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Abstract

In this paper, we study the problem of unsupervised domain adaptive retrieval,
which transfers retrieval models from a label-rich source domain to a label-scarce
target domain. Although there exist numerous approaches that incorporate transfer
learning techniques into deep hashing frameworks, they often overlook the crucial
invariance needed for adequate alignment between these two domains. Even worse,
these methods fail to distinguish between causal and non-causal effects embedded
in images, making cross-domain retrieval ineffective. To address these challenges,
we propose an Invariance-acquired Domain Adaptive Hashing (IDEA) model.
Our IDEA first decomposes each image into a causal feature representing label
information and a non-causal feature indicating domain information. We then
generate discriminative hash codes using causal features with consistency learning
on both source and target domains. More importantly, we employ a generative
model for synthetic samples to simulate the intervention of various non-causal
effects, thereby minimizing their impact on hash codes for domain invariance.
Comprehensive experiments conducted on benchmark datasets confirm the superior
performance of our proposed IDEA compared to a variety of competitive baselines.

1 Introduction

Approximate nearest neighbor (ANN) search [73, 77, 49, 29, 40] has been a pivotal research problem
within the field of deep learning for decades. Recently, learning to hash [41, 80, 68, 20] has come
to the fore in ANN search engines due to its high computational and memory efficiency. The main
objective of learning to hash is to convert high-dimensional data points into compact low-dimensional
binary codes while maintaining semantic similarity. Consequently, this approach mitigates the
requirement for computationally expensive pairwise distance computations, replacing them with
economical Hamming distance calculations using bit-wise XOR and bit-count operations [60].

Recent hashing techniques can primarily be classified into two types, namely supervised ap-
proaches [72, 44, 67, 48, 75, 8, 31, 52] and unsupervised approaches [32, 76, 46, 69, 33, 61, 10].
Supervised hashing approaches incorporate annotation data into the similarity learning algorithms,
generally leading to better performance than unsupervised ones. These supervised methods primarily
focus on minimizing a spectrum of similarity-preserving losses and quantization losses [11, 78] to
generate highly discriminative hash codes. Furthermore, several innovative proxy-based techniques
have been introduced where a proxy is constructed in the Hamming space for each class, and hash
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codes are enforced to approximate their respective proxies. These methods have demonstrated
encouraging results in efficient image retrieval.

However, these supervised approaches rely on an assumption that the distributions between the
training and query data are the same, which is often violated in real-world scenarios. For instance,
when an ANN search engine trained on benchmark images, is employed to search query images
from mobile phones, retrieval performance could potentially diminish substantially [45, 22, 64].
In light of this, this paper concentrates on the problem of domain adaptive retrieval, which aims
to enhance the performance of retrieval systems by leveraging both labeled source instances and
unlabeled target samples. In literature, a variety of domain adaptive hashing methods have been
proposed [71, 66, 64, 47, 74, 21, 58], which typically incorporate domain adaptation strategies into
deep hashing frameworks. They adopt the memory bank [64] and adversarial learning [58, 36]
to achieve alignment across source and target domains. Moreover, pseudo-labeling [19, 58] is
implemented to extract knowledge from unlabeled target samples, thus addressing the challenge of
label scarcity in the target domain.

Unfortunately, existing approaches have two intrinsic limitations that hinder their effectiveness as
follows: (1) Entanglement of causal and non-causal effects. Current methods tend to recklessly focus
on correlations between image data and semantic labels. This could result in an entanglement of
causal and non-causal factors. Consequently, the hash codes derived from these deep features may
lack interpretability and be suboptimal for subsequent retrieval tasks. (2) Neglect of invariant patterns.
While adversarial learning is commonly used to implicitly align hash codes between source and
target domains, these methods often fail to explicitly capture the invariant patterns present in vision
representations. This could lead to ineffective domain alignment of hash codes due to the influence
of underlying variant factors. As a result, an effective hashing framework under the principle of
invariant learning [2, 5] is highly desired.

In this paper, we explore domain adaptive hashing through a causal analysis lens, proposing a model
named Invariance-Acquired Domain Adaptive Hashing (IDEA) for efficient image retrieval under
domain shift. The core of domain adaptive hashing lies in discerning causal and non-causal effects
within images. To generate high-quality and interpretable binary codes, we disentangle causal and
non-causal features within each image, guided by the principles of the information bottleneck. On
one hand, we maximize the mutual information between causal features and label information. On
the other hand, we retain the most information in hidden features for non-causal features while
minimizing the information in labels. These causal features are used to generate discriminative hash
codes through consistency learning across both source and target domains. To further mitigate the
non-causal effects, we incorporate a generative model that simulates the intervention of various
non-causal effects, thereby encouraging hash codes to remain sufficiently invariant to different
non-causal components. Leveraging invariant learning on causal effects, our IDEA is capable of
generating domain-invariant hash codes that facilitate efficient cross-domain retrieval. Empirical
experiments conducted on a variety of benchmark datasets validate the superior performance of our
IDEA compared to competitive baselines. The contribution of this paper is summarized as follows:

• Problem Connection. We pioneer a novel perspective that connects invariant learning with domain
adaptive hashing for efficient image retrieval.

• Novel Methodology. Our IDEA not only disentangles causal and non-causal features in each image
following the principle of the information bottleneck, but also ensures hash codes are sufficiently
invariant to the intervention of non-causal features.

• High Performance. Comprehensive experiments across numerous datasets demonstrate that our
IDEA outperforms a range of competitive baselines in different settings.

2 Related Works

Learning to Hash. The task of efficient image retrieval has recently witnessed significant interest [49,
29, 40, 37], leading to the development of deep hashing methods [41, 80, 68, 20], including both
supervised [72, 44, 67, 48, 75, 8, 31, 52, 54] and unsupervised approaches [32, 76, 46, 69, 33, 61, 56,
10, 55]. Deep unsupervised hashing methods typically reconstruct semantic structures using similarity
metrics, subsequently generating similarity-preserving binary codes. Self-supervised methods have
also been developed to enhance the performance. The incorporation of label information has notably
improved the performance of deep supervised hashing methods. Early attempts at optimizing the
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hashing network often involved pairwise and triplet losses based on similarity structures [44, 67,
30, 4]. Another line of study has utilized point-wise optimization, establishing proxies for each
category within the Hamming space and compelling hash codes to approximate these proxies [72, 13].
However, these methods typically overlook potential distribution shift in practical scenarios, which
can significantly degrade retrieval performance. This limitation has prompted research into domain
adaptive hashing.

Unsupervised Domain Adaptation. Unsupervised Domain Adaptation (UDA) has long been a
formidable challenge in machine learning and computer vision [38, 51, 14]. Early methods often
explicitly reduce distribution discrepancies for domain alignment [43, 27]. An alternative approach
utilizes adversarial learning for implicit domain alignment, incorporating a gradient reversal layer and
a domain discriminator to engage in a minimax game [15, 36]. Recently, researchers have extended
this topic towards efficient domain adaptive retrieval [71, 66, 64, 47, 74, 21, 58, 59], proposing a
number of transferable hashing methods to address this problem. These methods typically integrate
domain adaptation models into deep hashing frameworks and generate similarity structures for
learning semantic knowledge on the target domain. Despite these advancements, these methods
often fall short due to the entanglement of causal and non-causal effects and the neglect of invariant
patterns. In response to these challenges, we propose an effective approach IDEA.

Invariant Learning. Invariant learning [2, 5, 9] aims to identify invariant correlations between inputs
and targets under domain shift, while concurrently eliminating spurious and variant relationships.
This concept has been explored in the context of out-of-distribution generalization. Under specific
assumptions, invariant learning has demonstrated significant potential for model generalization
following causal theory. Invariant risk minimization [2] (IRM) has been proposed to regularize
neural networks to remain stable under the environmental variance, showing superior performance
when compared to empirical risk minimization [12] (ERM). Moreover, MVDC [65] learns from
frequency spectrum to generate causal features for domain generalization for cross-domain object
detection. Invariant learning has also been extended to address challenges in graph domains [28,
70, 6, 53, 63]. For instance, CIGA [6] leverages distinct subgraphs for graph contrastive learning,
thereby achieving superior out-of-distribution graph classification performance. Our study establishes
a connection between invariant learning and domain adaptive hashing, generating domain-invariant
and discriminative hash codes for cross-domain image retrieval. To the best of our knowledge, this is
the first work to apply invariant learning for transferable retrieval tasks, and is proven effective for
potential application.

3 Problem Definition

Given a source domain Ds = {(xs
i , y

s
i )}

Ns
i=1 with Ns fully-labeled images and a target domain Dt =

{(xt
j)}

Nt
j=1 with unlabeled Nt images, both domain share a common label space Y = {1, 2, · · · , C}

despite potential distribution shifts. The objective is to develop a hashing-based retrieval model that
projects an input image x onto a compact binary code b ∈ {−1, 1}L, where L represents the code
length. This model should ensure that similar images are mapped to comparable binary codes within
the Hamming space, and its performance should be evaluated in both single-domain and cross-domain
retrieval systems. In a single-domain retrieval system, both query and database images originate from
the target domain, whereas, in a cross-domain retrieval system, the query images are drawn from the
target domain Dt and the database images are sourced from the source domain Ds.

4 Method

4.1 Framework Overview

Y C

D

H X

NC
Y : Semantic labels
NC : Non-causal part

X : Image

D : Relationships between domains
H : Hash code

C : Causal part

Figure 1: Structural causal model in our problem.

We address the problem of unsupervised do-
main adaptive retrieval. While several domain
adaptive hashing algorithms have been pro-
posed, they often neglect invariant learning
during the hash code generation process. This
oversight often leads to significant domain dis-
crepancy in the resulting hash codes. More-
over, these methods indiscriminately focus on correlations between image data and semantic labels,
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Figure 2: The framework of the proposed IDEA. We feed both source and target images into an
encoder. Then each image is disentangled into causal features and a non-causal features. The causal
features are adopted to generate hash codes. A generative model is utilized to reconstruct the original
graphs. We add intervention by using a different non-causal features and minimize the domain shift
by invariant learning.

failing to disentangle the causal and non-causal effects encoded in images. This results in learnt hash
codes that are not only suboptimal for downstream retrieval tasks, but are also difficult to interpret.

In this study, we present a novel approach named IDEA, to tackle these issues. The fundamental idea
is to incorporate invariant learning into the optimization of the hashing network. Specifically, we
first introduce a structural causal model, as illustrated in Figure 1, and analyze the correlation within
this problem. We then separate each image into causal and non-causal features using an information
bottleneck. The causal features are subsequently used for hash code production. Lastly, we introduce
interventions on non-causal effects and limit their influence on invariant hash codes. More details can
be found in Figure 2.

4.2 Structure Causal Model

To start, we apply a causal perspective to domain adaptive hashing and construct a structural causal
model [39] (SCM) to depict the image generation process under domain shifts. This model is used to
illustrate the relationships between domains D, semantic labels Y , causal parts C, non-causal parts
NC, images X , and hash codes H . The specific relationships are elaborated as follows:

• Y → C. Semantic labels produce the causal part which should be invariant to domain distributions.

• D → NC. Domain information provides the non-causal part which is changeable across domains.

• C → X ← NC. Each image is generated by combining both causal part and non-causal part.

• NC C → H . To obtain domain-invariant hash codes, we should generate hash codes using
causal features. However, there could be additional relationships between C and NC. For example,
C andNC can be simultaneously influenced by a cause. Therefore, C acts as a confounder between
NC and H , i.e., resulting in falsely related variables.

The essence of domain adaptive hashing lies in learning domain-invariant and discriminative binary
codes. From the structural causal model, we need to construct mappings ϕ(·) and ψ(·) which fulfill
the following conditions:

[C,NC] = ϕ(X), H = ψ(C), H ⊥ NC | C, (1)

where ⊥ symbolizes the independence under the given condition. Inferred from Eqn. 1, we are
required to address the following challenges: 1) The first term necessitates us to disentangle the causal
and non-causal components of each image; 2) The second term requires us to learn discriminative
hash codes from causal components; 3) The final term advocates for the generation of hash codes that
are independent of the influence of non-causal components. With these goals in mind, we propose a
novel deep hashing method IDEA for domain adaptive retrieval.
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4.3 Causality-acquired Disentanglement

In this part, we apply the information bottleneck principle [1] to disentangle each image into causal
and non-causal features. This approach facilitates the extraction of multifaceted latent factors
embedded within images, enabling the generation of high-quality and interpretable binary codes. As
suggested by the structural causal model, causal features should encapsulate label information, while
non-causal features should reflect domain discrepancy.

In detail, we first introduce a feature extractor F (·), which removes the last classification layer in a
popular neural network backbone (e.g., VGG-F [50]) to generate hidden features, i.e., z = F (x).
Then, two different MLPs gc(·) and gn(·) are utilized to generate two features, respectively, i.e.,
f c = gc(z) and fn = gn(z). Let F c and Y denote the random variables of causal features and
semantic labels, and we maximize the mutual information between F c and Y . To achieve this, we
turn to InfoNCE [18, 3, 7], which construct positive pairs and negative pairs from the joint distribution
p(F c,Y ) ∈ Ds and the product of marginal distributions p(F c)p(Y ) ∈ Ds, respectively. Since
label information is not available in Dt, we merely utilize source data in this module. In particular,
an estimator T c is introduced to estimate the lower bound of mutual information, the target objective
is written as:

minLc
MI = Ep(F c,Y ) [T

c(f c,y)]− log
(
Ep(F c)p(Y )

[
eT

c(fc,y)
])
, (2)

where T c(·, ·) comes from a bi-linear function with a weight matrix W c to calculate the probability of
being a positive pair, i.e., T c(f c,y) = f cW cy. The estimator and the causal head gc are optimized
jointly to obtain effective causal features with high correlation to label information.

Moreover, to generate non-causal features, we minimize the mutual information between F n and Y
with the maximum mutual information with hidden features Z following the principle of information
bottleneck. In formulation, we need to minimize:

minLn
MI = I(F n,Y )− βI(F n,Z), (3)

where β is a parameter to balance the loss. Similarly, it is infeasible to minimize Eqn. 3 directly.
Therefore, we calculate the upper bound and lower bound of I(F n,Y ) and I(F n,Z), respectively.
Here, we first define:

Î(F n,Y ) = Ep(Fn,Y ) [log p(y | fn)]− Ep(Fn)Ep(Y ) [log p(y | fn)] , (4)

which can be shown as an upper bound of I(F n,Y ). More detail is shown in Appendix. Moreover,
we introduce a variational function q(y|fn) to approximate p(y|fn). To measure the lower bound
of I(F n,Z), we introduce a different estimator Tn(fn, z) = fnW nz and the upper bound of
I(F n,Z) is written as follows:

Î(F n,Z) = Ep(Fn,Z) [T
n(fn, z)]− log

(
Ep(Fn)p(Z)

[
eT

n(fc,z)
])
, (5)

By combining Eqn. 16 and Eqn. 5, we rewrite the objective in Eqn. 3 as:

Ln
MI = Ep(Fn,Y ) [log qµ(y | fn)]− Ep(Fn)Ep(Y ) [log q(y | fn)]
−β

(
supTn Ep(Fn,Z) [T

n(fn, z)]− log
(
Ep(Fn)p(Z)

[
eT

n(fn,z))
]))

,
(6)

From Eqn. 6 , we utilize adversarial learning to optimize non-causal features, which generates
reserve gradients for estimator Tn when minimizing Ln

MI . The overall loss for disentanglement is
summarized as:

LD = Lc
MI + Ln

MI . (7)
By minimizing LD, we can successfully disentangle causal and non-causal elements embedded in
images, which can guide us to generate high-quality and interpretable hash codes.

4.4 Consistency Learning for Discriminative Hash Codes

To learn discriminative hash codes, we leverage causal features given their strong correlation with
label information for hash code generation. Here, consistency learning is introduced, based on the
principle that similar images should be mapped to similar hash codes to enable effective image
retrieval [4, 25]. This strategy ensures that our model can capture and preserve the inherent semantic
relationships in the data, thus facilitating more accurate and effective retrieval.
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In particular, we utilize an MLP ψ(·) to map causal features to hash codes and enforce similar
images to have similar binary codes. Here, we resort to consistency learning for optimization,
which constructs positives via (1) two images sharing the same label in the source domain; (2) two
augmented views from the same image in the target domain. In practice, we generate two augmented
views for each image in a mini-batch B = Bs ∪ Bt, and define the positive set for source sample as:

Π(x̂s
i ) = {k|ŷsi = ŷsj}, (8)

where x̂s
i denotes the augmented source sample. Then, we provide a hashing consistency learning

objective for source domain:

Ls
CL = −Ex∈Bs

1

|Π(x̂s
i )|

∑
k∈Π(x̂s

i )

log
exp

(
b̂i · b̂k/τ

)
∑2|Bs|

i=1 exp
(
b̂si · b̂sk′/τ

) , (9)

where b̂si = ψ(gc(F (x̂s
i ))) and τ is a temperature parameter. Moreover, the hashing consistency

learning objective in the target domain is:

Lt
CL = −Ex∈Bt log

exp
(
b̂i · b̂k/τ

)
∑2|Bs|

i=1 exp
(
b̂si · b̂sk′/τ

) . (10)

Finally, the consistency learning objective is derived by combining both source and target domains:

LCL = Ls
CL + Lt

CL. (11)

The introduction of consistency learning offers two primary benefits for hash code generation: (1) By
maximizing the consistency of hash codes between similar images, our IDEA ensures the generation
of similarity-preserving hash codes, which is essential for effective search engines. (2) By minimizing
the similarity of hash codes derived from dissimilar images, our IDEA encourages hash codes to be
uniformly distributed in the Hamming space, which enhances the capacity of each hash bit.

4.5 Invariance under Intervention

However, in practice, causal parts and non-causal-part could be still closely related. For example,
waterbirds are typically paired with water backgrounds in the training set. To further reduce the
potential hidden effects of non-causal parts, we introduce invariant learning [28, 70, 6], which first
introduce a generative model to do interventions and then encourages hash codes to be sufficiently
invariant to different non-causal parts.

In detail, a generative model G(·, ·) is first learnt to reconstruct original images using both causal
and non-causal features. To optimize the generative model, the reconstruction loss in a mini-batch is
written in the formulation of:

LRE = Exi∈B||x−G(gc(F (xi)), g
n(F (xi)))||22. (12)

With the well-trained model, we can simulate the intervention by utilizing different non-causal
features. Here, we first generate synthetic images using f c

i and fn
k :

x+m
i = xi|do(fm) = G(f c

i ,f
n
m), (13)

where do(fn
m) denotes to impose non-causal features from a different sample xn

m in B. Then we
feed the synthetic sample into the hashing network to generate hash codes, b+m

i = ψ(gc(F (x+m
i )))

and then minimize the variance under different intervention. The objective can be written as:

LV = Exi∈B[V arm(b+m
i )] = Exi,xm∈B||b+m

i − b̄i||2, (14)

where b̄i = Exm∈B[b
+m
i ] is the mean of synthetic hash codes. With effective invariant learning, we

can generate domain-invariant binary codes for effective cross-domain retrieval.
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Algorithm 1 Training Algorithm of IDEA
Require: Source data Ds, target data Ds, code length L;
Ensure: The hashing network ψ(gc(F (·)));

1: Warm up our backbone by minimizing LD and LRE ;
2: repeat
3: Sample a mini-batch Bs and Bt from Ds and Dt, respectively;
4: Generate two augmented views for each sample;
5: Calculate positive set by Eqn. 8;
6: Generate synthetic samples under intervention by Eqn. 13;
7: Calculate the final loss objective in Eqn. 15;
8: Reverse the gradients Tn;
9: Update parameters by gradient descent;

10: until convergence

Table 1: MAP performances on two bench-marking datasets with 64-bit hash codes.
Office-Home Office31

Methods P2R C2R R2A R2P R2C A2R A2D A2W W2D D2A W2A D2W Avg

Unsupervised Hashing Methods

SH [62] 15.03 8.77 12.87 16.13 8.24 13.71 12.02 9.83 34.72 11.28 9.85 34.37 15.57
ITQ [17] 26.81 14.83 25.37 28.19 14.92 25.88 29.55 28.53 58.00 26.83 25.09 58.89 30.24
DSH [34] 8.49 5.47 9.67 8.26 5.28 9.69 16.66 15.09 39.24 16.33 13.58 41.07 15.74
LSH [16] 12.24 6.94 11.45 13.45 7.24 11.49 16.04 15.35 38.80 13.60 14.67 43.99 17.11
SGH [24] 24.51 13.62 22.53 25.73 13.51 22.93 24.98 22.47 53.94 22.17 20.52 56.36 26.94
OCH [35] 18.65 10.27 17.54 20.15 10.05 18.09 24.86 22.49 51.03 22.45 20.79 53.64 24.17

Transfer Hashing Methods

ITQ+ [79] 17.61 9.55 14.25 - - - 17.99 15.00 42.29 - - - 19.45
LapITQ+ [79] 16.89 10.37 13.56 - - - 19.96 18.24 43.32 - - - 20.39
GTH-g [74] 20.00 10.99 18.28 21.95 11.68 19.05 23.08 21.20 49.38 19.52 17.41 50.14 23.56
DAPH [21] 27.20 15.29 27.35 28.19 15.29 26.37 32.80 28.66 60.71 28.66 27.59 64.11 31.85
PWCF [22] 34.03 24.22 28.95 34.44 18.42 34.57 39.78 34.86 67.94 35.12 35.01 72.91 38.35
DHLing [22] 48.47 30.81 38.68 45.24 25.15 43.30 41.96 45.10 75.23 42.89 41.74 79.91 46.54
PEACE [58] 53.04 38.72 42.68 54.39 28.36 45.97 46.69 48.89 78.82 46.91 46.95 83.18 51.22
Ours 59.18 45.71 49.64 61.84 32.77 51.19 48.70 54.43 84.97 53.53 53.71 88.69 57.03

4.6 Summary

Finally, we summarize our framework with the following overall training objective as:

L = LD + LCL + LRE + LV . (15)

Moreover, the derivation of sign(·) is zero for any non-zero value, and therefore it is difficult to
compatible with the gradient propagation. To tackle this challenges, we adopt tanh(·) to replace
sign(·) during optimization, which produces approximate hash codes v = tanh(ψ(gc(F (x)))) for
training. Our model is first warmed up by the disentanglement module optimized by the reconstruction
loss. Then we optimize the whole network with mini-batch stochastic gradient descent and the detailed
progress of our IDEA can be found in Algorithm 1.

5 Experiment

5.1 Experimental Settings

Baselines. We adopt a variety of state-of-the-art approaches for performance comparison, including
six unsupervised hashing approaches (i.e., SH [62], ITQ [17], DSH [34], LSH [16], SGH [24], OCH
[35]) and seven transfer hashing approaches (i.e., ITQ+ [79], LapITQ+ [79], GTH-g [74], DAPH
[21], PWCF [22], DHLing [64], and PEACE [58]). Some results of ITQ+ and LapITQ+ are omitted
because prior information is not accessible for sample pair construction.

Datasets. Experiments are conducted on different benchmark datasets: (1) Office-Home dataset [57]:
This dataset contains examples from four domains (Ar, Cl, Pr, Re), each with 65 object categories.
Two domains are selected as the source and target, resulting in six transferable image retrieval tasks
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Table 2: MAP performances on the Digits dataset with 64-bit hash codes.
MNIST2USPS USPS2MNIST

Code Length 16 32 48 64 96 128 16 32 48 64 96 128 Avg

Unsupervised Hashing Methods

SH [62] 15.56 13.67 13.80 13.45 13.35 12.95 15.59 14.35 14.22 13.57 12.92 12.96 13.87
ITQ [17] 13.05 15.57 18.54 20.12 23.12 23.89 13.69 17.51 20.40 20.30 22.79 24.59 19.46
DSH [34] 20.60 22.21 23.68 24.28 25.73 26.50 19.54 21.22 22.89 23.79 25.91 26.46 23.57
LSH [16] 12.40 13.54 15.89 16.01 18.54 20.44 12.76 14.86 14.77 16.89 16.32 19.67 16.01
SGH [24] 14.24 16.69 18.72 19.70 21.00 21.95 13.26 17.71 18.22 19.01 21.69 22.09 18.69
OCH [35] 13.73 17.22 19.59 20.18 20.66 23.34 15.51 17.75 18.97 21.50 21.27 23.68 19.45

Transfer Hashing Methods

ITQ+ [79] 22.84 21.20 20.68 19.15 17.99 18.52 - - - - - - 20.06
LapITQ+ [79] 24.26 24.03 23.76 24.59 23.33 22.73 - - - - - - 23.78
GTH-g [74] 20.45 17.64 16.60 17.25 17.26 17.06 15.17 14.07 15.02 15.01 14.80 17.34 16.47
DAPH [21] 25.13 27.10 26.10 28.51 30.53 30.70 26.60 26.43 27.27 27.99 30.19 31.40 28.16
PWCF [22] 47.47 51.99 51.44 51.75 50.89 59.35 47.14 50.86 52.06 52.18 57.14 58.96 52.60
DHLing [22] 49.24 54.90 56.30 58.28 58.80 59.14 50.14 51.35 53.67 58.65 58.42 59.17 55.67
PEACE [58] 52.87 59.72 60.69 62.84 65.13 68.16 53.97 54.82 58.69 60.91 62.65 65.70 60.51
Ours 58.89 64.48 65.72 67.48 70.24 74.34 60.99 61.47 65.45 67.97 69.72 72.31 66.59

Figure 3: We use 128-bit Precision-Recall curves to evaluate the performance of our method on the
Office-31 and Office-Home datasets.

(P2R, C2R, R2A, R2P, R2C, A2R). (2) Office-31 dataset [42]: This widely used benchmark dataset
contains over 4000 examples classified into 31 classes, which are from three domains (Am, We,
Ds). We randomly select two domains as the source and target, resulting in six transferable image
retrieval tasks (A2D, A2W, W2D, D2A, W2A, D2W). (3) Digits dataset: We focus on MNIST [26]
and USPS [23], each containing ten handwritten digits. Each sample is re-scaled to 16×16. We select
one dataset as the source and the other as the target, resulting in two transferable image retrieval tasks
(MNIST2USPS and USPS2MNIST).

Implementation Details & Evaluation metrics. We perform experiments on an A100-40GB GPU.
10% of the target examples are used as test queries and the remaining target and source samples
are viewed as the training set. As for the database, source domain data is adopted in cross-domain
retrieval while target domain data is adopted in single-domain retrieval. The hashing network is
optimized using mini-batch SGD with momentum. The batch size is set to 36 and the learning
rate is fixed as 0.001. We evaluate the retrieval performance using four common metrics: mean
average precision (MAP), precision-recall curve, top-N accuracy curve, and top-N recall curve. MAP
is the primary metric for evaluating retrieval accuracy, while the precision-recall curve provides
an overall performance indicator at different recall levels. The top-N accuracy curve shows the
accuracy for different numbers of retrieval instances. As the key metrics, MAP and precision-recall
curve can reflect the overall performance of our model in retrieval tasks. We also analyze the top-N
accuracy and recall curves to evaluate the performance at different number of retrieved results. These
comprehensive evaluations allow us to have an in-depth understanding of the model’s retrieval ability.

5.2 Empirical Results

Performance Comparison. We present the results of our experiments on several benchmark datasets
in Tables 1 and Table 2, where we report the mean average precision (MAP) scores achieved by
our IDEA and other state-of-the-art methods. Our analysis of the results leads to the following
conclusions. On the Office-Home and Office31 datasets, our IDEA achieves an outstanding average
MAP score of 57.03, which significantly outperforms the second-best method, PEACE, with an
average MAP score of 51.22. Furthermore, IDEA achieves the highest MAP scores across all query
types, including P2R, C2R, R2A, R2P, R2C, A2R, A2D, A2W, W2D, D2A, W2A, and D2W. On the
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Figure 4: Visualization of 128-bit hash codes on MNIST dataset in left three columns; Sensitivity
analysis results of our proposed IDEA on Office-Home and Office-31 datasets are shown in right two
columns on three cross-domain retrieval tasks.

Digits dataset, IDEA consistently achieves the highest MAP scores for all hash code lengths, ranging
from 16 to 128 bits. This demonstrates the consistency of our method across different code lengths.
For instance, on the MNIST2USPS task, IDEA achieves an average MAP score of 74.34 for 128-bit
codes, which is significantly higher than the second-best method, PEACE, with an average MAP
score of 68.16. Overall, our experimental results demonstrate that the proposed IDEA is effective and
outperforms state-of-the-art methods on various benchmark datasets. These findings highlight the
potential of our method for practical applications in cross-domain image retrieval tasks. We present
the recall-precision curves of four compared approches (PWCF, DHLing, PEACE, and IDEA) on two
cross-domain retrieval tasks in Figure 3. Furthermore, in most cases, the curve of IDEA is higher
than that of the other three baselines, indicating that the binary codes generated by IDEA works better
for the hash table lookup strategy.

Qualitative Results. Here we provide a qualitative analysis of the model. Specifically, we use
t-SNE visualization to display the hash codes learned by IDEA, PEACE, and DHLing (see the three
subfigures on the left side of Figure 4). When compared to the PEACE and DHLing baseline
methods, our IDEA-generated hash codes show more discriminative structures, with binary codes
of different categories being better separated. These results indicate that the proposed method can
produce hash codes with better discriminative power, which facilitates more effective image retrieval.

Parameter Sensitivity. In this part, we conduct sensitivity analysis for two important hyper-
parameters, which is shown in the right subplot of the Figure 4. We can observe that the MAP
values for all three cross-domain retrieval tasks slightly decrease as the β parameter increases, indicat-
ing a negative impact on model performance. However, the decrease is not significant, allowing for
an increase in β to balance loss terms without causing a significant reduction in model performance.
Similarly, the MAP values increase and then decrease as τ increases, demonstrating the potential
for improved model performance. However, exceeding an optimal τ range may have a negative
impact on retrieval performance. Thus, determining the optimal τ value through experimentation is
necessary for achieving optimal retrieval performance in practical applications. In our experiments,
we set β and τ to 0.1 and 0.5, respectively.

Table 3: Ablation Studies on six benchmark cross-domain
retrieval tasks.
Dataset Office-Home Office31 Digits

Method C2R R2A A2D A2W U2M M2U

IDEA w/o LRE 44.02 47.29 47.05 53.11 64.80 64.49
IDEA w/o LCL 42.11 45.97 45.36 51.17 64.25 63.76
IDEA w/o LV 45.10 49.09 48.21 53.96 57.34 66.97
IDEA w/o LMI 44.89 48.92 48.05 53.79 67.12 66.85
Ours 45.71 49.64 48.70 54.43 67.97 67.48

Ablation Study. We have introduced
several variants of our IDEA to inves-
tigate the impact of each components:
(1) IDEA w/o LRE removes the origi-
nal image reconstruction loss from the
generated model, (2) IDEA w/o LCL

removes the consistency learning loss,
(3) IDEA w/o LV removes the hash
code variance under intervention, and
(4) IDEA w/o LMI removes the mutual
information loss. By summarizing the
results of these model variants in Table 3, We conclude, the ablation experiments show that removing
any of the four components (i.e., LRE , LCL, LV , LMI ) leads to a drop in performance on all datasets
and tasks. Notably, LRE and LCL have the most significant impact. Our IDEA achieves the best
or comparable performance on all datasets and tasks, demonstrating its effectiveness in learning
disentangled representations for domain generalization. Specifically, it achieves the highest MAP on
Office-Home and Digits datasets and the highest accuracy on the A2W task of the Office31 dataset,
outperforming the ablated variants.
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6 Conclusion

This work studies the problem of domain adaptive retrieval and proposes a novel method named
IDEA to solve the problem. Our IDEA first disentangle causal and non-causal features within each
image, guided by the principles of the information bottleneck. Moreover, these causal features are
used to generate discriminative binary codes through consistency learning across both source and
target domains. To generate domain-invariant binary codes, we simulates the intervention of various
non-causal effects and encourage the invariance of hash codes. Extensive experiments on benchmark
datasets validate the superiority of IDEA.

Broader Impacts and Limitations. This work improves the performance cross-domain retrieval,
which can benefit real-world search engineers. Moreover, our work provide a new direction of
incorporating invariant learning into cross-domain retrieval problems. One limitation of our work
is that IDEA cannot tackle the open-set scenarios where target samples may come from unseen
classes and we would extend our IDEA to more generalization scenarios in our future works. In
particular, more advanced techniques such as modes in AICG and multimodal large-scale learning
can be incorporated into our IDEA to improve the generalizability in a wider range of scenarios.
In addition, we would explore more detailed visualization and interpretability analysis of invariant
learning in the scope of cross-modal retrieval.
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A The Upper Bound of Mutual Information

We define:

Î(F n,Y ) = Ep(Fn,Y ) [log p(y | fn)]− Ep(Fn)Ep(Y ) [log p(y | fn)] (16)

Then, we show that Î(F n,Y ) is an upper bound of I(F n,Y ). In formulation, we calculate their
difference as follows:

Î(F n,Y )− I(F n,Y )

= Ep(Fn,Y ) [log p(y | fn)]− Ep(Fn)Ep(Y ) [log p(y | fn)]

− Ep(Fn,Y )[log p(y | fn)− log p(y)]

= Ep(Fn,Y )[log p(y)]− Ep(Fn)Ep(y)[log p(y | fn)]

= Ep(Y )

[
log p(y)− Ep(Fn)[log p(y | fn)]

]
= Ep(Y )

[
log

(
Ep(Fn)[p(y | fn)]

)
− Ep(Fn)[log p(y | fn)]

]
≥ 0 (Jensen’s Inequality),

(17)

where the last inequality holds due to Jensen’s Inequality with a convex function log(·).

B The Details of Baselines

These baselines for model comparison are introduced as below:

• SH [62] is based on the theory of graph Laplacian. The binary code of a new data point is efficiently
computed by the spectral analysis, enabling the out-of-distribution extension for unseen samples.

• ITQ [17] is an uncomplicated and effective alternative minimization algorithm. It can be incorpo-
rated into both supervised and unsupervised learning processes.

• LSH [16] is an important method in compressing high-dimensional data. It aims to map similar
data points into the same bucket.

• DSH [34] is a model variant of LSH, which generates multiple view of the data point for metric
learning using random projections.

• SGH [24] aims to compress high-dimensional data in a bit-wise manner, which is efficient for
large-scale semantic similarity learning.

• OCH [35] leverage the tensor product to generate an ordinal graph, which guides the learning to
generate more related hash codes.

• ITQ+ [79] is the early effort to implement transfer learning for hashing study, which learns a slack
mapping from the source domain and achieves domain alignment through the quantization loss.

• LapITQ+ [79] is an extension of ITQ+ [79] by transferring the geometric relationship in the source
domain to generate high-quality hash codes.

• GTH-g [74] selects the best hash mapping for target data using source data following the principle
of maximum likelihood estimation.

• DAPH [21] utilizes a domain-invariant feature projection to reduce the domain discrepancy.
• PWCF [22] leverages a Bayesian model to learn discriminative hash codes and then infer the

similarity structure using histogram features.
• DHLing [64] utilizes learning to cluster to optimize hash code within a single domain and then

reduces the domain shift using the memory bank.
• PEACE [58] learns the semantics on target data using pseudo-labeling techniques and then mini-

mizes the domain shift using both implicit and explicit manners.

C The Details of Datasets

Three popular benchmarks, i.e., Office-Home dataset, Office-31 and Digits, are adopted for perfor-
mance comparison. Their details are elaborated as follows:
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Table 4: MAP scores on Amazon→ Dslr task with code lengths varying from 16 to 128 for single-
domain retrieval.

Bit 16 32 48 64 96 128

SH [62] 30.54 35.66 40.84 42.50 44.01 45.64
ITQ [17] 40.83 49.27 53.92 56.16 59.31 59.41
DSH [34] 22.45 33.38 37.01 40.09 43.64 46.31
LSH [16] 16.04 26.18 34.36 39.68 45.60 49.04
SGH [24] 38.67 45.59 50.77 53.57 57.70 57.37
OCH [35] 33.30 41.65 48.18 50.78 50.06 53.74

ITQ+ [79] 35.03 42.62 41.85 43.12 39.82 39.12
LapITQ+ [79] 37.60 42.91 43.24 44.55 42.01 38.87
GTH-g [74] 37.11 45.69 50.67 50.22 54.37 55.81
DAPH [21] 46.74 49.43 56.10 58.63 59.82 60.41
PWCF [22] 49.94 53.05 58.26 59.08 60.11 62.35
DHLing [64] 52.08 56.43 59.92 60.17 61.19 63.44
PEACE [58] 55.43 57.89 60.23 61.21 62.30 64.14
Ours 61.25 62.65 65.14 67.06 68.20 70.04

Table 5: MAP scores on Product→ Real task with code lengths varying from 16 to 128 for single-
domain retrieval.

Bit 16 32 48 64 96 128

SH [62] 13.15 18.71 22.51 22.57 21.27 20.66
ITQ [17] 20.07 29.64 31.62 33.15 33.95 34.81

DSH [34] 6.10 11.44 12.21 16.61 16.46 14.45
LSH [16] 5.84 10.62 15.46 17.57 21.62 24.92
SGH [24] 18.97 26.18 30.61 32.61 33.82 34.97
OCH [35] 13.45 21.14 23.65 25.34 25.99 28.02

ITQ+ [79] 15.60 20.60 24.95 24.96 24.92 24.05
LapITQ+ [79] 16.78 22.26 22.76 22.29 22.33 21.85
GTH-g [74] 15.05 21.20 25.64 27.67 29.05 28.40
DAPH [21] 20.77 29.01 31.60 33.35 34.22 34.92
PWCF [22] 24.80 34.03 36.86 37.98 38.43 39.14
DHLing [64] 27.81 36.05 40.82 40.91 43.45 44.07
PEACE [58] 28.99 37.93 41.42 42.97 46.51 47.29
Ours 34.88 44.83 48.38 49.91 53.55 54.40

• Office-Home dataset [57] consists of image samples from four different domains, i.e., Art (A),
Clipart (C), Product (P) and Real-World (R). There are 65 categories in the dataset. We select two
domains as the source and target, respectively, which can produce six transferable image retrieval
tasks (P2R, C2R, R2A, R2P, R2C, A2R).

• Office-31 dataset [42] is comprised of 4110 image samples from three different domains, i.e.,
Amazon (A), Webcam (W) and Dslr (D). Each domain corresponds to a platform where the images
are collected. Similarly, we randomly select two domains as the source and target, which can result
in six transferable image retrieval tasks (A2D, A2W, W2D, D2A, W2A, D2W).

• Digits consists of two datasets, MNIST [26] and USPS [23] and each contains handwritten digits
from ten classes. The digits in both datasets are captured under different conditions. Here we
consider two transferable image retrieval tasks (MNIST2USPS and USPS2MNIST).

D Additional Experimental Results

D.1 Performance of Single-domain Retrieval

We first explore the results on single-domain retrieval, Table 4 compares the average mean average
precision (MAP) of different hashing methods under different bit lengths for the single-domain
retrieval task, i.e., Amazon → Dslr. The table is divided into two parts: the first part shows the
performance of unsupervised hashing methods, including SH, ITQ, DSH, LSH, SGH, and OCH,
while the second part shows the performance of transfer learning hashing methods, including ITQ+,
LapITQ+, GTH-g, DAPH, PWCF, DHLing, and PEACE. Additionally, the results of IDEA method
are highlighted with bold font and pink background, indicating that it achieves the highest MAP
values across all hash code lengths. The table shows that IDEA performs better than other hashing
methods for simplifying image descriptions and improving image retrieval efficiency. As the hash
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Table 6: MAP scores on MNIST → USPS task with code lengths varying from 16 to 128 for
single-domain retrieval.

Bit 16 32 48 64 96 128

SH [62] 46.30 47.82 48.58 49.12 49.27 47.81
ITQ [17] 13.39 22.58 33.12 39.67 40.80 40.16
DSH [34] 41.42 45.30 48.72 47.85 48.50 50.76
LSH [16] 26.69 33.49 33.21 35.64 38.92 38.53
SGH [24] 15.60 30.78 35.61 35.55 39.31 41.78
OCH [35] 24.23 32.90 36.10 36.34 39.95 44.36

ITQ+ [79] 50.22 49.66 46.64 44.38 44.53 43.21
LapITQ+ [79] 54.19 55.24 54.57 55.77 54.58 54.08
GTH-g [74] 45.41 39.72 36.66 34.34 32.11 34.73
DAPH [21] 47.53 54.86 57.36 60.15 60.65 60.39
PWCF [22] 50.21 49.41 57.27 60.06 64.71 64.00
DHLing [64] 51.25 50.48 58.44 63.13 65.09 67.02
PEACE [58] 52.77 56.25 61.03 65.27 67.71 69.99
Ours 60.81 63.32 68.05 72.11 74.47 76.73

Figure 5: We use 128-bit Precision-Recall curves to evaluate the performance of our method on the
Office-31 and Office-Home datasets.

code length increases, the MAP value of IDEA also increases, ultimately surpassing the performance
of all other hashing methods at various hash code lengths. This indicates that IDEA has stronger
feature extraction and hashing encoding capabilities and has significant practical value for image
retrieval.

Table 5 compares the average MAP of different hashing methods under different bit lengths for
the single-domain retrieval task, i.e., Product→ Real. We can see that IDEA performs better than
other hashing methods at all hash code lengths, especially at higher bit lengths such as 96, 128.
Furthermore, the table highlights the results of IDEA in bold font and pink background, indicating
that it achieves the highest MAP score at all bit lengths, namely 34.88, 44.83, 48.38, 49.91, 53.55,
and 54.40. This further highlights the strong performances and advantages of IDEA, especially in
learning compact hash codes and improving retrieval efficiency for single-domain retrieval tasks.

Table 6 compares the average MAP of different hashing methods under different bit lengths for the
single-domain retrieval task MNIST→ USPS. We can see that IDEA achieves the highest MAP
values compared to other methods at all bit lengths, especially at higher bit lengths such as 96 and
128 bits, with MAP values of 74.47 and 76.73 respectively, far exceeding the MAP values of other
methods. Additionally, the table highlights the results of IDEA in bold font and pink background,
indicating that it achieves the highest MAP values at all bit lengths. Therefore, combining the
information from the table, we can conclude that IDEA demonstrates outstanding performance in the
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Figure 6: Top-N precision curves with 128 bits on Office-31 and Office-Home datasets.

single-domain retrieval task from MNIST→ USPS, significantly enhancing retrieval efficiency and
accuracy. This result suggests that IDEA can be a promising approach for improving image retrieval
in similar domains.

D.2 Performance of Precision-Recall Curves

Additional Precision-Recall curves for six image retrieval tasks, namely A2R, A2D, A2W, W2D,
D2A, and W2A, can be found in this section. These tasks involve retrieving images from one domain
and matching them to images from another domain. The Precision-Recall curves offer a visual
representation of the balance between precision and recall for each task. As illustrated in Figure 5,
these curves give insight into the effectiveness of our approach in dealing with different cross-domain
retrieval scenarios. In particular, the curves highlight the strengths of our method in achieving high
precision and recall values for each task. The supplementary material provides a detailed analysis of
the experimental results, which further demonstrates the robustness and generalized ability of our
approach. Overall, these additional results reinforce the effectiveness of our method in improving
cross-domain image retrieval performance.

D.3 Performance of Top-N Precision Curve and Top-N Recall Curve

The Top-N precision curve and Top-N recall curve depicted in Figure 6 and Figure 7, respectively,
provide valuable insights into the performance of our IDEA algorithm compared to other methods in
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Figure 7: Top-N recall curves with 128 bits on Office-31 and Office-Home datasets.

image retrieval tasks. Based on the analysis of these curves, we can conclude that our IDEA algorithm
outperforms other comparison methods. This is attributed to the fact that the calculation of the Top-N
precision and Top-N recall curves is based on the Hamming distance ranking, and the IDEA algorithm
achieves better performance under this metric. Therefore, from the perspective of evaluation metrics,
the IDEA algorithm is superior to other comparison methods, as it offers superior precision and recall
values for various cross-domain retrieval tasks. Our extensive experimental results further validate
the effectiveness of our approach in improving the performance of cross-domain image retrieval.

D.4 Ablation Study

We conduct more ablation studies on more datasets and the results are shown in Table 7. The results
can validate our superiority again.

Table 7: Ablation Studies on three benchmark cross-domain retrieval tasks.

Office-Home Office31

Product2Real Real2Product Webcam2Dslr Dslr2Webcam

IDEA w/o L_v 58.23 60.92 83.88 87.22
IDEA w/o L_MI 57.87 60.46 83.71 87.32
Ours 59.18 61.84 84.97 88.69
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Figure 8: Top 10 Images and Precision@10 Examples on the Office-31 Dataset.

D.5 Performance of Different Architectures

We compare the performance of both PEACE and IDEA with different network backbones, i.e., VGG-
F and ViT. The compared results are shown in Table 8. From the results, we can have the following
observations. Firstly, our IDEA can still achieve better performance under different architectures.
Secondly, with strong networks, the performance of our IDEA can improve a lot.

Table 8: MAP scores with respect to different architectures.

Dataset Office-Home Office31 Digits

Clipart2Real Real2Art Amazon2Dslr Amazon2Webcam USPS2MNIST MNIST2USPS

PEACE (VGG-F) 38.72 42.68 46.69 48.89 60.91 62.84
Ours (VGG-F) 45.71 49.64 48.70 54.43 67.97 67.48
PEACE (ViT) 53.83 56.11 56.05 60.25 79.28 78.37
Ours (ViT) 58.56 64.39 63.27 66.30 83.39 82.96

D.6 Case Study

Figure 8 demonstrates the top 10 retrieval results of the proposed IDEA and the best baseline method
PEACE for three query samples on the Office-31 dataset. The blue box indicates the query, the
green box indicates the correctly retrieved result, and the red box indicates the incorrectly retrieved
result. The results demonstrate that IDEA performs better than PEACE in providing more relevant
and user-desired examples, with the latter typically used for cross-domain retrieval. For instance,
compared to PEACE, our IDEA returns more examples of the query "Phone," further validating its
success in image retrieval tasks. Overall, these findings emphasize the effectiveness of our IDEA
method in improving cross-domain image retrieval performance.
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