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A Output representation and training strategies1

For each anchor token ẑAG
i , i ∈ {1, . . . , NAG ·NAC}, the confidence head predicts the logits pk, k ∈2

{1, . . . , 6}, whereas the trajectory head predicts 6 trajectories, each of which is represented as3
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t, st), t ∈ {1, . . . , Tf}, i.e. the mean of the Gaussian in x, y, the4

log standard deviation of the Gaussian in x, y, the correlation of the Gaussians, the velocity in x, y,5

the heading angle and the speed. We denote the ground truth as (x̂, ŷ, v̂x, v̂y, θ̂, ŝ). The negative6

log-likelihood loss for position is formulated as7

Lpos = − logN (x̂, ŷ | µx, µy, σx, σy, ρ). (1)

The negative cosine loss for the heading angle is formulated as8

Lrot = − cos(θ̂ − θ). (2)

The Huber loss for velocities and speed is formulated as9

Lvel = Lδ(v̂x − vx) + Lδ(v̂y − vy) + Lδ(ŝ− s), (3)

where Lδ is the Huber loss. We use δ = 1 for all Huber losses. The final regression loss for a10

trajectory is the unweighted sum11

Ltraj = Lpos + Lrot + Lvel, (4)

which is averaged over the future time steps where the ground truth is available. We use a hard12

assignment strategy, i.e. among the 6 predictions of each agent we select the one that is closest to the13

ground truth in terms of average displacement error and optimize only for that prediction. Denoting14

the index of this prediction as k̂, we train the confidence head via the cross entropy loss by taking k̂15

as the ground truth:16

Lconf = − log
exp(pk̂)∑6
i=1 exp(pi)

. (5)

The final training loss for the complete model is the unweighted sum17

L = Ltraj + Lconf. (6)

Our output representation and training strategies are the same as prior works [2, 4, 5], except for the18

auxiliary losses on velocities, speeds and heading angles.19

B Implementation details20

B.1 Network architectures21

We use ReLU activation and set the hidden dimension D to 256. Our KNARPE is implemented22

with multi-head attention with 4 heads. We use Transformer with pre-layer normalization [6] with a23
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dropout rate of 0.1. The feed-forward hidden dimension of Transformers is set to 1024. The base24

frequency ω of the sinusoidal positional encoding is set to 1000. We train a single model for all25

types of agents, while each type of agent has its own anchors. The polyline-line level PointNet and26

MLPs have 3 layers, the intra-MP Transformer encoder has 6 layers, and the inter-class as well as the27

AC-to-all Transformer decoders, have 2 layers. Our HPTR has 15.2M trainable parameters in total.28

The same setup is used for both the WOMD dataset and the AV2 dataset.29

In the following, we report the configuration of ablation models. The HPTR with diagonal attention30

has 6 layers of intra-MP, 3 layers of intra-TL and 3 layers of intra-AG Transformer. It has 15.4M31

trainable parameters. The HPTR with full attention has 6 layers of all-to-all and 6 layers of AC-to-all32

Transformer. It has 15.2M parameters. The HPTR with diagonal followed by full attention has33

6 layers of intra-MP, 2 layers of intra-TL, 2 layers of intra-AG, 2 layers of all-to-all and 2 layers34

of AC-to-all Transformer. It has 15.4M trainable parameters. Both the HPTR with full attention35

and the HPTR with diagonal followed by full attention have to be trained on GPUs with 24GB of36

VRAM (RTX 3090 in our case) because they require more GPU memory at training time. The37

scene-centric baseline uses the scene-centric representation and the standard Transformer. Following38

SceneTransformer [3], the input 2D positions and 2D directions are pre-processed using sinusoidal39

positional encoding. The base frequency is set to 1000 for 2D positions and 10 for 2D directions.40

The output dimension of the positional encoding is 256. This model has 13M trainable parameters.41

The agent-centric baseline closely follows Wayformer [2]. It has 6 layers of all-to-all Transformer42

and 8 layers of AC-to-all Transformer. The number of latent queries is 192. The learning rate starts at43

2e-4 and it is multiplied by 0.5 every 20 epochs. The training of the agent-centric baseline takes 10044

epochs to converge. We do not use auxiliary losses on velocities, speeds and yaw angles to train this45

model. This model has 15.6M trainable parameters.46

B.2 Pre-processing and post-processing47

Our pre-processing and post-processing closely follow MPA [1]. The post-processing manipulates48

only the confidences via greedy non-maximum suppression. The distance threshold is 2.5m for49

vehicles, 1m for pedestrians and 1.5m for cyclists. We use the average displacement error to compute50

the distance between predicted trajectories. For AV2 we simply use softmax with a temperature of51

0.5 instead of doing non-maximum suppression.52

B.3 Training details53

Due to the large size of motion prediction datasets, each epoch would take a very long time if trained54

on the complete training split. In order to track losses more frequently, we randomly sample a55

fraction of all training data in each epoch. This is equivalent to using the complete training dataset56

if the training runs for many epochs. We observe a statistically significant correlation between the57

model performance and the initialization of anchors. We recommend to use a large variance for58

the initialization distributions. Specifically, we use Xavier initialization and multiply the initialized59

values by 5.60

C Additional ablation studies61

In Table 1 we ablate different ways to incorporate RPE into the dot-product attention. The differences62

are insignificant in terms of performance. However, our approach, i.e. adding projected RPE to63

projected key and value, consumes less memory at training time. We use this setup in our main paper64

because it can be trained on the RTX 2080 Ti GPUs (12GB VRAM), which are more accessible than65

the RTX 3090 GPUs (24GB VRAM) in practice.66

D Additional results67

In Tables 2, 3, and 4, we provide the complete results of our HPTR on the WOMD test split, the68

WOMD valid split, and the AV2 valid split, respectively.69

In Figures 1, 2, and 3, we provide more qualitative results on WOMD valid of our HPTR predicting70

vehicles, pedestrians, and cyclists, respectively.71
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Table 1: Ablation on WOMD valid split. We study different ways to incorporate the RPE into the
dot-product attention. Performance is reported as the mean plus-minus 3 standard deviations over 3
training seeds. Models are trained for 60 epochs. OOM: out of memory. q: query. k: key. v: value.

model description concat
RPE

query
RPE

train on
2080ti

mem%
on 3090

Min
FDE ↓

Soft
mAP ↑

ours (add proj. RPE to proj. k, v) × × ✓ 58.2 1.143± 0.039 0.401± 0.007
ours without q, k, v bias × × ✓ 58.2 1.140± 0.021 0.396± 0.009
add proj. RPE to proj. q, k, v × ✓ OOM 66.2 1.144± 0.036 0.397± 0.006
concat. RPE to k, v ✓ × OOM 71.6 1.138± 0.026 0.395± 0.006
concat. RPE to q, k, v ✓ ✓ OOM 90.5 1.133± 0.024 0.396± 0.006

Table 2: Complete results of our HPTR on the WOMD test split.
Object
Type

Measurement
Time (s)

Soft
mAP ↑

mAP
↑

Min
ADE ↓

Min
FDE ↓

Miss
Rate ↓

Overlap
Rate ↓

Vehicle 3 0.5631 0.5475 0.2795 0.4997 0.0927 0.0190
Vehicle 5 0.4687 0.4623 0.5714 1.1020 0.1297 0.0415
Vehicle 8 0.3697 0.3664 1.0739 2.2753 0.1787 0.0915
Vehicle Avg 0.4671 0.4587 0.6416 1.2923 0.1337 0.0507

Pedestrian 3 0.4534 0.4427 0.1637 0.3111 0.0676 0.2408
Pedestrian 5 0.3422 0.3370 0.3220 0.6616 0.0938 0.2648
Pedestrian 8 0.2792 0.2751 0.5722 1.2778 0.1248 0.2952
Pedestrian Avg 0.3582 0.3516 0.3526 0.7502 0.0954 0.2669

Cyclist 3 0.4334 0.4267 0.3266 0.6078 0.1859 0.0494
Cyclist 5 0.3587 0.3552 0.6166 1.2085 0.1922 0.0900
Cyclist 8 0.3025 0.3006 1.0825 2.3096 0.2250 0.1369
Cyclist Avg 0.3649 0.3608 0.6752 1.3753 0.2011 0.0921

Avg 3 0.4833 0.4723 0.2566 0.4729 0.1154 0.1030
Avg 5 0.3899 0.3848 0.5033 0.9907 0.1386 0.1321
Avg 8 0.3171 0.3140 0.9095 1.9543 0.1762 0.1745
Avg Avg 0.3968 0.3904 0.5565 1.1393 0.1434 0.1366

Table 3: Complete results of our HPTR on the WOMD valid split.
Object
Type

Measurement
Time (s)

Soft
mAP ↑

mAP
↑

Min
ADE ↓

Min
FDE ↓

Miss
Rate ↓

Overlap
Rate ↓

Vehicle 3 0.5611 0.5451 0.2796 0.4988 0.0934 0.0186
Vehicle 5 0.4704 0.4637 0.5698 1.0986 0.1297 0.0405
Vehicle 8 0.3678 0.3644 1.0731 2.2909 0.1824 0.0909
Vehicle Avg 0.4664 0.4577 0.6408 1.2961 0.1352 0.0500

Pedestrian 3 0.4923 0.4802 0.1454 0.2674 0.0478 0.2358
Pedestrian 5 0.4055 0.3993 0.2782 0.5488 0.0661 0.2605
Pedestrian 8 0.3639 0.3577 0.4834 1.0157 0.0813 0.2901
Pedestrian Avg 0.4206 0.4124 0.3023 0.6106 0.0651 0.2621

Cyclist 3 0.4606 0.4519 0.3309 0.6021 0.1779 0.0523
Cyclist 5 0.3822 0.3788 0.6136 1.1843 0.1905 0.0897
Cyclist 8 0.2962 0.2943 1.0661 2.3242 0.2239 0.1433
Cyclist Avg 0.3797 0.3750 0.6702 1.3702 0.1974 0.0951

Avg 3 0.5047 0.4924 0.2519 0.4561 0.1064 0.1022
Avg 5 0.4194 0.4139 0.4872 0.9439 0.1288 0.1302
Avg 8 0.3427 0.3388 0.8742 1.8769 0.1626 0.1748
Avg Avg 0.4222 0.4150 0.5378 1.0923 0.1326 0.1357

Table 4: Complete results of our HPTR on the AV2 test split.
minFDE6↓ minFDE1↓ minADE6↓ minADE1↓ Miss Rate6↓ Miss Rate1↓ brier-minFDE6 ↓

1.43 4.61 0.73 1.84 0.19 0.61 2.03
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(a) Change lane. (b) Reverse.

(c) U-Turn. (d) Multi-modal futures.
Figure 1: Qualitative results of HPTR predicting vehicles. Scenarios are selected from the WOMD
validation dataset. The ground truth is in orange. The target agent and the predictions are in cyan.
The most confident prediction has the least transparent color, the thickest line and the biggest cross.

(a) Interact with parked cars. (b) On the crosswalk with other people.

(c) Walk alone on the road edge. (d) Cross the street without using crosswalk.
Figure 2: Qualitative results of HPTR predicting pedestrians. Read as Figure 1.

(a) Ride on the bike lane (in brown). (b) Ride on a road without bike lane.

(c) Ride on the road edge. (d) Stop at red light.
Figure 3: Qualitative results of HPTR predicting cyclists. Read as Figure 1.
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