUT defines a 3D lattice
that consists of N3

b elements, where Nb is the number of bins in each color channel. Each element
defines a pixel-to-pixel mapping function Mc(i, j, k), where i, j, k = 0, 1, · · · , nb − 1 ∈ INb−1

0 are
elements’ coordinates within 3D lattice and c indicates color channel. Given an input RGB color
{(Ir(i,j,k), I

g
(i,j,k), I

b
(i,j,k))}, where i, j, k are indexed by the corresponding RGB value, a output Oc is

derived by the mapping function as follows:

Oc
(i,j,k) = Mc(Ir(i,j,k), I

g
(i,j,k), I

b
(i,j,k)). (1)

The mapping capabilities of conventional 3D LUTs are inherently constrained to fixed transformations
of pixel values. Fig. 2(a) demonstrates this limitation, where the input image has the same pixel values
at different locations. However, these locations contain different pixel values in the reference image.
While the input image is interpolated through a look-up table, the transformed image retains the
same transformed pixel values at these locations. Consequently, the conventional 3D LUT framework
fails to accommodate intricate pixel mapping relationships, thus impeding its efficacy in accurately
representing such pixel transformations.

Inspired by [36], we propose an effective 3D LUT fusion strategy to address this inherent limitation.
The conventional 3D LUT fusion strategy proposed by [38] is shown in Fig. 2(b), which first utilizes
the predicted weights to fuse the multiple 3D LUTs into an image-adaptive one and then performs
trilinear interpolation to transform images. In contrast, as shown in Fig. 2(c), our strategy is first
to perform trilinear interpolation with each LUT and then fuse the enhanced image with predicted
pixel-level weight maps. In this way, our method can enable a relatively more comprehensive and
accurate representation of the complex pixel mapping relationships through the weight values of each
pixel. The pixel-level mapping function Φh,w,c can be described as follows:

Oh,w,c
(i,j,k) = Φh,w,c(Ir(i,j,k), I

g
(i,j,k), I

b
(i,j,k), ω

h,w) =

N−1∑
n=0

ωh,w
n Mc

n(I
r
(i,j,k), I

g
(i,j,k), I

b
(i,j,k)), (2)

where Oh,w,c
(i,j,k) is the final pixel-level output, ωh,w

n represents a pixel-level weight map for N 3D
LUTs located at (h,w). Note that our proposed strategy involves the utilization of multiple trilinear
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interpolations, which may impact the computational speed when applied to high-resolution images.
However, since our method operates at the resolution of 64 × 64, the computational overhead is
insignificant. More discussions are provided in the supplementary material.

As shown in Fig. 1, given Ilow with a reduced resolution, we feed it into a weight predictor to output
the content-dependent weight maps ωh,w. Since the weight predictor aims to understand the global
context, such as the brightness, color, and tone of an image, a transformer backbone is more suitable
for extracting global information than a CNN backbone. Therefore, we utilize a tiny transformer
model proposed by [23] as the weight predictor. The whole model contains only 400K parameters
when N = 3.

2.3 Image-adaptive Learnable Local Laplacian Filter

Figure 3: Architecture of the proposed image-
adaptive learnable local Laplacian filter (LLF).

Although the pixel-level basis 3D LUTs fu-
sion strategy demonstrates stable and efficient
enhancement of input images across various
scenes, the transformation of pixel values
through weight maps alone still falls short of sig-
nificantly improving local detail and contrast. To
tackle this limitation, one potential solution is to
integrate a local enhancement method with 3D
LUT. In this regard, drawing inspiration from the
intrinsic characteristics of the Laplacian pyra-
mid [3], which involves texture separation, vi-
sual attribute separation, and reversible recon-
struction, the combination of 3D LUT and the
local Laplacian filter [29] can offer substantial
benefits.

Local Laplacian filters are edge-aware local tone
mapping operators that define the output image by constructing its Laplacian pyramid coefficient by
coefficient. The computation of each coefficient i is independent of the others. These coefficients are
computed by the following remapping functions r(i):

r(i) =

{
g + sign(i− g)σr(|i− g|/σr)

α if i ≤ σr

g + sign(i− g)(β(|i− g| − σr) + σr) if i > σr
, (3)

where g is the coefficient of the Gaussian pyramid at each level, which acts as a reference value,
sign(x) = x/|x| is a function that returns the sign of a real number, α is one parameter that controls
the amount of detail increase or decrease, β is another parameter that controls the dynamic range
compression or expansion, and σr defines the intensity threshold the separates details from edges.

Nevertheless, the conventional approach described in Eq. 3 necessitates manual parameter adjustment
for each input image, leading to a cumbersome and labor-intensive process. To overcome this
limitation, we propose an image-adaptive learnable local Laplacian filter (LLF) to learn the parameter
value maps for the remapping function. The objective function of the learning scheme can be written
as follows:

minα,βL(r(l, g),R), (4)

where α and β are the learned parameter value maps of the Laplacian pyramid, L(· · ·) denotes the
loss functions, r(l, g) presents the image-adaptive learnable local Laplacian filter (LLF), l and g
are the coefficients of the Laplacian and Gaussian pyramid, respectively, R is the reference image.
Note that the parameter σr does not impact the filter’s performance; thus, it is fixed at 0.1 in this
paper. Furthermore, to enhance computational efficiency, we have employed the fast local Laplacian
filter [1] instead of the conventional local Laplacian filter.

As discussed in Sec. 2.1, we have lN−1 ∈ R
h

2N−1 × w

2N−1 ×3 and Ilow, Îlow ∈ R
h

2N
× w

2N
×3. To address

potential halo artifacts, we initially employ a Canny edge detector with default parameters to extract
the edge map of Îlow. Subsequently, we upsample Ilow and edge(Îlow) using bilinear operations to
match the resolution of lN−1 and concatenate them. The concatenated components are fed into a
Parameter Prediction Block (PPB) as depicted in Fig. 3. The outputs of the PPB are utilized for the
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Methods #Params HDR+ (480p) HDR+ (original)
PSNR↑ SSIM↑ LPIPS↓ △E↓ PSNR↑ SSIM↑ LPIPS↓ △E↓

UPE [35] 999K 23.33 0.852 0.150 7.68 21.54 0.723 0.361 9.88
HDRNet [12] 482K 24.15 0.845 0.110 7.15 23.94 0.796 0.266 6.77
CSRNet [14] 37K 23.72 0.864 0.104 6.67 22.54 0.766 0.284 7.55
DeepLPF [26] 1.72M 25.73 0.902 0.073 6.05 N.A. N.A. N.A. N.A.
LUT [38] 592K 23.29 0.855 0.117 7.16 21.78 0.772 0.303 9.45
sLUT [36] 4.52M 26.13 0.901 0.069 5.34 23.98 0.789 0.242 6.85
CLUT [39] 952K 26.05 0.892 0.088 5.57 24.04 0.789 0.245 6.78

Ours 731K 26.62 0.907 0.063 5.31 25.32 0.849 0.149 6.03

Table 1: Quantitative comparison on HDR+ [13] dataset. "N.A." means that the results are not
available due to insufficient memory of the GPU.

remapping function r(i) to refine lN−1:

l̂N−1 = r(lN−1, gN−1, αN−1, βN−1). (5)

Subsequently, we adopt a progressive upsampling strategy to match the refined high-frequency
component l̂N−1 with the remaining high-frequency components. This upsampled component is
concatenated with lN−2. As depicted in Fig. 1, the concatenated vector [lN−2, up(l̂N−1)] is feed
into another LLF. The refinement process continues iteratively, progressively upsampling until l̂0 is
obtained. By applying the same operations as described in Eq. 5, all high-frequency components are
effectively refined, leading to a set of refined components [l̂0, l̂1, . . . , l̂N−1]. Finally, the result image
Î is reconstructed using the tone mapped image Îlow with refined components [l̂0, l̂1, . . . , l̂N−1].

2.4 Overall Training Objective

The proposed framework is trained in a supervised scenario by optimizing a reconstruction loss. To
encourage a faithful global and local enhancement, given a set of image pairs (I,R), where I[i] and
R[i] denote a pair of 16-bit input HDR and 8-bit reference LDR image, we define the reconstruction
loss function as follows:

L1 =

H×W∑
i=1

(∥ Î[i]−R[i] ∥1 + ∥ Îlow[i]−Rlow[i] ∥1), (6)

where Î[i] is the output of network with I[i] as input, Îlow[i] is the output of 3D LUT with Ilow[i] as
input, Rlow[i] is the low-frequency image of reference image R[i].

To make the learned 3D LUTs more stable and robust, some regularization terms from [38], including
smoothness term Ls and monotonicity term Lm, are employed. In addition to these terms, we employ
an LPIPS loss [40] function that assesses a solution concerning perceptually relevant characteristics
(e.g., the structural contents and detailed textures):

Lp =
∑
l

1

H lW l

∑
h,w

∥ ϕ(Î)lhw − ϕ(R)lhw ∥22, (7)

where ϕ(·)lhw denotes the feature map of layer l extracted from a pre-trained AlexNet [20].

To summarize, the complete objective of our proposed model is combined as follows:

L = L1 + λsLs + λmLm + λpLp, (8)

where λs, λm, and λp are hyper-parameters to control the balance of loss functions. In our experiment,
these parameters are set to λs = 0.0001, λm = 10, λp = 0.01.
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Methods #Params MIT-FiveK (480p) MIT-FiveK (original)
PSNR↑ SSIM↑ LPIPS↓ △E↓ PSNR↑ SSIM↑ LPIPS↓ △E↓

UPE [35] 999K 21.82 0.839 0.136 9.16 20.41 0.789 0.253 10.81
HDRNet [12] 482K 23.31 0.881 0.075 7.73 22.99 0.868 0.122 7.89
CSRNet [14] 37K 25.31 0.909 0.052 6.17 24.23 0.891 0.099 7.10
DeepLPF [26] 1.72M 24.97 0.897 0.061 6.22 N.A. N.A. N.A. N.A.
LUT [38] 592K 25.10 0.902 0.059 6.10 23.27 0.876 0.111 7.39
sLUT [36] 4.52M 24.67 0.896 0.059 6.39 24.27 0.876 0.103 6.59
CLUT [39] 952K 24.94 0.898 0.058 6.71 23.99 0.874 0.106 7.07

Ours 731K 25.53 0.910 0.055 5.64 24.52 0.897 0.081 6.34

Table 2: Quantitative comparison on MIT-Adobe FiveK [4] dataset. "N.A." means that the results are
not available due to insufficient memory of the GPU.

3 Experiments

3.1 Experimental Setup

Datasets: We evaluate the performance of our network on two challenging benchmark datasets:
MIT-Adobe FiveK [4] and HDR+ burst photography [13]. The MIT-Adobe FiveK dataset is widely
recognized as a benchmark for evaluating photographic image adjustments. This dataset comprises
5000 raw images, each retouched by five professional photographers. In line with previous studies [38,
36, 39], we utilize the ExpertC images as the reference images and adopt the same data split, with
4500 image pairs allocated for training and 500 image pairs for testing purposes. The HDR+ dataset
is a burst photography dataset collected by the Google camera group to research high dynamic range
(HDR) and low-light imaging on mobile cameras. We post-process the aligned and merged frames
(DNG images) into 16-bit TIF images as the input and adopt the manually tuned JPG images as
the corresponding reference images. We conduct experiments on both the 480p resolution and 4K
resolution. The aspect ratios of source images are mostly 4:3 or 3:4.

Evaluation metrics: We employ four commonly used metrics to quantitatively evaluate the enhance-
ment performance on the datasets as mentioned above. The △E metric is defined based on the L2

distance in the CIELAB color space. The PSNR and SSIM are calcuated by corresponding functions
in skimage.metrics library and RGB color space. Note that higher PSNR/SSIM and lower LPIPS/△E
indicate better performance.

Implementation Details: To optimize the network, we employ the Adam optimizer [18] for training.
The initial values of the optimizer’s parameters, β1 and β2, are set to 0.9 and 0.999, respectively.
The initial learning rate is set to 2 × 10−4, and we use a batch size of 1 during training. In order
to augment the data, we perform horizontal and vertical flips. The training process consists of 200
epochs. The implementation is conducted on the Pytorch [31] framework with Nvidia Tesla V100
32GB GPUs.

3.2 Quantitative Comparison Results

In our evaluation, we comprehensively compare our proposed network with state-of-the-art learning-
based methods for tone mapping in the camera-imaging pipeline. The methods included in the
comparison are UPE [35], DeepLPF [26], HDRNet [12], CSRNet [14], 3DLUT [38], spatial-aware
3DLUT [36], and CLUT-Net [39]. To simplify the notation, we use the abbreviations LUT, sLUT, and
CLUT to represent 3DLUT, spatial-aware 3DLUT, and CLUT-Net, respectively, in our comparisons.
It is important to note that the input images considered in our evaluation are 16-bit uncompressed
images in the CIE XYZ color space, while the reference images are 8-bit compressed images in the
sRGB color space.

Among the considered methods, DeepLPF and CSRNet are pixel-level methods based on ResNet
and U-Net backbone, while HDRNet and UPE belong to patch-level methods, and LUT, sLUT, and
CLUT are the image-level methods. Our method also falls within the image-level category. These
methods are trained using publicly available source codes with recommended configurations, except
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Figure 4: Visual comparison with state-of-the-art methods on a test image from the HDR+ dataset [13].
The error maps in the upper left corner facilitates a more precise determination of performance
differences. Best viewed in color and by zooming in.

for sLUT. Since the training code and weights of this method have never been released, we reproduce
the results according to the description in the released article.

Tab. 1 presents the quantitative comparison results on the HDR+ dataset for two different resolutions.
Notably, our method exhibits a significant performance advantage over all competing methods on both
resolutions, as indicated by the values highlighted in bold across all metrics. Specifically, our method
achieves a notable 0.49dB improvement in PSNR compared to the second-best method, sLUT [36],
at 480p resolution. This advantage becomes even more pronounced (1.25dB) when operating at the
original image resolution, demonstrating the robustness of our approach for high-resolution images.
Similarly, when evaluated on our second benchmark, the MIT-Adobe FiveK dataset (refer to Tab. 2),
our method consistently demonstrates a clear advantage over all competing methods. However, for
all methods, the FiveK dataset offers limited improvements compared to the HDR+ dataset, which
can be attributed to two main reasons. Firstly, some reference images in the FiveK dataset suffer
from overexposure or oversaturation, presenting challenges for the enhancement methods. Secondly,
inconsistencies exist in the reference images adjusted by the same professional photographers, leading
to variations between the training and test sets. More discussions can be found in the supplementary
material.

3.3 Qualitative Comparison Results

To evaluate our proposed network intuitively, we visually compare enhanced images on the two
benchmarks, as shown in Fig. 4 and Fig. 5. Note that the input images are 16-bit TIF images,
which regular display devices can not directly visualize; thus, we compress the 16-bit images into
8-bit images for visualization. These figures show that our proposed network consistently delivers
visually appealing results on the MIT-Adobe FiveK and HDR+ datasets. For example, in Fig. 4, our
method excels in preserving intricate details such as tree branches and grass texture while enhancing
brightness. Moreover, our results exhibit superior color fidelity and alignment with the reference
image. Similarly, in Fig.5, while other methods suffer from poor saturation in the shaded area of
the reflected building, our method accurately reproduces the correct colors, resulting in a visually
pleasing outcome. These findings highlight the effectiveness and superiority of our method in tone
mapping tasks. More visual results can be found in the supplementary material. Since the central
goal of the tone mapping task is to primarily recalibrate the tone of the image while compressing the
dynamic range, the visual differences between the results produced by the various state-of-the-art
methods are minimal. To intuitively demonstrate the visual differences, we utilize the error maps to
facilitate a more precise identification of performance differences.
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Figure 5: Visual comparison with state-of-the-art methods on a test image from the MIT-Adobe
FiveK dataset [4]. The error maps in the upper left corner facilitates a more precise determination of
performance differences. Best viewed in color and by zooming in.

Metrics Framework Component Low-frequency Image Resolution
Baseline + Weight Map + Transformer + Learnable Filter 64× 64 128× 128 256× 256

PSNR↑ 23.16 24.41 (+1.250) 25.34 (+0.930) 26.62 (+1.280) 26.62 26.69 (+0.070) 26.81 (+0.120)
SSIM↑ 0.842 0.856 (+0.014) 0.868 (+0.012) 0.907 (+0.039) 0.907 0.909 (+0.002) 0.913 (+0.004)
LPIPS↓ 0.113 0.111 (-0.002) 0.101 (-0.010) 0.063 (-0.038) 0.063 0.061 (-0.002) 0.058 (-0.003)
△E↓ 7.04 6.23 (-0.81) 5.92 (-0.31) 5.31 (-0.61) 5.31 5.29 (-0.02) 5.25 (-0.04)

Table 3: Ablation study of framework component and the selection of pyramid layers. All four
metrics are reported.

3.4 Ablation Study

Break-down Ablations. We conduct comprehensive breakdown ablations to evaluate the effects of
our proposed framework. We train our framework from scratch using paired data from the HDR+
dataset [13] and evaluate its performance on the HDR+ test set. The quantitative results are presented
in Tab. 3. We begin with the baseline method, 3D LUT [38], without utilizing pixel-level weight
maps or learnable local Laplacian filters. The results show a significant degradation, indicating
the insufficiency of 3D LUT. When pixel-level weight maps are introduced, the results improve by
an average of 1.25 dB. This evidence highlights the successful implementation of the pixel-level
basis 3D LUTs fusion strategy discussed in Sec. 2.2. Next, we replace the regular lightweight
CNN backbone with a tiny transformer backbone proposed by [23], which contains less than 400K
parameters. After deploying the transformer backbone, the model is improved by 0.93dB, suggesting
that the transformer backbone is more in line with global tone manipulation and benefits generating
more visual pleasure LDR images. Furthermore, when employing the image-adaptive learnable local
Laplacian filter, the results exhibit a significant improvement of 1.28 dB. This finding indicates that
the image-adaptive learnable local Laplacian filter facilitates the production of more vibrant results.
As can be seen from Fig 6, combining local Laplacian filter with 3D LUT achieves good visual
quality on both global and local enhancement in this challenging case. These results convincingly
demonstrate the superiority of our proposed framework in tone mapping tasks.

Selection of the pyramid layers. We validate the influence of the number of Laplacian pyramid layers
in this section. Our approach employs an adaptive Laplacian pyramid, allowing us to manipulate the
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Figure 6: Visual results of ablation study on framework component. (a) is the baseline method 3D
LUT. (b) is apply the pixel-level weight map. (c) is deploy the transformer backbone. (d) is utilizing
the learnable local Laplacian filter.

number of layers by altering the resolution of the low-frequency image Ilow. As shown in Tab. 3,
the model performs best on all evaluation metrics when the resolution of Ilow is set to 256 × 256.
However, the proposed framework requires more computation. A trade-off between computational
load and performance is determined by the number of layers in the Laplacian pyramid. The proposed
framework remains robust when the resolution is reduced to alleviate the computational burden. For
example, reducing the resolution of Ilow from 256× 256 to 64× 64 only marginally decreases the
PSNR of the proposed framework from 26.81 to 26.62. Remarkably, this reduction in resolution leads
to a significant 30% decrease in computational burden. These results validate that the tone attributes
are presented in a relatively low-dimensional space.

4 Conclusion

This paper proposes an effective end-to-end framework for HDR image tone mapping tasks, com-
bining global and local enhancements. The proposed framework utilizes the Laplacian pyramid
decomposition technique to handle high-resolution HDR images effectively. This approach signifi-
cantly reduces computational complexity while simultaneously ensuring uncompromised enhance-
ment performance. Global tone manipulation is performed on the low-frequency image using 3D
LUTs. An image-adaptive learnable local Laplacian filter is proposed to progressively refine the
high-frequency components, preserving local edge details and reconstructing the pyramids. Extensive
experimental results on two publically available benchmark datasets show that our model performs
favorably against state-of-the-art methods for both 480p and 4K resolutions.
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