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Abstract

In this study, we delve into the task of few-shot Generative Domain Adaptation
(GDA), which involves transferring a pre-trained generator from one domain to
a new domain using only a few reference images. Inspired by the way human
brains acquire knowledge in new domains, we present an innovative generator
structure called Domain Re-Modulation (DoRM). DoRM not only meets the
criteria of high quality, large synthesis diversity, and cross-domain consistency,
which were achieved by previous research in GDA, but also incorporates memory
and domain association, akin to how human brains operate. Specifically, DoRM
freezes the source generator and introduces new mapping and affine modules (M&A
modules) to capture the attributes of the target domain during GDA. This process
resembles the formation of new synapses in human brains. Consequently, a linearly
combinable domain shift occurs in the style space. By incorporating multiple
new M&A modules, the generator gains the capability to perform high-fidelity
multi-domain and hybrid-domain generation. Moreover, to maintain cross-domain
consistency more effectively, we introduce a similarity-based structure loss. This
loss aligns the auto-correlation map of the target image with its corresponding
auto-correlation map of the source image during training. Through extensive
experiments, we demonstrate the superior performance of our DoRM and similarity-
based structure loss in few-shot GDA, both quantitatively and qualitatively. Code
will be available at https://github.com/wuyi2020/DoRM.

1 Introduction

Domain adaptation aims to bridge the domain gap and transfer knowledge to mitigate the limitations
imposed by a lack of extensive labeled data [8; 40; 51]. Recent research has explored the field
of few-shot Generative Domain Adaptation (GDA), which aims to achieve realistic and diverse
generation with only a few training images [29; 32; 34; 43; 47; 59; 31; 42; 23; 62]. Particularly, the
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Figure 1: Left: Framework of our DoRM. Given a generator of StyleGAN2 structure pre-trained on a
source domain (components in the white dotted blocks), we can realize multi-domain generation and
hybrid-domain generation by activating the corresponding trained M&A modules (components in the
colourful solid blocks). Right: Multi-domain generation (right top) and hybrid-domain generation
(right bottom). For instance, by activating the trained M&A modules of Baby and Sketch domains,
hybrid-domain (Sketch-Baby domain) generation has been realized easily.

purpose of few-shot GDA4 is to transfer a generator pre-trained on the source domain to the target
domain using a few reference images.

Existing few-shot GDA works primarily focus on three properties: (i) High quality and (ii) Large
diversity, where the adapted generator can synthesize high quality and diverse images in the target
domain and (iii) Cross-domain consistency, where the adapted images and their corresponding source
images should be consistent in terms of domain-sharing attributes, such as pose and identity. A
majority of them update the entire generator with regularization techniques including GAN inversion
[55; 47; 63], Contrastive-Language-Image-Pretraining (CLIP) [10; 55; 63], and consistency loss
[32; 47; 59] to achieve large diversity and cross-domain consistency of adaptation. However, updating
the entire generator imposes limitations on its ability to synthesize multiple target domains. In contrast,
the human brain employs a more efficient approach to learn from new domains by forming new
proteins[4], allowing for the retention and integration of knowledge from multiple domains. This
creative capacity enables humans to explore previously unseen domains.

Drawing inspiration from human learning processes, we propose a novel generator structure called
Domain Re-Modulation (DoRM) based on StyleGAN2 [19]. DoRM not only fulfills three essential
properties of few-shot GDA but also introduces two new capabilities: (iv) Memory, enabling the
generator to retain knowledge from previously learned domains when generating images in new
domains, and (v) Domain Association, allowing the generator to integrate multiple learned domains
and synthesize hybrid domains not encountered during training. As depicted in Figure 1, DoRM
freezes the pre-trained source generator and introduces new mapping and affine modules (M&A
modules) to achieve the necessary domain shift in the style space. This approach enables DoRM to
perform high-fidelity generation across multiple domains by selectively activating different M&A
modules, which significantly reduces the required storage space. Moreover, as StyleGAN’s style space
is a linear subspace [36; 24; 45], the domain shift obtained through DoRM is linearly combinable.
Consequently, DoRM can synthesize images in hybrid domains not present in the training dataset by
simultaneously activating multiple M&A modules. To further enhance cross-domain consistency, we
introduce a similarity-based structure loss denoted as Lss. Specifically, we leverage the CLIP image

4It is important to note that the objective of few-shot Generative Domain Adaptation (GDA) differs from that
of Few-Shot Image Generation (FSIG). FSIG focuses on generating high-quality and diverse images in the target
domain using a limited number of training samples, whereas few-shot GDA involves additional considerations
beyond FSIG.
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encoder [33] to extract intermediate tokens from the target image and its corresponding source image.
We then enforce consistency between the auto-correlation maps of these tokens, ensuring improved
alignment between target and source images.

We conducted extensive experiments on few-shot GDA involving various source and target domains.
Our experiments, both quantitative and qualitative, highlight the competitive performance of our
method compared to state-of-the-art approaches in 10-shot GDA. We achieved remarkable results in
terms of quality, diversity, and cross-domain consistency. Notably, our proposed DoRM stands out
by demonstrating exceptional performance in hybrid-domain generation, a hard task that previous
methods have not accomplished well. The key contributions of this work can be summarized as
follows:

• We introduce DoRM, a novel generator structure for few-shot generative domain adaptation,
inspired by the learning mechanism of human brains. DoRM not only excels in synthesizing
high-quality, diverse, and cross-domain consistent images, but also integrating memory and
domain association capabilities that remain relatively unexplored in the field. Notably, our
approach is one of the very few that encompasses all five desired properties of GDA.

• Additionally, we propose a novel consistency loss called similarity-based structure loss,
which further enhances cross-domain consistency in our approach.

• Through comprehensive evaluations, our proposed method outperforms existing competitors
across various settings, showcasing its superior performance.

2 Related Work

2.1 Generative Adversarial Networks

Deep learning has made remarkable achievements in various fields [46; 44; 22]. Among them,
generative adversarial networks [11; 37; 28] play a two-player adversarial game, where the generator
aims to synthesize realistic images to fool the discriminator, while the discriminator learns how
to distinguish the synthesized images from real ones. Previous works [16; 2; 53; 18; 19] have
significantly improved the synthesis capability on high-resolution datasets. Style-based methods [18;
19; 35] remain the state-of-the-art unconditional GANs owing to their unique architecture. However,
GANs training requires a large number of training images, or severe discriminator overfitting can
occur [26; 27]. To alleviate this issue and improve training stability, various data augmentation
techniques [57; 15; 17; 61; 60; 25] and regularization technologies [26; 48; 39; 14] have been
introduced. Among these, Adaptive Discriminator Augmentation (ADA) is an adaptive strategy that
controls the strength of augmentations and has shown remarkable performance, becoming the default
operation in data-efficient GANs. Tseng et al. [39] proposed a regularization scheme to modulate the
discriminator’s prediction, mitigating discriminator overfitting. However, most of these techniques
fail in the extremely small (e.g., 10) training data regime.

2.2 Few-shot Generative Domain Adaptation

Previous works in few-shot GDA mainly have primarily focused on three essential properties: High
quality, Large diversity, and Cross-domain consistency. Some studies have fine-tuned the entire
generator using regularization techniques. For example, [32; 47] introduced a consistency loss based
on Kullback-Leibler (KL) divergence to preserve the relative similarities and differences between
instances, inheriting diversity and maintaining consistency during adaptation. The contrastive term
[12; 5] has also been employed to construct consistency loss in [59]. In addition, leveraging the
semantic power of large Contrastive-Language-Image-Pretraining (CLIP) [33] models, [10; 55; 63]
proposed to define the domain-gap direction in CLIP embedding space, guiding the optimization of
the generator. Furthermore, GAN inversion [7; 38] technique has been widely used in few-shot GDA
to meet different purposes, such as exploring the domain-sharing attributes [55; 63], and compressing
the latent space to a subspace to relax the cross-domain alignment [47]. Compared to optimizing the
entire generator, some studies [31] only update the crucial part of the generator. Moreover, some
work [49] adds a lightweight attribute adaptor and attribute classifier before the frozen generator and
after the frozen discriminator, respectively. The proposed method achieves remarkable performance
in synthesis quality and diversity but lacks cross-domain consistency.
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Figure 2: Our framework (DoRM) is based on StyleGAN2. In the Synthesis network g(·) (gray
blocks), the source affines As and the source mapping fs constitute the pre-trained source generator
on a source domain. To achieve generative domain Adaptation, we incorporate a new target mapping
ft and target affines At. During training, we only optimize the parameters of the solid yellow blocks.

Furthermore, [20; 1] share the similar idea with us of incorporating multi-domain generation capabil-
ities into a single generator. However, these methods employ multiplicative modulation, which is
indeed different with ours. Specifically, HyperDomainNet [1] adopts a solitary modulation parameter,
primarily a scale (δ), to adjust the weights of the convolutional layer, influencing the "s" space
of StyleGAN. In this setup, the scale parameter remains constant for all images within a target
domain. Formally, HyperDomainNet’s architecture is represented as w · si · δ, where w and si
denote the convolutional weight and style code of the source StyleGAN2, respectively. However, the
introduction of this all-encompassing scale parameter can potentially restrict the generator’s learning
capacity. Especially in scenarios with significant domain gaps between target and source domains,
HyperDomainNet’s performance may decline. Furthermore, the non-linear combinability of the
scale modulation parameter impedes its ability to achieve robust domain association. Among the
approaches closest to our DoRM, DynaGAN [20] introduces two modulation parameters—shift (∆s)
and scale (δ)—to the convolutional weights affecting StyleGAN’s "s" space. DynaGAN’s architecture
can be defined as w · (si +∆s) · δ. Similar to HyperDomainNet, the non-linear combinability of the
scale modulation parameter impedes its ability to achieve robust domain association. In contrast, our
DoRM solely embraces a sample-specific domain shift denoted as ∆si, formalized as w · (si +∆si).
This distinct design substantially enhances the generator’s learning potential, enabling adaptation to
a diverse spectrum of target domains, even in the presence of considerable domain gaps. Notably,
the sample-specific domain shift proves sufficient for both few-shot and one-shot GDA, eliminating
the necessity for an additional domain scale parameter. This streamlined approach not only fosters
domain association but has been effectively demonstrated. Additionally, although [30] defines and
addresses a related task called Domain Expansion and domain composition (referred to as memory
and domain association in our paper), it inadvertently curtails the source domain’s generative ca-
pacity, amplifying the intricacies and temporal requisites of domain adaptation. As depicted in the
experimental results, [30] encounters challenges when faced with substantial domain gaps between
source and target domains. Evidently, its performance is compromised, as evidenced in instances
such as adapting to the 10-shot generation context of the Sketch dataset and the one-shot generation
context of the "elsa" dataset.
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3 Approach

In this section, we present our generator structure, DoRM (Section 3.1), which takes inspiration
from the way human brains learn new knowledge in different domains. DoRM excels in generating
high-quality, diverse images while maintaining strong cross-domain consistency in few-shot GDA.
Additionally, it possesses the unique ability to integrate multiple learned domains, allowing for the
synthesis of images in hybrid domains that were not present in the training dataset. To address the
issue of discriminator overfitting, we freeze the backbone of the source discriminator and introduce a
target domain classifier (Section 3.2). Furthermore, we propose a novel similarity-based structure
loss, denoted as Lss (Section 3.3), to enhance the maintenance of cross-domain consistency. Finally,
we introduce the overall training loss in Section 3.4.

3.1 Domain Re-modulation Structure of Generator

StyleGAN2. Our method is applied to a pre-trained StyleGAN2 [19]. Unlike general GANs that
directly feed latent code to the generator, StyleGAN2 [19] employs a non-linear mapping network
f(·) to transform the latent space Z into an intermediate latent space W . The latent code (w ∈ W)
is transformed into the style code (s ∈ S) through a learned affine transformation A. Finally, the
style code is inserted into the synthesis network g(·) through the modulation component at each
convolution layer.

Domain Re-modulation of Generator. To equip the generator with memory and inherit the semantic
information (e.g., glasses, gender, ages) from the source domain, we propose DoRM, illustrated in
Figure 2. We freeze the given StyleGAN2 model pre-trained on the source domain and employ a
new mapping network ft and new affine transformation At (M&A module) to build Wt space and St

space, respectively. Through the new M&A module, we obtain domain shift as well as the target style
codes. The added ft and At have the same architecture as fs and As, respectively, and are initialized
by fs and As. Accordingly, each layer of the synthesis network is controlled by source and target
style codes. Given a latent code z sampled from Normal distribution Z (z ∈ Z),

wt = ft(z) ∈ Wt, ws = fs(z) ∈ Ws, (1)

where Wt and Ws contain information from the target domain and source domain, respectively.
Transformed by their own learned affine layers (Eq. 2), the information in these two domains
represents their respective styles and is combined into general styles s (Eq. 3) to control the synthesis
network together:

st = At(wt), ss = As(ws), (2)

s = αst + (1− α)ss, (3)

where α is a hyper-parameter that controls the strength of the domain shift. In GDA, it tends to
reuse various factors like pose, content, structure, etc. from the source domain and learns the most
distinguishable characteristics of the target domain. To preserve variation factors as much as possible
in the source domain, α is set to a relatively small value (More analyses can be found in Section
A.1). The combined style code s modulates the convolution weights through w′

i = s · wi, where w′
i

is the modulated weights. Then, demodulation is employed to eliminate the influence of the style
code s from the statistics of the convolution’s output feature maps, which has been formalized as
w′′

i =
w′

i

∥w′∥2
, where ∥w′∥2 represents the L2-Norm function.

3.2 Target Domain Classifier

In GANs training, the discriminator typically distinguishes the training images from the generated
images. However, in few-shot GDA, where there are extremely few training images, the discriminator
can easily overfit to the training images, leading to severe model collapse in the generator. In this
work, we treat the discriminator as a target domain classifier that measures the probability of the
images belonging to the target domain. Defining the target domain by only a few training images is
ambitious, so we desire the discriminator to extract the most representative feature of training images
that portray the target domain. Inspired by [29], we reuse and fix the feature extractor d(·) of the
pre-trained source discriminator to inherit its strong feature extraction capability. Additionally, we
introduce a target domain classifier ϕ(·) on the top of the feature extractor d(·). We use a two-layer
multi-layer perceptron (MLP) as the target domain classifier ϕ(·) and the target domain classifier

5



ϕ(·), and it is updated from scratch, which outperforms directly fine-tuning the final layer of the
original discriminator, especially for large domain-gap GDA. Given an image x, the discriminator
measures the probability that the image belongs to the target domain using p = ϕ(d(x)).

3.3 Similarity-based Structure Loss

To explicitly model the cross-domain consistency in generative domain adaptation, we propose a
novel similarity-based structure loss called Lss. Our intuition is that the auto-correlation maps of
the source image and its corresponding target image should be consistent during generative domain
adaptation. To achieve this, we extract the intermediate tokens FA and FB of the source image
IA and its corresponding target image IB from the k-th layer pf the CLIP image encoder. These
tokens are denoted by FA = F 1

A, · · · , Fn
A and FB = F 1

B , · · · , Fn
B , respectively. We define the

auto-correlation maps as MA =
FT

A

|FT
A | ×

FA

|FA| and MB =
FT

B

|FT
B | ×

FB

|FB | , where M i,j
A =

F i
A·F j

A

|F i
A||F j

A|
and

M i,j
B =

F i
B ·F j

B

|F i
B||F j

B|
. The Lss is then defined as the L2 norm of the difference between MA and MB :

Lss =
1

n2

n∑
i=1

n∑
j=1

||M i,j
A −M i,j

B ||, (4)

where || · || is the L2 norm function.

3.4 Overall Training Loss

Our overall training loss includes original adversarial training loss in StyleGAN2 and the similarity-
based structure loss Lss:

LG = −Ez∼p(z)[log(D(G(z)))] + λssLss,

LD = −Ez∼p(z)[log(1−D(G(z)))]− Ex∼Xt [log(D(x))],
(5)

where Xt is the training dataset. In our experiments, we set λss = 10.

4 Experiments

We begin by introducing the experimental settings of our method, which encompass implementation,
datasets, and metrics (Section 4.1). Next, we apply our method to various 10-shot datasets, showcasing
its performance in Section 4.2. Section 4.3 explores the capabilities of domain association among
multiple domains. Furthermore, we conduct ablation studies (Section 4.4 and Section A.1) to assess
the impact of both the similarity-based structure loss and the generator structure. Additionally, we
provide the user study in Section A.4 and demonstrate the applicability of our DoRM to one-shot
GDA in Section A.3.

4.1 Experiments Settings

Implementation. We adopt the pre-trained StyleGAN2 [19] on FFHQ [18] as our source model,
and our training parameters and settings follow StyleGAN2-ADA [17]. Due to the small amount of
training data, we set the batch size to 4, and we terminate the training process after the discriminator
has processed 100K real samples. Our implementation is based on the official implementation of
StyleGAN2-ADA.

Datasets. Following previous literature [32; 59], we use FFHQ [18] with resolution 256× 256 as
the source domain. In 10-shot GDA, we evaluate our method on multiple target datasets, including
Sketches [41], FFHQ-Babies [18], FFHQ-Sunglasses [18], Face-Caricatures, Face paintings by
Amedeo Modigliani, Face paintings by Raphael, and Face paintings by Otto Dix [50]. All the training
datasets are shown in Section A.2.

Metrics. Following [59; 32], we use Fréchet Inception Distance (FID) [13] as the metric to evaluate
the synthesis quality and diversity simultaneously. Additionally, we adopt intra-cluster LPIPS (intra-
LPIPS) [59; 32] based on LPIPS [54] to measure the synthesis diversity. Specifically, we synthesize
1000 images and then assign each of the synthesized images to the k training images with the lowest
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LPIPS distance, forming k clusters. We calculate the average LPIPS distance within each cluster and
then average over all the clusters. Furthermore, we report the identity (ID) similarity [56] predicted
by the Arcface [9] to measure the preservation of identity information, which is a metric to measure
the cross-domain consistency.

4.2 10-shot Generative Domain Adaptation

Qualitative comparison. In 10-shot GDA, following the previous studies [32], we sample 10 training
images from the target domain to transfer the pre-trained generator. Figure 3 shows the results
of 10-shot GDA with different methods. We observe severe generator overfitting in the FreezeD
[29]. GenDA [49] shows high quality and diverse synthesis but fails to maintain cross-domain
consistency. CDC [32] and RSSA [47] improve the cross-domain consistency, but the synthesis
quality is unsatisfactory. AdAM [58] also increases the synthesis diversity but fails in synthesis
quality. By contrast, our method preserves all the domain-sharing attributes from the source domain
by freezing the original generator and acquires the domain shift through new concurrent network
components. Our method shows appealing synthesis quality and diversity while maintaining better
cross-domain consistency than previous methods. More qualitative results can be found in Section
A.2, Section A.5, and Section A.6.

Quantitative comparison. We use Fréchet Inception Distance (FID) to evaluate synthesis quality
and diversity (lower is better). In 10-shot GDA, to better reflect the synthesis diversity , we use
the Intra-LPIPS[32] to measure the synthesis diversity (higher means better synthesis diversity)
. Additionally, we measure cross-domain consistency using Identify similarity (ID) [56] (higher
is better). Table 1 summarizes the three evaluation metrics for 10-shot GDA over different target
domains. FreezeD [29] and GenDA [49] struggle to maintain cross-domain consistency. CDC [32],
RSSA [47], DCL [59] and AdAM [58] improve the synthesis diversity and cross-domain consistency
but fails in the synthesis quality (as seen in Figure 3), leading to unsatisfactory FID scores. Our
method outperforms all these methods on the different target domains, achieving not only better
synthesis diversity and cross-domain consistency (higher Identity score and Intra-LPIPS) but also
better synthesis quality (lower FID score).

Table 1: Quantitative evaluation on 10-shot GDA. All the source generators are pre-trained on
FFHQ[18]. The target domains include Sketches, FFHQ-Baby and FFHQ-Sunglasses. Evaluation
metrics include FID, Intra-LPIPS (I-LPIPS), and Identify similarity (ID). Noting that Sketches dataset
only contains about 300 images, the large synthesis diversity will harm to the FID score.

Datasets FFHQ-Babies
Method FID I-LPIPS ID

minegan 98.23 0.514 0.132
FreezeD 110.92 0.346 0.037
GenDA 47.05 0.556 0.029

CDC 74.39 0.573 0.326
RSSA 77.77 0.576 0.314

DCL 52.56 0.582 -
AdAM 48.83 0.590 0.249
DoRM 30.31 0.623 0.445

FFHQ-Sunglasses
FID I-LPIPS ID

68.91 0.42 0.171
51.29 0.337 0.030
22.62 0.548 0.004
42.13 0.562 0.318
70.41 0.563 0.307
38.01 - -
28.03 0.592 0.306
17.31 0.644 0.389

Sketches
FID I-LPIPS ID

64.34 0.40 0.092
46.54 0.325 0.010
31.97 0.407 0.011
45.67 0.453 0.214
63.44 0.480 0.296
37.90 0.486 -
55.74 0.495 0.198
40.05 0.502 0.365

4.3 Multi-domain and Hybrid-domain Generation

Multi-domain generation. Our proposed DoRM utilizes a novel approach by learning and retaining
knowledge of new domains through the formation and update of new M&A modules, instead of
updating the entire generator. This unique characteristic enables our DoRM, with a single generator,
to generate images across multiple domains (as depicted in the top part of Figure 4). In contrast
to previous methods [32; 47; 59; 58] that require updating the entire generator for few-shot GDA,
limiting its capability into single domain generation, our DoRM offers significant storage space
savings in multi-domain generation. As shown in Table 2, our method’s models are about 3× smaller
than previous methods [32] on 10-domain generation.

Hybrid-domain generation. In contrast to previous methods [32; 59; 55] that fine-tune the entire
generator, our DoRM achieves an effective linear domain shift through the update of new M&A
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Figure 3: Qualitative comparison on 10-shot GDA. The source domain is FFHQ, and the target
domains include Sketches and FFHQ-Babies. We compare our method with FreezeD[29], GenDA[49],
CDC[32], RSSA[47] and AdAM[58]. Feeding the same latent code z into the source generator and
the target generator, we obtain the corresponding images in the source and target domains. Our
method shows better cross-domain consistency and synthesis quality than the other methods.

modules. By learning multiple M&A modules that store the knowledge of various training domains,
DoRM not only enables multi-domain generation but also facilitates the synthesis of images in
hybrid domains not present in the training data (as depicted in the bottom left part of Figure 4). For
comparison, we conduct hybrid-domain generation experiments using CDC [32]. In CDC, the domain
shift between the source and target domain generators is obtained by subtracting their corresponding
parameters. Similar to our DoRM, CDC achieves hybrid-domain generation by combining multiple
domain shifts, adding the parameters of each shift to the source domain generator. However, as
illustrated in Figure 4, CDC exhibits unsatisfactory synthesis quality in hybrid-domain generation.
In contrast, the images synthesized by DoRM not only inherit domain-sharing attributes such as
pose, gender, and identity, but also seamlessly blend domain-specific attributes. Furthermore, we
extensively explore domain association among multiple domains using our proposed DoRM in Figure
5. The results demonstrate that DoRM efficiently integrates diverse domains to generate high-quality
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Hybrid-domain Generation (Ours) Hybrid-domain Generation (CDC)

Sketch domain Baby domain Sunglasses domain

Sketch-Baby domain Sketch-Sunglasses domain Sketch-Baby domain Sketch-Sunglasses domain

Figure 4: Qualitative results on multi-domain and hybrid-domain generation. The top part shows
the multi-domain generation of our methods on three target domains. The bottom part illustrates the
comparison on hybrid-domain generation between our proposed DoRM (bottom left) and CDC [32]
(bottom right). The source generator is pre-trained on FFHQ [18]. The adopted M&A modules in our
DoRM are trained in Section 4.2.

images in hybrid domains not present in the training data. In this case, our proposed DoRM has the
ability to generate creative outputs in previously unseen domains by incorporating knowledge learned
from other domains, similar to how humans can draw on past experiences to generate novel ideas. To
the best of our knowledge, our proposed DoRM is the first method to achieve efficient domain
association in this manner. Additional visualizations of hybrid domain generation can be found in
Section A.6.

Table 2: Storage Comparison. The number of generator parameters required to realize different
multi-domain generations.

Model Size 2-domain 5-domain 10-domain
CDC [32] 48M 120M 240M

Ours 30M 54M 84M

4.4 Ablation Study

We conduct ablation studies to evaluate the impact of our proposed DoRM generator structure and
similarity-based structure loss. As shown in Figure 6, the images synthesized by baseline (which
simply fine-tunes the StyleGAN2 generator with adversarial loss [18]) exhibit severe overfitting to
the training images. By contrast, fine-tuning our DoRM structure generator with adversarial loss
yields better synthesis diversity than the baseline. Moreover, when we optimize our DoRM generator
structure with both adversarial loss and similarity-based structure loss, the synthesis images exhibit
appealing quality and diversity, while maintain high cross-domain consistency, which indicates the
proposed loss effectively preserves cross-domain consistency in few-shot GDA. More ablation studies
on the network component of our DoRM are presented in Section A.1.

5 Limitation and Conclusion

Limitation. i) Although our method can achieve appealing results on the few-shot GDA across
different target domains, however, the strength of domain shift α currently needs to be manually
adjusted. Furthermore, since the various depth layers capture different semantic attributes, equipping
each layer with an appropriate α may help to further improve synthesis quality. ii) The current
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Figure 5: Domain association between different domains by our DoRM. The first row and the
first column show the 10-shot GDA results on different target domains. By simply combining the
corresponding pretrained M&A modules in 10-shot GDA, DoRM can integrate the domains and
synthesize the high-quality images in the hybrid domains.

Source domain DoRM DoRM + 𝐿𝑠𝑠Baseline

Figure 6: Ablation study on DoRM and Lss. The training images are 10-shot sketches.

manuscripts only simply combines the M&A modules of different target domains and activate them
at the same time to realize the domain association. To further improve the performance of the domain
association, not only combining the trained target M&A modules but also employing a new M&A
module and additional consistency loss is a better method to blend the target domains.

Conclusion. In this paper, we present DoRM, a novel generator structure inspired by the learning
and storage mechanisms of the human brain, specifically designed for few-shot GDA. Our DoRM is
characterized by its simplicity and efficiency. Additionally, we introduce a novel similarity-based
structure loss to ensure cross-domain consistency in the few-shot GDA. Through extensive qualitative
and quantitative evaluations, we demonstrate the superiority of our method over existing approaches
in terms of synthesis quality, diversity, and cross-domain consistency. Importantly, akin to the human
brain, our DoRM exhibits memory and the ability to integrate knowledge from different domains,
enabling the generation of images in novel hybrid domains not encountered during training.
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A Supplementary Materials

A.1 Ablation Study

Effect of Target Mapping. In this section, we first investigate the significance of the target mapping
module in our proposed DoRM. To evaluate the significance of the target mapping, we conduct
an ablation study using the source mapping as a substitute for the target mapping, which remains
frozen during the entire 10-shot generative domain adaptation training. As shown in Table 3, our
results indicate a significant deterioration in the FID score without the target mapping, implying
a considerable drop in the quality and diversity of the generated samples. Furthermore, Figure 7
illustrates that the generative domain adaptation barely occurs during training without the target
mapping. This is because the target mapping plays a crucial role in capturing the representative
attributes of the target domain and assisting in the acquisition of the domain shift during the adaptation
process.

Source Sketch Baby Sunglasses

w/ TG

w/o TG

Figure 7: Qualitative ablation study of the target mapping. We compare the performance of
our DoRM method, shown in the first row, with a variant of the method where the frozen source
mapping is used as a substitute for the target mapping, depicted in the second row. We evaluate
the performance of both methods on three different target domains: Sketches, FFHQ-Babies, and
FFHQ-Sunglasses.

Table 3: Quantitative ablation study of the target mapping. The evaluation metric is FID (lower is
better). We compare the performance of our DoRM method, shown in the first row, with a variant of
the method where the frozen source mapping is used as a substitute for the target mapping, depicted
in the second row. The source generator is pre-trained on FFHQ[18], and the target domains include
FFHQ-Babies and FFHQ-Sunglasses.

Babies Sunglasses
DoRM 30.31 17.31

DoRM w/o Target Mapping 86.52 74.71

Effect of Re-Modulation Layers. Another crucial component of our proposed DoRM approach
is the target affine module. To investigate the roles of the different target affines in DoRM, we
perform experiments where we drop the target affines in both the low-resolution and high-resolution
feature maps. Specifically, we conduct 10-shot generative domain adaptation experiments to evaluate
the Fréchet Inception Distance (FID) of the generated samples. For an image with a resolution of
256× 256, the low-resolution feature maps include resolutions of 4× 4, 8× 8, 16× 16, and 32× 32.
As presented in Table 4, our results demonstrate that all target affines are crucial for the performance
of our DoRM approach and their removal leads to a significant drop in the quality and diversity of the
generated samples.

Effect of Re-Modulation Weight. The re-modulation weight is a crucial parameter that controls
the strength of the acquired domain shift in our proposed DoRM approach. A small re-modulation
weight leads to a lower strength of the domain shift, resulting in more attributes of the source domain
being preserved during generative domain adaptation. To investigate the impact of the re-modulation
weight, we conduct 10-shot generative domain adaptation experiments using different re-modulation
weights. The results are presented in Table 5. Our results demonstrate that different domain gaps have
different optimal re-modulation weights, indicating that the selection of the re-modulation weight
should be tailored to the specific target domain.

Effect of Target domain classifier. We investigate the effect of the target domain classifier on the
performance of our proposed DoRM approach. Specifically, we experiment with different depths
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Table 4: Quantitative ablation study of the target affine layers. The evaluation metric is FID
(lower is better). We compare the FID score of our proposed DoRM method, shown in the first row,
with two variants: one where the target affines are removed from the low-resolution feature maps,
shown in the second row, and another where the target affines are removed from the high-resolution
feature maps, shown in the third row. We use a source generator pre-trained on FFHQ [18] and
evaluate all three methods on two different target domains: FFHQ-Babies and FFHQ-Sunglasses.

babies sunglasses
DoRM 30.31 17.31

DoRM w/o target affines in low resolution 93.28 92.42
DoRM w/o target affines in high resolution 37.16 20.81

Table 5: Quantitative ablation study of the re-modulation weight. The evaluation metric is FID
(lower is better). We conduct 10-shot generative domain adaptation experiments using our DoRM
approach with varying re-modulation weights. We use a source generator pre-trained on FFHQ [18]
and evaluate our method on two different target domains: FFHQ-Baby and FFHQ-Sunglasses.

Re-modulation weight α 0.5 0.2 0.05 0.005 0.001
FFHQ-Baby 37.9 36.1 34.0 30.3 32.3

FFHQ-Sunglasses 18.7 17.3 17.9 18.5 19.4

(e.g., number of MLP layers) and initialization methods for the target domain classifier in 10-shot
generative domain adaptation. As presented in Table 6, our results indicate that the two-layer MLP
target domain classifier achieves the best performance. This is because the one-layer MLP lacks the
ability to classify the target domain effectively, while the three-layer MLP is prone to overfitting due
to the limited number of training images.

Ablation of Individual Components of Previous State-of-the-art Methods. To highlight the
specific strengths of the proposed method that outperform other works, we consider the individual
components and techniques utilized in previous state-of-the-art approach [55]. Specifically, we
systematically analysis and compare individual components and techniques utilized in our DoRM
and DiFa [55] to showcase how our method surpasses these works. According to the Introduction
of the manuscript, GDA needs three fundamental properties. To resolve it, DiFa [55] proposed two
CLIP-based loss: global loss Lglobal and local loss Llocal for realizing large diversity/cross-domain
consistency and high quality, respectively. Differently, we adopt Similarity-based Structure Loss
(Lss) and adversarial loss (Ladv) for realizing large diversity/cross-domain consistency and high
quality, respectively. As shown in the Figure 8, the Llocal in DiFa mainly focuses on textual features
and failes to capture the complete features (e.g. the white background in sketches) in generative
domain adaptation. In our DoRM, we employ adversarial loss which can fully capture the features of
the target images.

Table 6: Quantitative ablation study of the target domain classifier. The evaluation metric is
FID (lower is better). We experiment with different depths of the target domain classifier, using
various initialization methods. We use a source generator pre-trained on FFHQ [18] and evaluate our
proposed DoRM approach on 10-shot generative domain adaptation tasks.

FFHQ-Baby FFHQ-Sunglasses
MLP Depth source initial random initial source initial random initial

one layer 38.03 37.15 24.63 22.15
two layers 33.32 30.31 20.40 17.31

three layers — 33.25 — 20.42

A.2 More Synthesis Results in 10-shot GDA

Qualitative results on 10-shot generative domain adaptation. We present qualitative results of
our proposed DoRM approach on more target datasets, including face caricatures, face paintings by
Raphael, face paintings by Amedeo Modigliani, and face paintings by Otto Dix [50]. All training
images are shown in Figure 9, and the qualitative results are presented in Figure 10. Our results
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Source(FFHQ) 𝐿𝑎𝑑𝑣 + 𝐿𝑠𝑠 𝐿local + 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 𝐿local + 𝐿𝑠𝑠

Figure 8: Ablation of individual components of previous state-of-the-art methods.

demonstrate that our proposed DoRM approach achieves appealing synthesis quality in various target
domains.

Results of latent interpolation. We perform latent space interpolation to demonstrate that our
DoRM is not harmful to the learned latent space. In Figure 11, the first and last columns show
the generated images with two latent codes after 10-shot generative domain adaptation, while the
remaining columns show the results obtained by linearly interpolating the two latent codes. Our
results demonstrate that all intermediate synthesized images have high target-domain consistency and
high cross-domain consistency. Moreover, the semantics of the generated images, such as gender,
haircut, and pose, vary gradually throughout the interpolation, indicating that our proposed DoRM
approach preserves the underlying semantic structure of the learned latent space.

Results of latent editability. We have performed editing on a real image adapted into a new target
domain using StyleGAN-CLIP to discover editing directions in the source domain. The results,
as illustrated in Fig 12, indicate that the adapted generator maintains similar latent-based editing
capabilities to the original generator. This demonstrates the preservation of editability in the adapted
generator.

Results on 3D generator. We conducted some initial studies using the popular 3D-aware image
generation method, EG3D [3], for one-shot GDA with FFHQ as the source domain and Sketch as the
target domain. The results, as shown in the Figure 13, reveal that directly migrating the proposed
DoRM to 3D one-shot domain adaptation poses challenges and might not be straightforward. Some
potential challenges in the 3D-GAN domain include:

(1) Overfitting: 3D GANs often face more severe overfitting issues when dealing with limited training
data, requiring more rigorous regularization techniques and training strategies for one-shot GDA.

(2) Volumetric Data Representation: Handling volumetric data representation in 3D-GANs necessi-
tates specialized techniques for data manipulation, augmentation, and visualization.

(3) Spatial Artifacts: Generating high-quality 3D objects may encounter spatial artifacts, such as
geometric distortions or inconsistent shapes, which need to be addressed.

(4) Computational Complexity: The computational demands of 3D-GANs can be significantly higher
than their 2D counterparts, presenting challenges in both training and inference.

Results on three-domain hybrid domain generation. As depicted in the Figure 14, we have
showcased an example of applying our method to create hybrid-domain images by activating the
trained M&A modules of Baby, Sunglasses, and Sketch domains. This illustration demonstrates how
easily our approach can be adapted to generate hybrids involving more than two domains, showcasing
the versatility and potential of our approach.

A.3 Experiments on one-shot Generative Domain Adaptation

Although our DoRM is mainly for few-shot generative domain adaptation, DoRM is also can be
employed for one-shot generative domain adaptation [21; 55; 6]. In the one-shot GDA, the training
dataset is a single image, which is difficult for the backbone of discriminator to extract the main
characters of the target domain because of the overfitting issue. In this case, we introduce a clip-based
local-level adaptation loss Llocal from [55] to help to acquire the local-level characters and styles of
the target domain. Concretely, we extract the intermediate tokens of the adapted image IB synthesized
by DoRM and the single target image Itar from the k − th layer of CLIP image encoder. And align
each of adapted token FB with its closest target token from Ftar, where FB = F 1

B , ..., F
n
B and
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Ftar = F 1
tar, ...F

m
tar are the extracted tokens. The clip-based local-level adaptation loss is defined as:

Llocal = max(
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n

∑
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min
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1

m

∑
j

min
i

Ci,j) (6)

where C is calculated as:

Ci,j = 1− F i
B · F j

tar

|F i
B ||F

j
tar|

(7)

Furthermore, to better identify and maintain the domain-sharing attributes in one-shot generative
domain adaptation, we also employ the inversion-based selective cross-modal consistency loss Lscc

from [55]. Specifically, this loss function aims to identify and preserve domain-sharing attributes in
the W+ space. The underlying assumption is that attributes that are similar in W+ space between
the source and target domains during adaptation are more likely to be domain-sharing attributes. To
achieve this, Lscc dynamically analyzes and retains these attributes. First, it inverts the source and
corresponding target images into W+ latent codes, wA and wB , respectively, using a pre-trained
inversion model such as pSp pr e4e, for each iteration. Next, it computes the difference ∆w, between
the centers of a source queue of W+ latent codes, XA and the target queue of W+ latent codes,
XB , where XA and XB are dynamically updated with wA and wB during training. The loss function
then encourages wA and wB to be consistent in channels with less difference, thereby facilitating the
preservation of domain-sharing attributes. The inversion-based selective cross-modal consistency
loss Lscc is defined as follows:

Lscc = ||mask(∆w,α) · (wB − wA)||1 (8)

where α represents the proportion of preserved attributes, and mask(∆w,α) determines which
channels to retain. Specifically, let |∆wsαN

| be the αN − th largest element of ∆w. Then, each
dimension of mask(∆w,α) is calculated as follows:

mask(∆w,α)i =

{
1 |∆wi| ≤ |∆wsαN

|
0 |∆wi| ≥ |∆wsαN

| (9)

We compare our DoRM++ approach which denotes introducing the two new loss terms into training
with state-of-the-art one-shot generative domain adaptation (GDA) methods, including JoJoGAN
[6], Generalized One-shot Domain Adaptation [56], DynaGAN[20] and DiFa [55]. Figure 16 shows
the comparison results. Our results indicate that JoJoGAN, DynaGAN and Generalized One-shot
Domain Adaptation fail to achieve GDA when the target image is FFHQ-Baby and FFHQ-Sunglasses,
and the synthesis quality of DynaGAN is limited. Similarly, DiFa also fails to achieve GDA when the
target image is FFHQ-Sunglasses, and the synthesis diversity is unsatisfactory when the target image
is FFHQ-Baby.

In contrast, our DoRM++ approach achieves one-shot GDA among all the reference images, resulting
in high-quality and diverse synthesis, while maintaining appealing cross-domain consistency. More-
over, our DoRM++ generator has memory to realize multiple target domains’ generation, which saves
a significant amount of storage space. Our DoRM++ generator also has the ability to integrate the
learned knowledge of multiple target domains to synthesize images in hybrid domains that are unseen
in the target domains. As shown in Figure 17, the DoRM++ generator can synthesize high-quality
and diverse images in hybrid domains while maintaining the domain-sharing attributes (e.g, pose,
identity).

A.4 User Study in One-shot GDA

In this section, we have planned to conduct a user study in one-shot GDA to enhance our evaluation
process. Specifically, our user study involves presenting users with a reference image, a source image,
and four adapted images from different methods (DORM++, Generalized One-shot Domain Adaption
[56], DynaGAN [20], and DiFa [55]). We will ask users to choose the best adapted image for each
of three measurements: (i) image quality, (ii) style similarity with the reference, and (iii) attribute
consistency with the source image. To ensure statistical significance, we will generate 500 samples
for each method and involve 50 users in our study. Each user will be randomly assigned 50 samples
from the 500, and they will have unlimited time to complete the evaluation. As shown in Table 7,
preliminary results indicate that users strongly favor our DoRM in all three aspects, reflecting the
effectiveness of our approach compared to the alternative methods.
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Table 7: User study on one-shot GDA. The numbers represent the percentage of users who favor the
images synthesized corresponding method among the all four methods.

Model Comparison image quality style similarity attribute consistency
DoRM++ (Ours) 59.02% 69.35% 67.16%

Generalized One-shot Domain Adaption [56] 7.38% 16.33% 11.79%
DynaGAN [20] 1.44% 3.73% 3.41%

DiFa [55] 32.16% 10.59% 18.24%

A.5 Experiments of DoRM and DoRM++ on the one-shot and 10-shot GDA

Figure 15 thoroughly explore the performance of DoRM++ in a 10-shot GDA scenario and that of
DoRM in a one-shot GDA context. The results of these experiments illustrate that both DoRM++ and
DoRM exhibit strong performance in both few-shot and one-shot GDA scenarios. Notably, DoRM++
showcases enhanced cross-domain consistency compared to DoRM in the context of one-shot GDA.

A.6 Hybrid-domain Generation

In Figure 17, we present the results of generating hybrid domains using our proposed model. Our
DoRM has a unique generator structure that is similar to the mechanism of the human brain. This
structure endows the DoRM with two novel capabilities: memory and domain association. These
capabilities enable the DoRM to not only retain knowledge from previously learned domains when
generating images in new domains, but also integrate multiple learned domains and synthesize images
in hybrid domains that were not encountered during training.

Additionally, we proceed to provide a comparative analysis of three methods within this section: Our
DoRM/DORM++, DynaGAN [20], and Domain Expansion [30]. As illustrated in Figure 18, we strive
to alleviate any confusion by conducting comprehensive experiments on the memory and domain
association capabilities of these three methods under one-shot and 10-shot settings. These results
effectively demonstrate that the baseline methods exhibit poorer performance across various settings
compared to our DoRM/DoRM++. Notably, both DynaGAN and Domain Expansion experience
difficulties in achieving successful hybrid domain generation, highlighting the distinctive advantages
of our approach.

Finally, we meticulously scrutinized the quantitative experiments conducted within the Domain
Expansion framework, leading us to adopt a cosine similarity evaluation metric termed "domain
similarity" (Sim) based on CLIP image encoder (EI ). This metric is employed to provide a quantita-
tive assessment of the fidelity exhibited by hybrid domains. In detail, for given generative images
in the hybrid domain "sketch-baby" (ISB), we extract image features from the provided images
(EI(ISB)) as well as its corresponding target images (EI(IS) and EI(IB)). Therefore, the "do-
main similarity" to "sktech" and "baby" domain are defined as Sim1 = cos(EI(ISB), EI(IS)) and
Sim2 = cos(EI(ISB), EI(IB)), respectively.

Subsequently, we compute the cosine similarity for each case. The quantification of results from both
the one-shot and 10-shot experiments is meticulously presented in Table 8 and Table 9, respectively.
These outcomes distinctly illustrate the remarkable performance of our proposed DoRM in both
single-domain and hybrid-domain generation. It is imperative to highlight a notable observation
amidst these findings: a certain outlier exists. Specifically, the images generated by DynaGAN and
HyperdomainNet within the "elsa-sunglasses" domain exhibit a remarkably high domain similarity
with the "sunglasses" domain, while conversely displaying significantly lower domain similarity with
the "elsa" domain. This phenomenon can be rationalized by the generated images closely resembling
the "FFHQ" domain, as depicted in Figure 6 of the attached PDF in the rebuttal. Consequently, the
domain similarity to the "FFHQ-sunglasses" domain also emerges as notably high. Drawing upon this
observation, we emphasize the necessity for a comprehensive evaluation of hybrid-domain generation
that seamlessly integrates both qualitative and quantitative results.

A.7 Experiments on Other Source Domains

In addition to the experiments on FFHQ, we conduct other 10-shot generative domain adaptation
experiments to qualitatively evaluate the effectiveness of our proposed DoRM approach. Specifically,
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we pre-trained a StyleGAN2 on the LSUN-church [52] dataset and adapted the pre-trained GAN to
generate haunted house images. The results of our experiments are presented in Figure 19.

Table 8: Cosine similarity (higher is better) of CLIP feature between generated images and corre-
sponding target images on one-shot experiments.

Method elsa baby sunglasses elsa-baby elsa-sunglasses
DynaGAN 0.9165 0.7866 0.8882 0.6196/0.7832 0.6245/0.8467

DynaGAN-interpolation - - - 0.6201/0.7836 0.6330/0.8546
HyperdomainNet 0.8740 0.7739 0.8589 0.7007/0.7041 0.6554/0.7882

Domain expansion 0.9075 0.9614 0.9339 0.7022/0.7762 0.7671/0.6177
Ours 0.9309 0.9814 0.9370 0.7173/0.7842 0.7734/0.6377

Table 9: Cosine similarity (higher is better) of CLIP feature between generated images and corre-
sponding target images on 10-shot experiments.

Method Sketches Babies Sunglasses Sketches-Babies Sketches-Sunglasses
Domain expansion 0.8958 0.9546 0.9094 0.7480/0.7112 0.7720/0.6735

Ours 0.9492 0.9780 0.9136 0.8809/0.7271 0.8057/0.6973

Sunglasses

Raphael

Caricature

Amedeo

Otto Dix

Baby

Sketches

Figure 9: Training images in 10-shot generative domain adaptation experiments.
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Figure 10: 10-shot generative domain Adaptation on FFHQ. We use a source generator pre-trained
on the FFHQ [18] dataset and evaluate our proposed DoRM approach on various target domains,
including FFHQ-Sunglasses, face caricatures, face paintings by Raphael, face paintings by Amedeo
Modigliani, and face paintings by Otto Dix [50]. The training images are shown in Figure 9. Our
results demonstrate that our proposed DoRM approach can maintain cross-domain consistency
between the source domain and different target domains.

Figure 11: Latent interpolation using the generators adapted to different target domains in 10-shot
generative domain adaptation (the first line is the source images). The first and last columns are the
generated images with two latent codes after 10-shot generative domain adaptation. The remaining
columns are the results by linearly interpolating the two latent codes. According to the figure, all the
semantics (e.g., the gender, the haircut and the pose) vary gradually.
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Original Man Bobcut Man+Pose Look up

Figure 12: Latent edit using the generators adapted to different target domains in 10-shot generative
domain adaptation (the first line is the source images). The second and third lines are two popular
target domain images, where the first column is the example of 10-shot target images and the other
columns are adaptation results.

Figure 13: One-shot GDA in 3D GANs. DoRM for one-shot GDA in EG3D. Left: source image in
FFHQ. Right: the generative target domain (Sketch) images.

Source SB G S-B-G

Figure 14: Three-domain hybrids generation on 10-shot Babies (B), Sunglasses (G), and Sketch (S)
datasets. This illustration demonstrates how easily our approach can be adapted to generate hybrids
involving more than two domains.
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Figure 15: Results of DoRM and DoRM++ on the one-shot and 10-shot GDA.
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Figure 16: Qualitative comparison on one-shot GDA. The source domain is FFHQ, and the target
domains include different reference images, as shown in the first row of the figure. We compare
our method with JoJoGAN [6], Generalized One-shot Domain Adaption [56], DynaGAN[20] and
DiFa[55]. Our method not only achieves better synthesis quality and diversity but also maintains
higher cross-domain consistency than other methods.
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Figure 17: One-shot generative domain adaptation and domain association on FFHQ. The source
domain is FFHQ, and the target domains include different reference images, as shown in the first
column of the figure. Once our DoRM++ generator learns to synthesize images in multiple target
domains, it can integrate the knowledge from the learned multiple domains and synthesize images in
hybrid domains which are unseen in the target domains.
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Figure 18: Comparison with baselines on 1-shot and 10-shot GDA. The outcomes underscore our
DoRM’s superiority, revealing inferior performance by baseline methods across various scenarios.
Remarkably, other methods face challenges in achieving successful hybrid domain generation.
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Haunted House Source images

Target images

Figure 19: 10-shot generative domain adaptation on LSUN-Church[52]. The source generator
is pretrained on LSUN-Church[52]. The target domain is haunted house (10 training images are
shown on the left side). The result shows that our method can maintain the cross-domain consistency
between the source domain and the target domain.
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