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Abstract

One of the grand enduring goals of AI is to create generalist agents that can learn
multiple different tasks from diverse data via multitask learning (MTL). However,
in practice, applying gradient descent (GD) on the average loss across all tasks
may yield poor multitask performance due to severe under-optimization of certain
tasks. Previous approaches that manipulate task gradients for a more balanced
loss decrease require storing and computing all task gradients (O(k) space and
time where k is the number of tasks), limiting their use in large-scale scenarios.
In this work, we introduce Fast Adaptive Multitask Optimization (FAMO), a dy-
namic weighting method that decreases task losses in a balanced way using O(1)
space and time. We conduct an extensive set of experiments covering multi-task
supervised and reinforcement learning problems. Our results indicate that FAMO
achieves comparable or superior performance to state-of-the-art gradient manipula-
tion techniques while offering significant improvements in space and computational
efficiency. Code is available at https://github.com/Cranial-XIX/FAMO.

1 Introduction

Large models trained on diverse data have advanced both computer vision [20] and natural language
processing [4], paving the way for generalist agents capable of multitask learning (MTL) [5]. Given
the substantial size of these models, it is crucial to design MTL methods that are effective in terms of
task performance and efficient in terms of space and time complexities for managing training costs
and environmental impacts. This work explores such methods through the lens of optimization.

Perhaps the most intuitive way of solving an MTL problem is to optimize the average loss across
all tasks. However, in practice, doing so can lead to models with poor multitask performance: a
subset of tasks are severely under-optimized. A major reason behind such optimization failure is that
a subset of tasks are under-optimized because the average gradient constantly results in small (or
even negative) progress on these tasks (see details in Section 2).

To mitigate this problem, gradient manipulation methods [43, 25, 7, 24] compute a new update vector
in place of the gradient to the average loss, such that all task losses decrease in a more balanced
way. The new update vector is often determined by solving an additional optimization problem that
involves all task gradients. While these approaches exhibit improved performance, they become
computationally expensive when the number of tasks and the model size are large [41]. This is
because they require computing and storing all task gradients at each iteration, thus demanding
O(k) space and time complexities, not to mention the overhead introduced by solving the additional
optimization problem. In contrast, the average gradient can be efficiently computed in O(1) space
and time per iteration because one can first average the task losses and then take the gradient of the
average loss.1 To this end, we ask the following question:

1Here, we refer to the situation where a single data x can be used to compute all task losses.
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Figure 1: Top left: The loss landscape, and individual task losses of a toy 2-task learning problem (★ represents
the minimum of task losses). Top right: the runtime of different MTL methods for 50000 steps. Bottom:
the loss trajectories of different MTL methods. ADAM fails in 1 out of 5 runs to reach the Pareto front due to
CG. FAMO decreases task losses in a balanced way and is the only method matching the O(1) space/time
complexity of ADAM. Experimental details and analysis are provided in Section 5.1.

(Q) Is it possible to design a multi-task learning optimizer that ensures a balanced reduction in
losses across all tasks while utilizing O(1) space and time per iteration?

In this work, we present Fast Adaptive Multitask Optimization (FAMO), a simple yet effective
adaptive task weighting method to address the above question. On the one hand, FAMO is designed
to ensure that all tasks are optimized with approximately similar progress. On the other hand, FAMO
leverages the loss history to update the task weighting, hence bypassing the necessity of computing
all task gradients. To summarize, our contributions are:

1. We introduce FAMO, an MTL optimizer that decreases task losses approximately at equal
rates while using only O(1) space and time per iteration.

2. We demonstrate that FAMO performs comparably to or better than existing gradient manip-
ulation methods on a wide range of standard MTL benchmarks, in terms of standard MTL
metrics, while being significantly computationally cheaper.

2 Background

In this section, we provide the formal definition of multitask learning, then discuss its optimization
challenge, and provide a brief overview of the gradient manipulation methods.

Multitask Learning (MTL) MTL considers optimizing a single model with parameter θ ∈ Rm that
can perform k ≥ 2 tasks well, where each task is associated with a loss function ℓi(θ) ∶ Rm → R≥0.2
Then, it is common to optimize the average loss across all tasks:

min
θ∈Rm

{ℓ0(θ) ∶=
1

k

k

∑
i=1

ℓi(θ)} . (1)

Optimization Challenge Directly optimizing (1) can result in severe under-optimization of a subset
of tasks. A major reason behind this optimization challenge is the “generalized" conflicting gradient
phenomenon, which we explain in the following. At any time step t, assume one updates the model

2In this work, we assume ∀ i, ℓi(θ) ≥ 0, which is true for typical loss functions including mean square and
cross-entropy losses. Note that one can always transform ℓi to be non-negative if a loss lower bound is known.

2



Algorithm 1 Fast Adaptive Multitask Optimization (FAMO)

1: Input: Initial parameter θ0, task losses {ℓi}ki=1 (ensure that ℓi ≥ ϵ > 0, for instance, by ℓi ←
ℓi − ℓ∗i + ϵ, ℓ∗i = infθ ℓi(θ)), learning rate α and β, and decay γ (= 0.001 by default).

2: ξ1 ← 0. // initialize the task logits to all zeros
3: for t = 1 ∶ T do
4: Compute zt = Softmax(ξt), e.g.,

zi,t =
exp(ξi,t)

∑k
i=1 exp(ξi,t)

.

5: Update the model parameters:

θt+1 = θt − α
k

∑
i=1

(ct
zi,t

ℓi,t
)∇ℓi,t, where ct = (

k

∑
i=1

zi,t

ℓi,t
)−1.

6: Update the logits for task weighting:

ξt+1 = ξt − β(δt + γξt) where δt =
⎡⎢⎢⎢⎢⎣

∇⊺z1,t(ξt)
⋮

∇⊺zk,t(ξt)

⎤⎥⎥⎥⎥⎦

⊺ ⎡⎢⎢⎢⎢⎣

log ℓ1,t − log ℓ1,t+1
⋮

log ℓk,t − log ℓk,t+1.

⎤⎥⎥⎥⎥⎦
.

7: end for

parameter using a gradient descent style iterative update: θt+1 = θt −αdt where α is the step size and
dt is the update at time t. Then, we say that conflicting gradients (CG) [24, 43] happens if

∃i, ℓi(θt+1) − ℓi(θt) ≈ −α∇ℓi(θt)⊺dt > 0.

In other words, certain task’s loss is increasing. CG often occurs during optimization and is not
inherently detrimental. However, it becomes undesirable when a subset of tasks persistently undergoes
under-optimization due to CG. In a more general sense, it is not desirable if a subset of tasks has
much slower learning progress compared to the rest of the tasks (even if all task losses are decreasing).
This very phenomenon, which we call the “generalized" conflicting gradient, has spurred previous
research to mitigate it at each optimization stage [43].

Gradient Manipulation Methods Gradient manipulation methods aim to decrease all task losses
in a more balanced way by finding a new update dt at each step. dt is usually a convex combination
of task gradients, and therefore the name gradient manipulation (denote ∇ℓi,t = ∇θℓi(θt) for short):

dt =
⎡⎢⎢⎢⎢⎢⎣

∇ℓ⊺1,t
⋮
∇ℓ⊺k,t

⎤⎥⎥⎥⎥⎥⎦

⊺

wt, where wt =
⎡⎢⎢⎢⎢⎣

w1,t

⋮
wk,t

⎤⎥⎥⎥⎥⎦
= f(∇ℓ1,t, . . . ,∇ℓk,t) ∈ Sk. (2)

Here, Sk = {w ∈ Rk
≥0 ∣ w⊺1 = 1} is the probabilistic simplex, and wt is the task weighting across all

tasks. Please refer to Appendix A for details of five state-of-the-art gradient manipulation methods
(MGDA, PCGRAD, CAGRAD, IMTL-G, NASHMTL) and their corresponding f . Note that existing
gradient manipulation methods require computing and storing k task gradients before applying f to
compute dt, which often involves solving an additional optimization problem. As a result, we say
these methods require at least O(k) space and time complexity, which makes them slow and memory
inefficient when k and model size m are large.

3 Fast Adaptive Multitask Optimization (FAMO)

In this section, we introduce FAMO that addresses question Q, which involves two main ideas:

1. At each step, decrease all task losses at an equal rate as much as possible (Section 3.1).

2. Amortize the computation in 1. over time (Section 3.2).
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3.1 Balanced Rate of Loss Improvement

At time t, assume we perform the update θt+1 = θt − αdt, we define the rate of improvement for task
i as

ri(α, dt) =
ℓi,t − ℓi,t+1

ℓi,t
.3 (3)

FAMO then seeks an update dt that results in the largest worst-case improvement rate across all tasks
( 1
2
∥dt∥ is subtracted to prevent an under-specified optimization problem where the objective can be

infinitely large):

max
dt∈Rm

min
i∈[k]

1

α
ri(α, dt) −

1

2
∥dt∥2. (4)

When the step size α is small, using Taylor approximation, the problem (4) can be approximated by

max
dt∈Rm

min
i∈[K]

∇ℓ⊺i,tdt
ℓi,t

− 1

2
∥dt∥2 = (∇ log ℓi,t)

⊺
dt −

1

2
∥dt∥2. (5)

Instead of solving the primal problem in (5) where d ∈ Rm (m can be millions if θ is the parameter of
a neural network), we consider its dual problem:

Proposition 3.1. The dual objective of (5) is

z∗t ∈ argmin
z∈Sk

1

2
∥Jtz∥2, where Jt =

⎡⎢⎢⎢⎢⎢⎣

∇ log ℓ⊺1,t
⋮

∇ log ℓ⊺k,t

⎤⎥⎥⎥⎥⎥⎦
, (6)

where z∗t = [z∗t,i] is the optimal combination weights of the gradients, and the optimal update
direction is d∗t = Jtz∗t .

Proof.

max
d∈Rm

min
i∈[k]
(∇ log ℓi,t)

⊺
d − 1

2
∥d∥2

=max
d∈Rm

min
z∈Sk
(

k

∑
i=1

zi∇ log ℓi,t)
⊺
d − 1

2
∥d∥2

=min
z∈Sk

max
d∈Rm

(
k

∑
i=1

zi∇ log ℓi,t)
⊺
d − 1

2
∥d∥2 (strong duality)

Write g(d, z) = (∑k
i=1 zi∇ log ℓi,t)

⊺
d − 1

2
∥d∥2, then by setting

∂g

∂d
= 0 Ô⇒ d∗ =

k

∑
i=1

zi∇ log ℓi,t.

Plugging in d∗ back, we have

max
d∈Rm

min
i∈[k]
(∇ log ℓi,t)

⊺
d − 1

2
∥d∥2 =min

z∈Sk

1

2
∥

k

∑
i=1

zi∇ log ℓi,t∥
2

=min
z∈Sk

1

2
∥Jtz∥2.

At the optimum, we have d∗t = Jtz∗t .

The dual problem in (6) can be viewed as optimizing the log objective of the multiple gradient descent
algorithm (MGDA) [9, 35]. Similar to MGDA, (6) only involves a decision variable of dimension
k ≪ m. Furthermore, if the optimal combination weights z∗t is an interior point of Sk, then the
improvement rates ri(α, d∗t ) of the different tasks i equal, as we show in the following result.

3To avoid division by zero, in practice we add a small constant (e.g., 1e − 8) to all losses. For the ease of
notation (e.g., ℓi(⋅)← ℓi(⋅) + 1e − 8, we omit it throughout the paper.
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Proposition 3.2. Assume {ℓi}ki=1 are smooth and the optimal weights z∗t in (6) is an interior point of
Sk, then

∀ i ≠ j ∈ [k], r∗i (d∗t ) = r∗j (d∗t ),
where r∗i (d∗t ) = limα→0

1
α
ri(α, d∗t ).

Proof. Consider the Lagrangian form of (6)

L(z, λ, µ) = 1

2
∥

k

∑
i=1

zi∇ log ℓi,t∥
2

+ λ(
k

∑
i=1

zi − 1) −
k

∑
i=1

µizi, where ∀i, µi ≥ 0. (7)

When z∗ reaches the optimum, we have ∂L(z, λ, µ)/∂z = 0, recall that d∗t = Jtz∗t , then

J⊺t Jtz
∗ = −µ − λ, where Jt =

⎡⎢⎢⎢⎢⎢⎣

∇ log ℓ⊺1,t
⋮

∇ log ℓ⊺k,t

⎤⎥⎥⎥⎥⎥⎦
Ô⇒ J⊺t d

∗
t = −(µ + λ).

When z∗t is an interior point of Sk, we know that µ = 0. Hence J⊺t d
∗
t = −λ. This means,

∀i ≠ j, lim
α→0

1

α
ri(α, d∗t ) = ∇ log ℓ⊺i,td

∗
t = ∇ log ℓ⊺j,td

∗
t = lim

α→0

1

α
rj(α, d∗t ).

3.2 Fast Approximation by Amortizing over Time

Instead of fully solving (6) at each optimization step, FAMO performs a single-step gradient descent
on z, which amortizes the computation over the optimization trajectory:

zt+1 = zt − αz δ̃, where δ̃ = ∇z
1

2
∥

k

∑
i=1

zi,t∇ log ℓi,t∥
2

= J⊺t Jtzt. (8)

But then, note that
1

α

⎡⎢⎢⎢⎢⎣

log ℓ1,t − log ℓ1,t+1
⋮

log ℓk,t − log ℓk,t+1

⎤⎥⎥⎥⎥⎦
≈ J⊺t dt = J⊺t Jtzt, (9)

so we can use the change in log losses to approximate the gradient.

In practice, to ensure that z always stays in Sk, we re-parameterize z by ξ and let zt = Softmax(ξt),
where ξt ∈ RK are the unconstrained softmax logits. Consequently, we have the following approxi-
mate update on ξ from (8):

ξt+1 = ξt − βδ, where δ =
⎡⎢⎢⎢⎢⎣

∇⊺z1,t(ξ)
⋮

∇⊺zk,t(ξ)

⎤⎥⎥⎥⎥⎦

⊺ ⎡⎢⎢⎢⎢⎣

log ℓ1,t − log ℓ1,t+1
⋮

log ℓk,t − log ℓk,t+1

⎤⎥⎥⎥⎥⎦
. (10)

Remark: While it is possible to perform gradient descent on z for other gradient manipulation
methods in principle, we will demonstrate in Appendix B that not all such updates can be easily
approximated using the change in losses.

3.3 Practical Implementation

To facilitate practical implementation, we present two modifications to the update in (10).

Re-normalization The suggested update above is a convex combination of the gradients of the log
loss, e.g.,

d∗ =
k

∑
i=1

zi,t∇ log ℓi,t =
k

∑
i=1

(zi,t
ℓi,t
)∇ℓi,t.

When ℓi,t is small, the multiplicative coefficient zi,t
ℓi,t

can be quite large and result in unstable
optimization. Therefore, we propose to multiply d∗ by a constant ct, such that ctd∗ can be written as
a convex combination of the task gradients just as in other gradient manipulation algorithms (see (2)
and we provide the corresponding definition of w in the following):

ct = (
k

∑
i=1

zi,t

ℓi,t
)−1 and dt = ctd∗ =

k

∑
i=1

wi∇ℓi,t, where wi = ct
zi,t

ℓi,t
. (11)
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Regularization As we are amortizing the computation over time and the loss objective {ℓi(⋅)}s
are changing dynamically, it makes sense to focus more on the recent updates of ξ [46]. To this end,
we put a decay term on w such that the resulting ξt is an exponential moving average of its gradient
updates:

ξt+1 = ξt − β(δt + γξt) = −β(δt + (1 − βγ)δt−1 + (1 − βγ)2δt−2 + . . . ). (12)

We provide the complete FAMO algorithm in Algorithm 1 and its pseudocode in Appendix C.

3.4 The Continuous Limit of FAMO

One way to characterize FAMO’s behavior is to understand the stationary points of the continuous-
time limit of FAMO (i.e. when step sizes (α,β) shrink to zero). From Algorithm 1, one can derive
the following non-autonomous dynamical system (assuming {ℓi} are all smooth):

[ θ̇
ξ̇
] = −ct [

Jtzt
AtJ

⊺
t Jtzt +

γ
ct
ξt
] , where At =

⎡⎢⎢⎢⎢⎣

∇⊺z1,t(ξt)
⋮

∇⊺zk,t(ξt)

⎤⎥⎥⎥⎥⎦
. (13)

(13) reaches its stationary points (or fixed points) when (note that ct > 0)

[ θ̇
ξ̇
] = 0 Ô⇒ Jtzt = 0 and ξt = 0 Ô⇒

k

∑
i=1

∇ log ℓi,t = 0. (14)

Therefore, the minimum points of ∑k
i=1 log ℓi(θ) are all stationary points of (13).

4 Related Work

In this section, we summarize existing methods that tackle learning challenges in multitask learning
(MTL). The general idea of most existing works is to encourage positive knowledge transfer by sharing
parameters while decreasing any potential negative knowledge transfer (a.k.a, interference) during
learning. There are three major ways of doing so: task grouping, designing network architectures
specifically for MTL, and designing multitask optimization methods.

Task Grouping Task grouping refers to grouping K tasks into N < K clusters and learning N
models for each cluster. The key is estimating the amount of positive knowledge transfer incurred by
grouping certain tasks together and then identifying which tasks should be grouped [39, 45, 38, 36,
11].

Multitask Architecture Novel neural architectures for MTL include hard-parameter-sharing
methods, which decompose a neural network into task-specific modules and a shared feature extractor
using manually designed heuristics [21, 29, 2], and soft-parameter-sharing methods, which learn
which parameters to share [30, 34, 12, 27]. Recent studies extend neural architecture search for MTL
by learning where to branch a network to have task-specific modules [14, 3].

Multitask Optimization The most relevant approach to our method is MTL optimization via task
balancing. These methods dynamically re-weight all task losses to mitigate the conflicting gradient
issue [40, 43]. The simplest form of gradient manipulation is to re-weight the task losses based on
manually designed criteria [6, 13, 18], but these methods are often heuristic and lack theoretical
support. Gradient manipulation methods [35, 43, 25, 7, 16, 24, 32, 26, 47] propose to form a new
update vector at each optimization by linearly combining task gradients. The local improvements
across all tasks using the new update can often be explicitly analyzed, making these methods better
understood in terms of convergence. However, it has been observed that gradient manipulation
methods are often slow in practice, which may outweigh their performance benefits [22]. By contrast,
FAMO is designed to match the performance of these methods while remaining efficient in terms
of memory and computation. Another recent work proposes to sample random task weights at
each optimization step for MTL [23], which is also computationally efficient. However, we will
demonstrate empirically that FAMO performs better than this method.
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5 Empirical Results

We conduct experiments to answer the following question:

How does FAMO perform in terms of space/time complexities and standard MTL metrics against
prior MTL optimizers on standard benchmarks (e.g., supervised and reinforcement MTL problems)?

In the following, we first use a toy 2-task problem to demonstrate how FAMO mitigates CG while
being efficient. Then we show that FAMO performs comparably or even better than state-of-the-
art gradient manipulation methods on standard multitask supervised and reinforcement learning
benchmarks. In addition, FAMO requires significantly lower computation time when K is large
compared to other methods. Lastly, we conduct an ablation study on how robust FAMO is to γ. Each
subsection first details the experimental setup and then analyzes the results.

5.1 A Toy 2-Task Example

Figure 2: The average loss L0 and the two task losses L1 and L2 for the toy example.

To better understand the optimization trajectory of FAMO, we adopt the same 2D multitask op-
timization problem from NASHMTL [32] to visualize how FAMO balances different loss ob-
jectives. The model parameter θ = (θ1, θ2) ∈ R2. The two tasks’ objectives and their sur-
face plots are provided in Appendix D and Figure 2. We compare FAMO against ADAM [19],
MGDA [35], PCGRAD [43], CAGRAD [24], and NASHMTL [32]. We then pick 5 initial points
θinit ∈ {(−8.5,7.5), (−8.5,5), (0,0), (9,9), (10,−8)} and plot the corresponding optimization trajec-
tories with different methods in Figure 1. Note that the toy example is constructed such that naively
applying ADAM on the average loss can cause the failure of optimization for task 1.

Findings: From Figure 1, we observe that FAMO, like all other gradient manipulation methods,
mitigates the CG and reaches the Pareto front for all five runs. In the meantime, FAMO performs
similarly to NASHMTL and achieves a balanced loss decrease even when the two task losses are
improperly scaled. Finally, as shown in the top-right of the plot, FAMO behaves similarly to ADAM
in terms of the training time, which is 25× faster than NASHMTL.

5.2 MTL Performance

Multitask Supervised Learning. We consider four supervised benchmarks commonly used in
prior MTL research [24, 27, 32, 33]: NYU-v2 [31] (3 tasks), CityScapes [8] (2 tasks), QM-9 [1] (11
tasks), and CelebA [28] (40 tasks). Specifically, NYU-v2 is an indoor scene dataset consisting of
1449 RGBD images and dense per-pixel labeling with 13 classes. The learning objectives include
image segmentation, depth prediction, and surface normal prediction based on any scene image.
CityScapes dataset is similar to NYU-v2 but contains 5000 street-view RGBD images with per-pixel
annotations. QM-9 dataset is a widely used benchmark in graph neural network learning. It consists
of >130K molecules represented as graphs annotated with node and edge features. We follow the
same experimental setting used in NASHMTL [32], where the learning objective is to predict 11
properties of molecules. We use 110K molecules from the QM9 example in PyTorch Geometric [10],
10K molecules for validation, and the rest of 10K molecules for testing. The characteristic of this
dataset is that the 11 properties are at different scales, posing a challenge for task balancing in MTL.
Lastly, CelebA dataset contains 200K face images of 10K different celebrities, and each face image
is provided with 40 facial binary attributes. Therefore, CelebA can be viewed as a 40-task MTL
problem. Different from NYU-v2, CityScapes, and QM-9, the number of tasks (K) in CelebA is
much larger, hence posing a challenge to learning efficiency.
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Segmentation Depth Surface Normal

Method mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Dist ↓ Within t○ ↑ MR ↓ ∆m% ↓
Mean Median 11.25 22.5 30

STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

LS 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 8.89 5.59
SI 38.45 64.27 0.5354 0.2201 27.60 23.37 22.53 48.57 62.32 7.89 4.39
RLW 37.17 63.77 0.5759 0.2410 28.27 24.18 22.26 47.05 60.62 11.22 7.78
DWA 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 7.67 3.57
UW 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 7.44 4.05
MGDA 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 6.00 1.38
PCGRAD 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 8.00 3.97
GRADDROP 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 7.00 3.58
CAGRAD 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 4.56 0.20
IMTL-G 39.35 65.60 0.5426 0.2256 26.02 21.19 26.20 53.13 66.24 3.78 -0.76
NASHMTL 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 2.11 -4.04

FAMO 38.88 64.90 0.5474 0.2194 25.06 19.57 29.21 56.61 68.98 3.44 -4.10

Table 1: Results on NYU-v2 dataset (3 tasks). Each experiment is repeated over 3 random seeds and the mean is
reported. The best average result is marked in bold. MR and ∆m% are the main metrics for MTL performance.

Method µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv MR ↓ ∆m% ↓
MAE ↓

STL 0.07 0.18 60.6 53.9 0.50 4.53 58.8 64.2 63.8 66.2 0.07

LS 0.11 0.33 73.6 89.7 5.20 14.06 143.4 144.2 144.6 140.3 0.13 6.45 177.6
SI 0.31 0.35 149.8 135.7 1.00 4.51 55.3 55.8 55.8 55.3 0.11 3.55 77.8
RLW 0.11 0.34 76.9 92.8 5.87 15.47 156.3 157.1 157.6 153.0 0.14 8.00 203.8
DWA 0.11 0.33 74.1 90.6 5.09 13.99 142.3 143.0 143.4 139.3 0.13 6.27 175.3
UW 0.39 0.43 166.2 155.8 1.07 4.99 66.4 66.8 66.8 66.2 0.12 4.91 108.0
MGDA 0.22 0.37 126.8 104.6 3.23 5.69 88.4 89.4 89.3 88.0 0.12 5.91 120.5
PCGRAD 0.11 0.29 75.9 88.3 3.94 9.15 116.4 116.8 117.2 114.5 0.11 4.73 125.7
CAGRAD 0.12 0.32 83.5 94.8 3.22 6.93 114.0 114.3 114.5 112.3 0.12 5.45 112.8
IMTL-G 0.14 0.29 98.3 93.9 1.75 5.70 101.4 102.4 102.0 100.1 0.10 4.36 77.2
NASHMTL 0.10 0.25 82.9 81.9 2.43 5.38 74.5 75.0 75.1 74.2 0.09 2.09 62.0

FAMO 0.15 0.30 94.0 95.2 1.63 4.95 70.82 71.2 71.2 70.3 0.10 3.27 58.5

Table 2: Results on QM-9 dataset (11 tasks). Each experiment is repeated over 3 random seeds and the mean is
reported. The best average result is marked in bold. MR and ∆m% are the main metrics for MTL performance.

We compare FAMO against 11 MTL optimization methods and a single-task learning baseline: (1)
Single task learning (STL), training an independent model (θ for each task; (2) Linear scalarization
(LS) baseline that minimizes L0; (3) Scale-invariant (SI) baseline that minimizes ∑k logL

k(θ), as
SI is invariant to any scalar multiplication of task losses; (4) Dynamic Weight Average (DWA) [27],
a heuristic for adjusting task weights based on rates of loss changes; (5) Uncertainty Weighting
(UW) [18] uses task uncertainty as a proxy to adjust task weights; (6) Random Loss Weighting
(RLW) [23] that samples task weighting whose log-probabilities follow the normal distribution;
(7) MGDA [35] that finds the equal descent direction for each task; (8) PCGRAD [43] proposes
to project each task gradient to the normal plan of that of other tasks and combining them together
in the end; (9) CAGRAD [24] optimizes the average loss while explicitly controls the minimum
decrease across tasks; (10) IMTL-G [25] finds the update direction with equal projections on task
gradients; (11) GRADDROP [7] that randomly dropout certain dimensions of the task gradients based
on how much they conflict; (12) NASHMTL [32] formulates MTL as a bargaining game and finds
the solution to the game that benefits all tasks. For FAMO, we choose the best hyperparameter
γ ∈ {0.0001,0.001,0.01} based on the validation loss. Specifically, we choose γ equals 0.01 for the
CityScapes dataset and 0.001 for the rest of the datasets. See Appendix E for results with error bars.

Evaluations: We consider two metrics [32] for MTL: 1) ∆m%, the average per-task performance
drop of a method m relative to the STL baseline denoted as b: ∆m% = 1

K ∑
K
k=1(−1)δk(Mm,k −

Mb,k)/Mb,k × 100, where Mb,k and Mm,k are the STL and m’s value for metric Mk. δk = 1 (or 0) if
the Mk is higher (or lower) the better. 2) Mean Rank (MR): the average rank of each method across
tasks. For instance, if a method ranks first for every task, MR will be 1.

Findings: Results on the four benchmark datasets are provided in Table 1, 2 and 3. We observe that
FAMO performs consistently well across different supervised learning MTL benchmarks compared
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Method

CityScapes CelebA
Segmentation Depth MR ↓ ∆m% ↓ MR ↓ ∆m% ↓

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓
STL 74.01 93.16 0.0125 27.77

LS 70.95 91.73 0.0161 33.83 6.50 14.11 4.15 6.28
SI 70.95 91.73 0.0161 33.83 9.25 14.11 7.20 7.83
RLW 74.57 93.41 0.0158 47.79 9.25 24.38 1.46 5.22
DWA 75.24 93.52 0.0160 44.37 6.50 21.45 3.20 6.95
UW 72.02 92.85 0.0140 30.13 6.00 5.89 3.23 5.78
MGDA 68.84 91.54 0.0309 33.50 9.75 44.14 14.85 10.93
PCGRAD 75.13 93.48 0.0154 42.07 6.75 18.29 3.17 6.65
GRADDROP 75.27 93.53 0.0157 47.54 6.00 23.73 3.29 7.80
CAGRAD 75.16 93.48 0.0141 37.60 5.75 11.64 2.48 6.20
IMTL-G 75.33 93.49 0.0135 38.41 4.00 11.10 0.84 4.67
NASHMTL 75.41 93.66 0.0129 35.02 2.00 6.82 2.84 4.97

FAMO 74.54 93.29 0.0145 32.59 6.25 8.13 1.21 4.72

Table 3: Results on CityScapes (2 tasks) and CelebA (40 tasks) datasets. Each experiment is repeated over 3
random seeds and the mean is reported. The best average result is marked in bold. MR and ∆m% are the main
metrics for MTL performance.

to other gradient manipulation methods. In particular, it achieves state-of-the-art results in terms of
∆m% on the NYU-v2 and QM-9 datasets.

Multitask Reinforcement Learning. We further apply FAMO to multitask reinforcement learning
(MTRL) problems as MTRL often suffers more from conflicting gradients due to the stochastic nature
of reinforcement learning [43]. Following CAGRAD [24], we apply FAMO on the MetaWorld [44]
MT10 benchmark, which consists of 10 robot manipulation tasks with different reward functions.
Following [37], we use Soft Actor-Critic (SAC) [15] as the underlying RL algorithm, and compare
against baseline methods including LS (SAC with a shared model) [44], Soft Modularization [42]
(an MTL network that routes different modules in a shared model to form different policies), PC-
GRAD [43], CAGRAD and NASHMTL [32]. The experimental setting and hyperparameters all match
exactly with those in CAGRAD. For NASHMTL, we report the results of applying the NASHMTL
update once per {1,50,100} iterations.4 The results for all methods are provided in Table 5.2.

Figure 3: Training Success Rate and Time.

Method Success ↑
(mean ± stderr)

LS (lower bound) 0.49 ±0.07
STL (proxy for upper bound) 0.90 ±0.03

PCGRAD [43] 0.72 ±0.02
SOFT MODULARIZATION [42] 0.73 ±0.04
CAGRAD 0.83 ±0.05
NASHMTL [32] (every 1) 0.91 ±0.03
NASHMTL [32] (every 50) 0.85 ±0.02
NASHMTL [32] (every 100) 0.87 ±0.03

NASHMTL (ours) (every 1) 0.80 ±0.13
NASHMTL (ours) (every 50) 0.76 ±0.10
NASHMTL (ours) (every 100) 0.80 ±0.12
UW [18] 0.77 ±0.05

FAMO (ours) 0.83 ±0.05

Table 4: MTRL results (averaged over 10 runs) on the
Metaworld-10 benchmark.

4We could not reproduce the MTRL results of NASHMTL exactly, so we report both the results from the
original paper and our reproduced results.
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Findings: From Table 5.2, we observe that FAMO performs comparably to CAGRAD and out-
performs PCGRAD and the average gradient descent baselines by a large margin. FAMO also
outperforms NASHMTL based on our implementation. Moreover, FAMO is significantly faster than
NASHMTL, even when it is applied once every 100 steps.

5.3 MTL Efficiency (Training Time Comparison)

Figure 4 provides the FAMO’s average training time per epoch against that of the baseline methods.

Figure 4: Average training time per epoch for different MTL optimization methods. We report the relative
training time of a method to that of the linear scalarization (LS) method (which uses the average gradient).

Findings: From the figure, we observe that FAMO introduces negligible overhead across all
benchmark datasets compared to the LS method, which is, in theory, the lower bound for computation
time. In contrast, methods like NASHMTL have much longer training time compared to FAMO.
More importantly, the computation cost of these methods scales with the number of tasks. In addition,
note that these methods also take at leastO(K) space to store the task gradients, which is implausible
for large models in the many-task setting (i.e., when m = ∣θ∣ and K are large).

5.4 Ablation on γ

In this section, we provide the ablation study on the regularization coefficient γ in Figure 5.

Figure 5: Ablation over γ: we plot the performance of FAMO (in terms of ∆m% using different values of γ
from {0.0001,0.001,0.01} on the four supervised MTL benchmarks.

Findings: From Figure 5, we can observe that choosing the right regularization coefficient can be
crucial. But except for CityScapes, FAMO performs reasonably well using all different γs. The
problem with CityScapes is that one of the task losses is close to 0 at the very beginning, hence small
changes in task weighting can result in very different loss improvement. Therefore we conjecture that
using a larger γ, in this case, can help stabilize MTL.

6 Conclusion and Limitations

In this work, we introduce FAMO, a fast optimization method for multitask learning (MTL) that
mitigates the conflicting gradients using O(1) space and time. As multitasking large models gain
more attention, we believe designing efficient but effective optimizers like FAMO for MTL is
crucial. FAMO balances task losses by ensuring each task’s loss decreases approximately at an
equal rate. Empirically, we observe that FAMO can achieve competitive performance against the
state-of-the-art MTL gradient manipulation methods. One limitation of FAMO is its dependency on
the regularization parameter γ, which is introduced due to the stochastic update of the task weighting
logits w. Future work can investigate a more principled way of determining γ.
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A Gradient Manipulation Methods

In this section, we provide a brief overview of representative gradient manipulation methods in
multitask/multiobjective optimization. Specifically, we will also discuss the connections among these
methods.

Multiple Gradient Descent Algorithm (MGDA) [9, 35] The MGDA algorithm is one of the
earliest gradient manipulation methods for multitask learning. In MGDA, the per step update dt is
found by solving

max
d∈Rm

min
i∈[k]
∇ℓ⊺i,td −

1

2
∥d∥2.

As a result, the solution d∗ of MGDA optimizes the “worst improvement" across all tasks or
equivalently seeks an equal descent across all task losses as much as possible. But in practice,
MGDA suffers from slow convergence since the update d∗ can be very small. For instance, if one
task has a very small loss scale, the progress of all other tasks will be bounded by the progress on this
task. Note that the original objective in (6) is similar to the MGDA objective in the sense that we
can view optimizing (6) as optimizing the log of the task losses. Hence, when we compare FAMO
against MGDA, one can regard FAMO as balancing the rate of loss improvement while MGDA
balances the absolute improvement across task losses.

Projecting Gradient Descent (PCGRAD) [43] PCGRAD initializes viPC = ∇ℓi,t, then for each task
i, PCGRAD loops over all task j ≠ i (in a random order, which is crucial as mentioned in [43]) and
removes the “conflict"

viPC ← viPC −
viPC
⊺∇ℓj,t
∥ℓj,t∥2

∇ℓj,t if viPC
⊺∇ℓj,t < 0.

In the end, PCGRAD produces dt = 1
k ∑

k
i=1 v

i
PC. Due to the construction, PCGRAD will also help

improve the “worst improvement" across all tasks since the “conflicts" have been removed. However,
due to the stochastic iterative procedural of this algorithm, it is hard to understand PCGRAD from a
first principle approach.

Conflict-averse Gradient Descent (CAGRAD) [24] dt is found by solving

max
d∈Rm

min
i∈[k]
∇ℓ⊺i,td s.t. ∥d −∇ℓ0,t∥ ≤ c∥∇ℓ0,t∥.

Here, ℓ0,t = 1
k ∑

k
i=1 ℓi,t. CAGRAD seeks an update dt that optimizes the “worst improvement" as

much as possible, conditioned on that the update still decreases the average loss. By controlling the
hyperparameter c, CAGRAD can recover MGDA (c→∞) and the vanilla averaged gradient descent
(c→ 0). Due to the extra constraint, CAGRAD provably converges to the stationary points of ℓ0 when
0 ≤ c < 1.

Impartial Multi-Task Learning (IMTL-G) [25] IMTL-G finds dt such that it shares the same
cosine similarity with any task gradients:

∀i ≠ j, d⊺t
∇ℓi,t
∥∇ℓi,t∥

= d⊺t
∇ℓj,t
∥∇ℓj,t∥

, and dt =
k

∑
i=1

wi,t∇ℓi,t, for some wt ∈ Sk.

The constraint that dt = ∑k
i=1wi,t∇ℓi,t is for preventing the problem from being under-determined.

From the above equation, we can see that IMTL-G ignores the “size" of each task gradient and only
cares about the “direction". As a result, one can think of IMTL-G as a variant of MGDA that
applies to the normalized gradients. By doing so, IMTL-G does not suffer from the straggler effect
due to slow objectives. Furthermore, one can view IMTL-G as the equal angle descent, which is
also proposed in Katrutsa et al. [17], where the objective is to find d such that

∀i ≠ j, cos(d,∇ℓi,t) = cos(d,∇ℓj,t).
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NASHMTL[32] NASHMTL finds dt by solving a bargaining game treating the local improvement
of each task loss as the utility for each task:

max
d∈Rm,∥d∥≤1

k

∑
i=1

log (∇ℓ⊺i,td).

Note that the objective of NASHMTL implicitly assumes that there exists d such that ∀ i, ∇ℓ⊺i,td > 0
(otherwise we reach the Pareto front). It is easy to see that

max
∥d∥≤1

k

∑
i=1

log (∇ℓ⊺i,td) = max
∥d∥≤1

k

∑
i=1

log⟨ ∇ℓi,t∥∇ℓi,t∥
, d⟩ = max

∥d∥≤1

k

∑
i=1

log cos (∇ℓi,t, d).

Therefore, due to the log, NASHMTL also ignores the “size" of task gradients and only cares about
their “directions". Moreover, denote ui = ∇ℓi,t

∥∇ℓi,t∥
. Then, according to the KKT condition, we know:

∑
i

ui

u⊺i d
− αd = 0, α ≥ 0 Ô⇒ d = 1

α
∑
i

1

u⊺i d
ui.

Consider when k = 2, if we take the equal angle descent direction: d∠ = (u1 + u2)/2 (note that as u1

and u2 are normalized, their bisector is just their average). Then it is easy to check that

d∠ =
1

α
( 2

u⊺1(u1 + u2)
u1 +

2

u⊺2(u1 + u2)
u2), where α = u⊺1(u1 + u2)

4
= u⊺2(u1 + u2)

4
.

As a result, we can see that when k = 2, NASHMTL is equivalent to IMTL-G (or the equal angle
descent). However, when k > 2, this is not in general true.

Remark Note that all of these gradient manipulation methods require computing and storing K task
gradients before applying f to compute dt, which often involves solving an additional optimization
problem. Hence, these methods can be slow for large K and large model sizes.

B Amortizing other Gradient Manipulation Methods

Although FAMO uses iterative update on w, it is not immediately clear whether we can apply the
same amortization easily on other existing gradient manipulation methods. In this section, we discuss
such possibilities and point out the challenges.

Amortizing MGDA This is almost the same as in FAMO, except that MGDA acts on the original
task losses while FAMO acts on the log of task losses.

Amortizing PCGRAD For PCGRAD, finding the final update vector requires iteratively projecting
one task gradient to the other, so there is no straightforward way of bypassing the computation of
task gradients.

Amortizing IMTL-G The task weighting in IMTL-G is computed by a series of matrix-matrix
and matrix-vector products using task gradients [25]. Hence, it is also hard to amortize its computation
over time.

Therefore, we focus on deriving the amortization for CAGRAD and NASHMTL.

Amortizing CAGRAD For CAGRAD, the dual objective is

min
w∈Sk

F (w) = g⊺wg0 + c∥gw∥∥g0∥, (15)

where g0 = ∇ℓ0,t and gw = ∑k
i=1wi∇ℓi. Denote

G =
⎡⎢⎢⎢⎢⎢⎣

∇ℓ⊺1,t
⋮
∇ℓ⊺k,t

⎤⎥⎥⎥⎥⎥⎦
.
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Now, if we take the gradient with respect to w in (15), we have:
∂F

∂w
= G⊺g0 + c

∥g0∥
∥gw∥

G⊺gw. (16)

As a result, in order to approximate this gradient, one can separately estimate:

G⊺g0 ≈
ℓ(θ) − ℓ(θ − αg0)

α

G⊺gw ≈
ℓ(θ) − ℓ(θ − αgw)

α

∥g0∥ ≈
√
1⊺G⊺g0

∥gw∥ ≈
√
w⊺G⊺gw

. (17)

Once all these are estimated, one can combine them together to perform a single update on w. But
note that this will require 3 forward and backward passes through the model, making it harder to
implement in practice.

Amortizing NASHMTL Per derivation from NASHMTL [32], the objective is to solve for w:
G⊺Gw = 1⊘w. (18)

One can therefore form an objective:

min
w

F (w) = ∥G⊺Gw − 1⊘w∥2
2
. (19)

Taking the derivative of F with respect to w, we have
∂F

∂w
= 2G⊺G(G⊺gw − 1⊘w) + 2(G⊺gw − 1⊘w)⊘ (w ⊙w). (20)

Therefore, to approximate the gradient of w, one needs to first estimate

G⊺gw ≈
L(θ) −L(θ − αgw)

α
= η. (21)

Then we estimate

G⊺G(η − 1⊘w) ≈ L(θ) −L(θ − αG(η − 1⊘w))
α

. (22)

Again, this results in 3 forward and backward passes through the model, let alone the overhead of
resetting the model back to θ (requires a copy of the original weights).

In short, though it is possible to derive fast approximation algorithm to approximate the gradient
update on w for some of the existing gradient manipulation methods, it often involves much more
complicated computation compared to that of FAMO.

C FAMO Pseudocode in PyTorch

We provide the pseudocode for FAMO in Algorithm 2. To use FAMO, one just first compute the
task losses, call get_weighted_loss to get the weighted loss, and do the normal backpropagation
through the weighted loss. After that, one call update to update the task weighting.

D Toy Example

We provide the task objectives for the toy example in the following. The model parameter θ =
(θ1, θ2) ∈ R2 and the task objectives are L1 and L2:

L1(θ) = 0.1 ⋅ (c1(θ)f1(θ) + c2(θ)g1(θ)) and L2(θ) = c1(θ)f2(θ) + c2(θ)g2(θ), where

f1(θ) = log (max(∣0.5(−θ1 − 7) − tanh (−θ2)∣, 0.000005)) + 6,
f2(θ) = log (max(∣0.5(−θ1 + 3) − tanh (−θ2) + 2∣, 0.000005)) + 6,
g1(θ) = ((−θ1 + 7)2 + 0.1 ∗ (−θ2 − 8)2)/10 − 20,
g2(θ) = ((−θ1 − 7)2 + 0.1 ∗ (−θ2 − 8)2)/10 − 20,
c1(θ) =max(tanh (0.5 ∗ θ2), 0) and c2(θ) =max(tanh (−0.5 ∗ θ2), 0).
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Algorithm 2 Implementation of FAMO in PyTorch-like Pseudocode
class FAMO:
def __init__(self, num_tasks, min_losses, α=0.025, γ=0.001):

# min_losses (num_tasks,) the loss lower bound for each task.
self.min_losses = min_losses
self.xi = torch.tensor([0.0] * num_tasks, requires_grad=True)
self.xi_opt = torch.optim.Adam([self.xi], lr=α, weight_decay=γ)

def get_weighted_loss(self, losses):
# losses (num_tasks,)
z = F.softmax(self.xi, -1)
D = losses - self.min_losses + 1e-8
c = 1 / (z / D).sum().detach()
loss = (c * D.log() * z).sum()
return loss

def update(self, prev_losses, curr_losses):
# prev_losses (num_tasks,)
# curr_losses (num_tasks,)
delta = (prev_losses - self.min_losses + 1e-8).log() -

(curr_losses - self.min_losses + 1e-8).log()
with torch.enable_grad():

d = torch.autograd.grad(F.softmax(self.xi, -1),
self.xi,
grad_outputs=delta.detach())[0]

self.xi_opt.zero_grad()
self.xi.grad = d
self.xi_opt.step

E Experimental Results with Error Bars

We followed the exact experimental setup from NASHMTL [32]. Therefore, the numbers for baseline
methods are taken from their original paper. In the following, we provide FAMO’s result with error
bars.
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Segmentation Depth Surface Normal

Method mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Dist ↓ Within t○ ↑ ∆m% ↓
Mean Median 11.25 22.5 30

FAMO (mean) 38.88 64.90 0.5474 0.2194 25.06 19.57 29.21 56.61 68.98 -4.10
FAMO (stderr) ±0.54 ±0.21 ±0.0016 ±0.0026 ±0.06 ±0.09 ±0.17 ±0.19 ±0.14 ±0.39

Table 5: Results on NYU-v2 dataset (3 tasks). Each experiment is repeated over 3 random seeds and the mean is
reported. The best average result is marked in bold. MR and ∆m% are the main metrics for MTL performance.

Method µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv ∆m% ↓
MAE ↓

FAMO (mean) 0.15 0.30 94.0 95.2 1.63 4.95 70.82 71.2 71.2 70.3 0.10 58.5
FAMO (stderr) ±0.0046 ±0.0070 ±3.074 ±2.413 ±0.0211 ±0.0871 ±2.17 ±2.19 ±2.19 ±2.21 ±0.0026 ±3.26

Table 6: Results on QM-9 dataset (11 tasks). Each experiment is repeated over 3 random seeds and the mean is
reported. The best average result is marked in bold. MR and ∆m% are the main metrics for MTL performance.

Method

CityScapes CelebA
Segmentation Depth

∆m% ↓ ∆m% ↓
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓

FAMO (mean) 74.54 93.29 0.0145 32.59 8.13 1.21
FAMO (stderr) ±0.11 ±0.04 ±0.0009 ±1.06 ±1.98 ±0.24

Table 7: Results on CityScapes (2 tasks) and CelebA (40 tasks) datasets. Each experiment is repeated over 3
random seeds and the mean is reported. The best average result is marked in bold. MR and ∆m% are the main
metrics for MTL performance.
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